首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
ABSTRACT: Field investigations were conducted at three sites in the Washington, D.C., area to detect the accumulation patterns of the trace metals, cadmium, copper, lead and zinc in the soils of roadside grassed swale drains that had been receiving urban stormwater runoff. Two sites were residential areas and one site was an intensively used highway. The research results seem to indicate that the use of swale drains to control urban stormwater runoff had few harmful effects to fine textured soils with respect to the study metals. With the exception of zinc, typical roadside patterns of decreasing metal concentrations with increasing distance from roads were observed for the upper 5 cm of study soils. Zinc accumulated in residential grassed swales due to leachate from galvanized curverts. Sampling to a depth of 60 cm revealed no evidence of subsurface trace metal enrichment in the study swales. Although the percentage of soil zinc in leachable form was as high as 20 percent of total zinc concentrations, the other study metals had small leachable components. Leachable lead was always less than 1 percent of the total lead.  相似文献   

2.
Stormwater management infrastructure is utilized in urban areas to alleviate flooding caused by decreased landscape permeability from increased impervious surface cover (ISC) construction. In this study, we examined two types of stormwater detention basins, SDB-BMPs (stormwater detention basin-best management practice), and SDB-FCs (stormwater detention basin-flood control). Both are constructed to retain peak stormwater flows for flood mitigation. However, the SDB-BMPs are also designed using basin topography and wetland vegetation to provide water quality improvement (nutrient and sediment removal and retention). The objective of this study was to compare SDB (both SDB-BMP and SDB-FC) surface soil P concentrations, P saturation, and Fe chemistry with natural riparian wetlands (RWs), using sites in Fairfax County, Virginia as a model system. The SDB-BMPs had significantly greater surface soil total P (P(t)) concentrations than the RWs and SDB-FCs (831.9 +/- 32.5 kg ha(-1), 643.3 +/- 19.1 kg ha(-1), and 652.1 +/- 18.8 kg ha(-1), respectively). The soil P sorption capacities of SDB-BMPs were similar to the RWs, and were greater than those of SDB-FCs, appearing to result in greater soil P removal and retention in SDB-BMPs compared with SDB-FCs. Increased Fe concentrations and relatively greater amounts of more crystalline forms of Fe in SDB-BMP soils suggested increased sediment deposition compared with RW and SDB-FC soils. Data suggest that SDB nutrient and sediment retention is facilitated in SDB-BMPs. When stormwater management is necessary, use of SDB-BMPs instead of SDB-FCs could foster more responsible urban development and be an appropriate mitigation action for receiving aquatic ecosystems.  相似文献   

3.
Denitrification potential in urban riparian zones   总被引:3,自引:0,他引:3  
Denitrification, the anaerobic microbial conversion of nitrate (NO3-) to nitrogen (N) gases, is an important process contributing to the ability of riparian zones to function as "sinks" for NO3- in watersheds. There has been little analysis of riparian zones in urban watersheds despite concerns about high NO3- concentrations in many urban streams. Vegetation and soils in urban ecosystems are often highly disturbed, and few studies have examined microbial processes like denitrification in these ecosystems. In this study, we measured denitrification potential and a suite of related microbial parameters (microbial biomass carbon [C] and N content, potential net N mineralization and nitrification, soil inorganic N pools) in four rural and four urban riparian zones in the Baltimore, MD metropolitan area. Two of the riparian zones were forested and two had herbaceous vegetation in each land use context. There were few differences between urban and rural and herbaceous and forest riparian zones, but variability was much higher in urban than rural sites. There were strong positive relationships between soil moisture and organic matter content and denitrification potential. Given the importance of surface runoff in urban watersheds, the high denitrification potential of the surface soils that we observed suggests that if surface runoff can be channeled through areas with high denitrification potential (e.g., stormwater detention basins with wetland vegetation), these areas could function as important NO3- sinks in urban watersheds.  相似文献   

4.
ABSTRACT: The accumulation of arsenic, nickel, copper, and lead in the soil profile was determined beneath five urban storm-water retention/recharge basins used by the Fresno Metropolitan Flood Control District, California. Soils were sampled from the surface to the first zone of saturation and compared with soils from an adjacent un-contaminated control site. These elements were found to be accumulating in the first few centimeters of basin soil and are important to the effectiveness of a specific best management practice, i.e., the retention and recharge of urban storm water. Study basins in use since 1962, 1965, and 1969 had lead contents in the 0–2 cm soil depth interval‘of 570, 670, and 1400 mg Pb/kg soil, respectively. The median indigenous soil lead concentration was 4.6 mg/kg soil. The practice of removing excess flood runoff water from two basins by pumping apparently is a factor in reducing the accumulation rate of these elements in the surface soils of the basins.  相似文献   

5.
Stormwater management that relies on ecosystem processes, such as tree canopy interception and rhizosphere biology, can be difficult to achieve in built environments because urban land is costly and urban soil inhospitable to vegetation. Yet such systems offer a potentially valuable tool for achieving both sustainable urban forests and stormwater management. We evaluated tree water uptake and root distribution in a novel stormwater mitigation facility that integrates trees directly into detention reservoirs under pavement. The system relies on structural soils: highly porous engineered mixes designed to support tree root growth and pavement. To evaluate tree performance under the peculiar conditions of such a stormwater detention reservoir (i.e., periodically inundated), we grew green ash (Fraxinus pennsylvanica Marsh.) and swamp white oak (Quercus bicolor Willd.) in either CUSoil or a Carolina Stalite-based mix subjected to three simulated below-system infiltration rates for two growing seasons. Infiltration rate affected both transpiration and rooting depth. In a factorial experiment with ash, rooting depth always increased with infiltration rate for Stalite, but this relation was less consistent for CUSoil. Slow-drainage rates reduced transpiration and restricted rooting depth for both species and soils, and trunk growth was restricted for oak, which grew the most in moderate infiltration. Transpiration rates under slow infiltration were 55% (oak) and 70% (ash) of the most rapidly transpiring treatment (moderate for oak and rapid for ash). We conclude this system is feasible and provides another tool to address runoff that integrates the function of urban green spaces with other urban needs.  相似文献   

6.
We coupled rainfall–runoff and instream water quality models to evaluate total suspended solids (TSS) in Wissahickon Creek, a mid‐sized urban stream near Philadelphia, Pennsylvania. Using stormwater runoff and instream field data, we calibrated the model at a subdaily scale and focused on storm responses. We demonstrate that treating event mean concentrations as a calibration parameter rather than a fixed input can substantially improve model performance. Urban stormwater TSS concentrations vary widely in time and space and are difficult to represent simply. Suspended and deposited sediment pose independent stressors to stream biota and model results suggest that both currently impair stream health in Wissahickon Creek. Retrofitting existing detention basins to prioritize infiltration reduced instream TSS loads by 20%, suggesting that infiltration mitigates sediment more effectively than detention. Infiltrating stormwater from 30% of the watershed reduced instream TSS loads by 47% and cut the frequency of TSS exceeding 100 mg/L by half. Settled loads and the frequency of high TSS values were reduced by a smaller fraction than suspended loads and duration at high TSS values. A widely distributed network of infiltration‐focused projects is an effective stormwater management strategy to mitigate sediment stress. Coupling rainfall–runoff and water quality models is an important way to integrate watershed‐wide impacts and evaluate how management directly affects urban stream health.  相似文献   

7.
ABSTRACT: A study has been conducted for the past two years on a 4.6 mile stretch of the Saddle River near Lodi, New Jersey. The primary objectives of this study were two fold; initially, the amounts of various heavy metals being contributed to the Saddle River by stormwater runoff, rainfall, and individual tributaries, etc., were investigated to better delineate the distribution of various sources of heavy metals to the aquatic environment. Secondly, a series of benthal deposits from the Saddle River were analyzed to determine the fate of these metals once introduced into the receiving stream. A mass balance analysis of heavy metals in the Saddle River was performed to determine the amount of these materials contributed from unrecorded sources. The results of this study seemed to demonstrate the importance of considering the potential scouring of river sediments as a secondary source of metals in determinations of this type. The distribution of metals in precipitation samples collected in this study was found to be similar to that in runoff, with lead and zinc predominating. Relative concentrations of metals in precipitation as compared to those of stormwater were relatively insignificant. Metal concentrations of bottom sediments were found to vary considerably from sample to sample.  相似文献   

8.
ABSTRACT: In a simulation experiment, stormwater flows are partially diverted, at various levels, to a detention basin in order to compare the recombined (i.e., undiverted flows and basin discharges) hydrograph to the response of the traditional, in-line design. The use of off-line detention basins is shown to be an effective technique for reducing peak flows from developed watersheds to pre-development levels with lower storage requirements. In addition, the discharge hydrographs produced by off-line detention are significantly different from those produced by the traditional design and may be more suited to certain stormwater management situations.  相似文献   

9.
ABSTRACT: A model for urban stormwater quality was developed in this study. The basis for the model is the process by which pollutants build up on the watershed surface. For the wet climate of the study site, it was assumed that there exists an interval of time over which the pollutant buildup equals the pollutant washoff (no accumulation of pollutant). The buildup model was represented by a linear function of the antecedent dry time. The buildup function was then linked with a pollutant washoff model represented by a power function of the storm runoff volume. Various time intervals for no net accumulation were tested to calibrate the model. The model was calibrated to observed data for two small urban basins in Baton Rouge, Louisiana, and model results were used to analyze the behavior of phosphorus concentrations in storm runoff from these basins over a long period of time.  相似文献   

10.
ABSTRACT: Ground and surface water quality monitoring data from 71 municipal sanitary landfills in North Carolina were analyzed to determine the nature and extent of current contamination problems and identify any common characteristics associated with this contamination. A total of 322 surface and 411 ground water quality records were analyzed using the SAS data system. Almost all the landfill records included inorganic and heavy metal analyses while approximately half of the records also included organic analyses by CC/MS. Our analysis indicates that landfills are having measurable impacts on ground and surface water quality, but these impacts may not be as severe as is commonly assumed. Statistically significant increases were detected in the average concentrations in ground water and downstream surface water samples when compared to upstream surface water samples. The largest percentage increases were observed for zinc, turbidity, total organic carbon, conductivity, total dissolved solids, and lead. Violations of ground water quality standards for heavy metals and hazardous organic compounds were detected at 53 percent of the landfills where adequate data existed. The moat common heavy metal violations were for lead (18 percent), chromium (18 percent), zinc (6 percent), cadmium (6 percent), and arsenic (6 percent) (percentage of landfills violating shown in parenthesis). The organic compounds that appear to pose the greatest threat to ground water are the chlorinated solvents (8 percent), petroleum derived hydrocarbons (8 percent), and pesticides (5 percent). A comparison of monitoring data from sanitary landfills and secondary wastewater treatment plants suggests that the concentrations of heavy metal and organic pollutants discharged to surface waters from these two sources are similar.  相似文献   

11.
This paper examines the variation in the properties of surface soils from the rural, through sub-urban, to the urban zones of Ibadan metropolitan area, south-west Nigeria. Soils were sampled at 0–20 cm depth in the northern part of the metropolis. Statistical techniques were used to compare the data obtained in the three zones. The results of the analyses clearly show that the mean values of nine out of the eighteen soil properties analysed differed significantly between the three zones. In particular, the concentration of two of the three heavy metals analysed in the study, that is, zinc and lead were higher in the urban zone than in the other two zones. The accumulation of heavy metals in the soils of the urban environment of developing countries requires urgent attention from environmentalists and urban development planners. It is important to prevent such heavy metals leaching into the underground water supply, and, to minimise the health risks to both humans and animals that depend solely on this source of water supply.  相似文献   

12.
ABSTRACT: To manage the first flush of storm runoff in urbanized areas, a diversion box and detention basin system has been proposed for a new storm sewer system or for retrofitting an existing system. A software package for a personal computer has been developed to facilitate the analysis and design of the system. Hydrographs and pollutographs are generated at the inlet and outlet of the diversion box and the detention basin. The peak outflow and peak pollutant concentrations are compared with the allowable outflow and pollutant concentration for urban stormwater quantity and quality management. The model is developed for both analysis and design purposes.  相似文献   

13.
ABSTRACT: A small lake in the Chicago Metropolitan Area was from 91 to 95 percent efficient in removing suspended sediment and from 76 to 94 percent efficient in removing copper, iron, lead, and zinc from urban runoff. Sediments accumulated in the lake in the form of an organic-rich mud at an average rate of 20 millimeters per year; this reduced lake storage and covered potential habitat for aquatic organisms. Copper, lead, and zinc concentrations were closely associated with suspended-sediment concentrations and with silt- and clay-sized fractions of lake sediment. Although concentrations of mercury and cadmium were near detection limits in runoff, measurable concentrations of these metals accumulated in the lake sediments.  相似文献   

14.
This study presents an innovative approach for the integration of flood hazard into the site selection of detention basins. The site selection process is conducted by taking into account multiple criteria and disciplines. Hydraulic modeling results derived from stormwater management model are employed by Technique for the Order of Prioritization by Similarity to Ideal Solution (TOPSIS) to determine flood hazard score. The score generated by TOPSIS is used in a spatial multi-criteria decision-making site selection framework. Applying the framework, a suitability map is generated in which primary locations for detention basin placement are determined. The method is demonstrated through the case study of Darakeh River Catchment, which is located in northern Tehran, Iran. The presented framework can be easily utilized for site selection of other stormwater management techniques, such as low impact development and best management practices, due to its versatility.  相似文献   

15.
By discharging excess stormwater at rates that more frequently exceed the critical flow for stream erosion, conventional detention basins often contribute to increased channel instability in urban and suburban systems that can be detrimental to aquatic habitat and water quality, as well as adjacent property and infrastructure. However, these ubiquitous assets, valued at approximately $600,000 per km2 in a representative suburban watershed, are ideal candidates to aid in reversing such cycles of channel degradation because improving their functionality would not necessarily require property acquisition or heavy construction. The objective of this research was to develop a simple, cost‐effective device that could be installed in detention basin outlets to reduce the erosive power of the relatively frequent storm events (~ < two‐year recurrence) and provide a passive bypass to maintain flood control performance during infrequent storms (such as the 100‐year recurrence). Results from a pilot installation show that the Detain H2O device reduced the cumulative sediment transport capacity of the preretrofit condition by greater than 40%, and contributed to reduced flashiness and prolonged baseflows in receiving streams. When scaling the strategy across a watershed, these results suggest that potential gains in water quality and stream channel stability could be achieved at costs that are orders of magnitude less than comparable benefits from newly constructed stormwater control measures.  相似文献   

16.
Bhadha, Jehangir H., Casey Schmidt, Robert Rooney, Paul Indeglia, Ruben Kertesz, Elizabeth Bevc, and John Sansalone, 2009. Granulometric and Metal Distributions for Post‐Katrina Surficial Particulate Matter Recovered From New Orleans. Journal of the American Water Resources Association (JAWRA) 45(6):1434‐1447. Abstract: Hurricane Katrina and the resulting failure of the levees that surrounded and protected New Orleans generated a significant detained volume of stormwater within the urban area of New Orleans. Between the inundation resulting from levee failure and eventual pumped evacuation of stormwater from the urban area of New Orleans, a large mass of storm‐entrained particulate matter (PM) was deposited in the inundated areas. This study examined the granulometry and granulometric distribution of metals for post‐Katrina surficial PM deposits recovered from 15 sites (10 inundated and 5 non‐inundated) in New Orleans. Results of this examination were compared to pre‐Katrina data from New Orleans. While post‐Katrina analysis of PM indicates that Pb, Zn, and Cu concentrations for PM are reduced for all sites, inundated sites had higher Cu, Pb, and Zn concentrations for the settleable (~25‐75 μm) and sediment (>75 μm) size fractions. A comparison between total metal concentration and the bioavailable (leachable) fraction for PM reveals that inundated sites had up to 19% higher leachable metal concentration compared to non‐inundated sites. The reduction in PM‐bound total metal concentrations for recovered PM can be explained through a combination of scouring (and therefore change in granulometry from pre‐Katrina) that resulted from transport of suspended PM by storm flows and pumped evacuation; as well as leaching and PM‐based redistribution from extended contact with rainfall and during stormwater detention. New Orleans has been exposed to elevated levels of metals through decades of activities that include vehicular transportation, chemical, industrial, and oil production facilities resulting in higher metal concentrations for urban soil‐residual complexes. As a result, the influent storm flows associated with Katrina as an episodic event cannot solely explain the distribution and fate of PM‐associated metal concentrations.  相似文献   

17.
The microbiological quality of diffuse impermeable surface runoff is described in terms of bacterial densities and pathogens observed within urban catchments in North London and Milton Keynes and the use of somatic bacteriophages as faecal indicators are evaluated. The studies show the occurrence of faecal indicator organisms (FIOs) and pathogens to be ubiquitous in stormwater runoff from all types of urban land use surfaces, with the possible exception of major highways. Urban catchments in North London show a progressive downstream increase in FIOs and pathogens consonant with increasing urbanization and incidence of stormwater outfalls and combined sewer overflows (CSOs). Surface water FIOs and pathogens appear to be predominantly of non‐human origin being primarily derived from animal and bird sources, although the effect is over‐ridden in the presence of misconnections and CSO discharges. A combination of infrastructure improvement, end‐of‐pipe detention, source control and more robust local authority regulation is recommended for effective management and remediation of bacteriological urban water quality.  相似文献   

18.
ABSTRACT: A runoff routing model, originally developed for rural, areas and later adapted for application in urban areas, is shown to be, very suitable for use in design detention basin systems. The model, computes design inflow hydrographs for basins and routes flow through, basins to the next downstream point of interest. Some general conclusions are drawn on the effects of different basin configurations.  相似文献   

19.
Stormwater detention ponds have become ubiquitous in urbanized areas and have been suggested as potential hotspots of N transformation within urban watersheds. As a result, there is a great deal of interest in their use as structural best management practices to reduce the excessive N export from these watersheds. We conducted continuous monitoring of the influent and effluent N loads of a stormwater detention pond located on the Princeton University campus in Princeton, New Jersey. Our monitoring was conducted during four 21-d periods representing the four seasons of the northeastern United States. Water quality samples were collected and analyzed for nitrate (NO3-) during all four monitoring periods. During two of these periods, loads of ammonium (NH4+), dissolved organic N, and particulate N (PN) were measured. Our results show that NO3- dominated the influent N load, particularly in dry weather inflows to the detention pond. However, PN, which is often neglected in stormwater quality monitoring, made up as much as 30% of the total load and an even greater fraction during storm events. The results of our monitoring suggest that seasonal variation may play an important role in N retention within the detention pond. Although retention of NO3-, the most dominant fraction of N in the influent stormwater, was observed during the summer sampling period, no significant NO3- retention was observed during the spring or the two cold-weather sampling periods.  相似文献   

20.
ABSTRACT: This paper looks at the use of off-line detention systems as a means of stormwater management. Conventional detention basins are typically designed and built as in-line systems in which all runoff is directed to the basin. Off-line systems are designed so that only a portion of the runoff is directed to the basin. Several simulation experiments were run to examine the behavior of in-line and off-line systems designed to reduce the peak flow from a developed area to the pre-development level. The results demonstrate that off-line systems require considerably less storage than in-line systems to achieve the same management goal. The results also show that off-line and in-line systems have significantly different flow-duration characteristics with the off-line system generally producing lower flows over longer periods. Unfortunately, off-line systems may exacerbate downstream flooding problems, especially when used in the upper portions of a watershed. Nevertheless, an off-line system can be an alternative to in-line detention in many cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号