首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reviews progress on urban storm water management and pollution control, with emphasis on non- and low-structurally intensive techniques along with the total system approach encompassing control-treatment. Many of the U.S. Environmental Protection Agency's demonstration-evaluation projects are presented to exemplify: Land Management Techniques, i.e., land use planning, best use of natural drainage, dual use of retention and drainage facilities required for flood control designed concurrently or retrofitted for pollution control, porous pavement, surface sanitation, and chemical use control; Collection Systems Control, i.e., catchbasin cleaning, flow regulators (including swirl and helical devices), and the new concepts of elimination or reduction of unauthorized cross-connections, in-channel/conduit storage and/or other forms of storage for bleed-back to existing treatment plants; Storage including in-receiving water storage; Treatment, i.e., physical/chemical, disinfection, and a treatment-control planning and design guidebook; Sludge and Solids Residue from Treatment; and Integrated Systems, i.e., storage/treatment, dual-use wet-weather flow/dry-weather flow facilities, and reuse of stormwater for nonpotable purposes. Recommendations for the future in the areas of: control based on receiving water impacts, toxics characterization and their control, sewer system cross-connections, integrated stormwater management, and institutional/sociological/economic conflicts are also presented.  相似文献   

2.
ABSTRACT: Phosphorus loading tolerances of small lakes are analyzed by means of a statistical model of lake eutrophication based upon the work of Vollenweider and Dillon. Using a sample of 195 midwestern and eastern U. S. lakes, it was found that Vollenweider and Dillon's method of predicting the trophic status of relatively deep, slow-flushing lakes can be applied to shallower lakes with much shorter retention times. The statistical model used to replicate the results of Vollenweider and Dillon is stated in detail, for convenience of application to small lake water quality management problems. The model extends the Vollenweider and Dillon results by associating each alternative phosphorous loading with a probability that a given lake can achieve or maintain noneutrophis status. It is applicable to lakes for which only minimal data are available. The major policy conclusion is that the highly variable tolerance for phosphorus loading must be considered in legislating efficient effluent limitations. The paper concludes with a comparison to a recent contribution employing a similar approach.  相似文献   

3.
ABSTRACT: Data were developed within a three-year period for indicator bacteria and three species of bacterial pathogens following rural storm event hydrographs. The first flush concept was confirmed in all hydrographs. Bacterial density peaking occurred at or before the hydrograph peaks. FC and FS values were higher in more developed areas than the primary rural test site and their numerical ratios followed similar trends. Chlorine demand of storm waters varied between 8 and 16 mg/l and, the ozone requirement was greater than 32 mg/l in the same waters. Aftergrowth of total coliform bacteria occurred following chlorine and ozone doses of 16 mg/l and 32 mg/l respectively. Fecal coliform, fecal streptococci, Salmonella sp., and Pseudomonas sp. all were reduced to near detectable limits by the disinfectants up to 8 days. Staphylococcus sp. demonstrated a propensity to restablish their populations. Multiple regression analysis of the bacterial groups and species in storm waters suggested the fecal streptococci to have been the most useful group in evaluating bacterial storm water quality, with staphylocci have been closely related insofar as their statistical significance was concerned.  相似文献   

4.
ABSTRACT: The influence of sediment resuspension on the water quality of shallow lakes is well documented. However, a search of the literature reveals no deterministic mass-balance eutrophication models that explicitly include resuspension. We modified the Lake Okeechobee water quality model - which uses the Water Analysis Simulation Package (WASP) to simulate algal dynamics and phosphorus, nitrogen, and oxygen cycles - to include inorganic suspend. ed solids and algorithms that: (1) define changes in depth with changes in volume; (2) compute sediment resuspension based on bottom shear stress; (3) compute partition coefficients for ammonia and ortho-phosphorus to solids; and (4) relate light attenuation to solids concentrations. The model calibration and validation were successful with the exception of dissolved inorganic nitrogen species which did not correspond well to observed data in the validation phase. This could be attributed to an inaccurate formulation of algal nitrogen preference and/or the absence of nitrogen fixation in the model. The model correctly predicted that the lake is light-limited from resuspended solids, and algae are primarily nitrogen limited. The model simulation suggested that biological fluxes greatly exceed external loads of dissolved nutrients; and sediment-water interactions of organic nitrogen and phosphorus far exceed external loads. A sensitivity analysis demonstrated that parameters affecting resuspension, settling, sediment nutrient and solids concentrations, mineralization, algal productivity, and algal stoichiometry are factors requiring further study to improve our understanding of the Lake Okeechobee ecosystem.  相似文献   

5.
ABSTRACT: Nonstorm water discharges to municipal separate storm sewer systems (MS4s) are notable for spatial and temporal variability in volume, pollutant type, pollutant concentration, and activity of origin. The objective of this paper was to determine whether current technical knowledge and existing U.S. policy support an improved regulatory approach. The proposed policy would use type of discharge as a regulatory basis, merging the concepts of allowability of de minimis discharges and type-based statewide consistent rules. Specific research objectives were to comprehensively identify discharge types, characterize their prevalence in California, analyze relevant local and regional regulatory guidelines, and systematically evaluate opinions of experts about potential water quality impacts. Results demonstrate nonstorm water discharges were widespread in at least one sector, industrial facilities subject to a state permit; one discharge for every four facilities was reported in 1995, even though the permit explicitly prohibits such discharges. Clear consensus exists for minimal water quality concern for some discharge types when considering both municipal guidelines and experts’ opinions. In particular, condensate from a wide range of equipment and discharges from fire fighting equipment testing were found to be of low concern. Discharge types with consensus high concern were largely limited to discharges prohibited under other regulations, such as wastewater and hazardous waste management controls. Some discharge types where no consensus was identified, such as landscape irrigation, nevertheless generated concern for water quality impacts and appear to be relatively widespread. Available information supports technical feasibility of the proposed policy because at least some discharge types show strong consensus for de minimis impacts among regulatory guidelines and opinions of technical experts.  相似文献   

6.
ABSTRACT: A comprehensive study was conducted to implement the Storm Water Management Model (SWMM) for urban areas in Kuwait. The updated version of the model designed to run on an IBM Personal Computer and compatibles (PCSWMM3.2C) was utilized. The study revealed that urban runoff simulation in arid areas by the SWMM model is a powerful and efficient tool in designing drainage systems and as such, a viable replacement of the commonly used rational method. It was found that only the streets and paved areas that are hydraulically connected to the drainage system contribute to runoff. Fine and coarse discretization approaches were used in the study. The difference between the hydrographs simulated by the two approaches were relatively small. The performance of the existing drainage system and the accuracy of the design method used were tested using a 25-year storm. The result of the simulation revealed that the storm sewers were oversized by factors ranging from 1.2 to 3.6. The SWMM model was used to estimate the storm water runoff volume collected from all urbanized areas in Kuwait City. The annual expected harvested runoff water was found to be significant; however, the quality of runoff water needs to be assessed before a decision is made on its reuse.  相似文献   

7.
ABSTRACT. A mathematical model to predict water quality in a surface-groundwater system is under development. This project is being sponsored by the Environmental Protection Agency. The ultimate goal of this study is to obtain cause and effect relationships between pollutant sources and the ensuing concentrations at different locations in a basin. Several programs are used to model the various hydrologic processes occurring in nature, namely: rainfall, runoff, flow in surface bodies of water, infiltration, and groundwater flow. At every time step in the simulation, the water quantity computations for the above hydrologic models are performed first. Subsequently, the results of these computations, typically in the form of flow velocities, are used as input to the water quality calculations. The water quality routines involve the modeling of the associated physical, chemical, and biological processes. In this study, emphasis is being placed on pollution in agricultural areas. Accordingly the Lake Apopka basin in Central Florida is being used as the application site.  相似文献   

8.
ABSTRACT: Over the past several years, input/output models have been used increasingly as decisionmaking aids in the design of lake restoration activities because they provide an approximation of the link between nutrient influx and lake trophic status. To evaluate the applicability of these models as design tools, a study was conducted in which “before” and “after” data were obtained for 25 lakes which experienced reductions in nutrient inflow, and comparisons were made of observed and predicted changes in lake conditions. Three input/output models were used as predictive tools to describe lake response: those reported by Dillon and Rigler (1974) and by Vollenweider (1975, 1976). Based on described trophic states of oligotrophic, mesotrophic, and eutrophic, it was found that all three models yielded accurate predictions for at least 70 percent of the study lakes. The model of Vollenweider (1976) performed slightly better than the other two (80 percent correct) on the data set studied.  相似文献   

9.
: This paper presents solutions to the one-dimensional, transient conservation of mass equations for the coupled biochemical oxygen demand-dissolved oxygen (BOD-DO) reactions, based on the principle of superposition, for continuously discharging plane sources. The solutions are applied within the framework of a continuous simulation model to allow the derivation of water quality frequency curves and frequency histograms of consecutive hourly dissolved oxygen violations, for any desired standard. Receiving water response is determined for waste inputs from urban wet weather, dry weather, and upstream sources. An application to Des Moines, Iowa, and Des Moines River indicated that urban storm water impacts on the stream can be masked in the cumulative frequency curve representation, but the benefits of storm water control are clearly shown in frequency histograms of the duration of consecutive stream standard violations.  相似文献   

10.
Johnson Sauk Trail Lake remains highly eutrophic, even though the watershed has long been returned to an undisturbed condition with permanent vegetative cover and with little or no land disturbance in the watershed. Internal regeneration of nutrients has been identified as the major source of nutrients to the lake. Lake destratification, selective harvesting and removal of weeds, and control of algal blooms using chelated copper sulfate application followed by potassium permanganate application have all been chosen as management techniques for improving water quality conditions in the lake. These in-lake techniques are considered not as palliative measures, but as necessary tools in enhancing the lake's water quality characteristics.  相似文献   

11.
ABSTRACT: Frequent high quantity overflows of combined sewage entering the Mississippi River near the city of Red Wing, Minnesota, have degraded water quality and caused concern among federal and state environmental agencies. The city of Red Wing was required to conduct a comprehensive waste control study, as part of the sewer system Construction Grant (Section 201 of PL 92–500), to identify alternative waste control and treatment measures and to recommend the optimum combination of alternatives in terms of both cost and waste control effectiveness. The study involved these basic steps: determination of present and future (year 2020) sanitary flow rates and volumes, storm runoff discharges, frequencies and volumes, and combined sewage bypass volumes; identification of alternative waste control measures; elimination of unfeasible alternatives; detailed analysis of the hydrologic, economic, and waste control feasibility of the promising alternatives; selection of the optimum combination of alternative waste control measures to satisfy the study objectives, and determination of construction priorities for the optimum control measures. Because of an uncertain budget and undetermined conditions of state and federal assistance, the city has not yet selected the optimum waste control measure for its needs. When the decisionmaking process between representatives of the city and the state commences, the optimum combination of waste control alternatives can be easily identified using the results of this study.  相似文献   

12.
ABSTRACT: With the advent of standards and criteria for water quality variables, there has been an increasing concern about the changes of these variables over time. Thus, sound statistical methods for determining the presence or absence of trends are needed. A Trend Detection Method is presented that provides: 1) Hypothesis Formulation - statement of the problem to be tested, 2) Data Preparation - selection of water quality variable and data, 3) Data Analysis - exploratory data analysis techniques, and 4) Statistical Tests - tests for detecting trends. The method is utilized in a stepwise fashion and is presented in a nonstatistical manner to allow use by those not well versed in statistical theory. While the emphasis herein is on lakes, the method may be adopted easily to other water bodies.  相似文献   

13.
Abstract: The growing impact of urban stormwater on surface‐water quality has illuminated the need for more accurate modeling of stormwater pollution. Water quality based regulation and the movement towards integrated urban water management place a similar demand for improved stormwater quality model predictions. The physical, chemical, and biological processes that affect stormwater quality need to be better understood and simulated, while acknowledging the costs and benefits that such complex modeling entails. This paper reviews three approaches to stormwater quality modeling: deterministic, stochastic, and hybrid. Six deterministic, three stochastic, and three hybrid models are reviewed in detail. Hybrid approaches show strong potential for reducing stormwater quality model prediction error and uncertainty. Improved stormwater quality models will have wide ranging benefits for combined sewer overflow management, total maximum daily load development, best management practice design, land use change impact assessment, water quality trading, and integrated modeling.  相似文献   

14.
ABSTRACT: The presence of manganese in natural waters (>0.05 mg/L) degrades water-supply quality. A model was devised to predict the variation of manganese concentrations in river water released from an impoundment with the distance downstream. The model is one-dimensional and was calibrated using dissolved oxygen, biochemical oxygen demand, pH, manganese, and hydraulic data collected in the Duck River, Tennessee. The results indicated that the model can predict manganese levels under various conditions. The model was then applied to the Chattahoochee River, Georgia. Discrepancies between observed and predicted may be due to inadequate pH data, precipitation of sediment particles, unsteady flow conditions in the Chattahoochee River, inaccurate rate expressions for the low pH conditions, or their combinations.  相似文献   

15.
ABSTRACT: A small lake in the Chicago Metropolitan Area was from 91 to 95 percent efficient in removing suspended sediment and from 76 to 94 percent efficient in removing copper, iron, lead, and zinc from urban runoff. Sediments accumulated in the lake in the form of an organic-rich mud at an average rate of 20 millimeters per year; this reduced lake storage and covered potential habitat for aquatic organisms. Copper, lead, and zinc concentrations were closely associated with suspended-sediment concentrations and with silt- and clay-sized fractions of lake sediment. Although concentrations of mercury and cadmium were near detection limits in runoff, measurable concentrations of these metals accumulated in the lake sediments.  相似文献   

16.
ABSTRACT: A nonlinear hydrologic system model has been developed for analyzing the urban rainfall-runoff process. The model is formulated as a state variable model consisting of several parameters. A search technique is employed to find the set of parameters for which the model's response best fits observed data. The model could be used in either a simulation or forecasting mode. The model is applied to observed data for the Waller Creek Watershed in Austin, Texas, to develop the model parameters for various levels of urbanization of the watershed. The trend of each parameter with respect to levels of urbanization is examined.  相似文献   

17.
18.
ABSTRACT: Runoff Routing model (RORB) is a general model applicable to both rural and urban catchments. The performance of the model is illustrated through its simulation of flood runoff hydrographs in an urban catchment in Singapore. The essential feature of the model is the routing of rainfall excesses on subareas through some arrangement of concentrated storage elements, which represent the distribution of temporary storage of flood runoff on the watershed. This nonlinear routing procedure of the storage elements has two common parameters, kc and m. With the limited data available, these two parameter values were determined through calibration runs. The same set of values of kc and m were then used in the model to determine the runoff hydrographs of five other storms selected from the rainfall events between 1979 and 1981. It was found that the simulated runoff hydrographs matched reasonably well with the recorded hydrographs.  相似文献   

19.
ABSTRACT: A modeling framework was developed to determine phosphorus loadings to Lake Okeechobee from watersheds located north of the lake. This framework consists of the land-based model CREAMS-WT, the in-stream transport model QUAL2E, and an interface procedure to format the land-based model output for use by the in-stream model. QUAL2E hydraulics and water quality routines were modified to account for flow routing and phosphorus retention in both wetlands and stream channels. Phosphorus loadings obtained from previous applications of CREAMS-WT were used by QUAL2E, and calibration and verification showed that QUAL2E accurately simulated seasonal and annual phosphorus loadings from a watershed. Sensitivity and uncertainty analyses indicated that the accuracy of monthly loadings can be improved by using better estimates of in-stream phosphorus decay rates, ground water phosphorus concentrations, and runoff phosphorus concentrations as input to QUAL2E.  相似文献   

20.
ABSTRACT. Planning an optimal system of activities for generating economic goods and services within an existing natural resource capacity is a difficult problem to solve. A mathematical programming model with the capacity to check multiple resource demand and supply compatibility over many time periods was developed for the solution to this type of problem. The characteristics of natural resource supply and the demand of activities were utilized to reduce the number of time periods and to minimize the loss of the dynamic reality of the problem. Reduction in the number of time periods extended the capability of the model to the solution of complex resource planning problems without oversimplification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号