首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many small streams in coastal watersheds in the southeastern United States are modified for agricultural, residential, and commercial development. In the South Carolina Lower Coastal Plain, low‐relief topography and a shallow water table make stream channelization ubiquitous. To quantify the impacts of urbanization and stream channelization, we measured flow and sediment from an urbanizing watershed and a small forested watershed. Flow and sediment export rates were used to infer specific yields from forested and nonforested regions of the urbanizing watershed. Study objectives were to: (1) quantify the range of runoff‐to‐rainfall ratios; (2) quantify the range of specific sediment yields; (3) characterize the quantity and quality of particulate matter exported; and (4) estimate sediment yield attributable to agriculture, development, and channelization activities in the urbanizing watershed. Our results showed that the urban watershed exported over five times more sediment per unit area compared with the forested watershed. Sediment concentration was related to flow flashiness in the urban watershed and to flow magnitude in the forested watershed. Sediments from the forested watershed were dominated by organic matter, whereas mineral matter dominated sediment from the urban stream. Our results indicated that a significant shift in sediment quality and quantity are likely to occur as forested watersheds are transformed by urbanization in coastal South Carolina.  相似文献   

2.
ABSTRACT: A study was conducted in the Piedmont province of Maryland to determine if a relationship exists between stream quality and the extent of watershed urbanization. During the first phase of the study 27 small watersheds, having similar characteristics but varied according to land use, were investigated. Using these controlled conditions, eliminating as many interferences as possible, this first phase was intended to determine if a definite relationship did exist between the two factors. Finding that the first phase was successful the second was initiated which consisted of a comparison of biological sampling data, from other studies, with degree of watershed urbanization. The purpose of this second phase was to ascertain if the relationship between degrees of urbanization and decline in stream quality was linear as watershed area increased and in streams spread throughout the Maryland Piedmont. The principal finding of this study was that stream quality impairment is first evidenced when watershed imperviousness reaches 12%, but does not become severe until imperviousness reaches 30%.  相似文献   

3.
Effects of proportion of watersheds in forest and watershed physiographic factors on mean annual streamflow (1965-76), median flow, and 12 flood flow characteristics were regionally analyzed for 19 unregulated streams in East Texas. Annual streamflow increased with decreasing proportion of forest area. Differences in annual streamflow between full forest cover and bare watersheds could be as much as 200 mm. Other things being equal, the minimum watershed area required to generate 0.142 cm (5 cfs), a criterion used by the U.S. Corps of Engineering in regulating dredge and fill activity for water pollution abatement in East Texas streams, is 70 km2 (27 mi2). Of the 31 physio-climatic parameters analyzed, watershed area, percent forest area, shape index, spring precipitation, and annual temperature were the most significant in affecting streamflow characteristics in East Texas. Using 2-3 of these five variables, all of the 14 streamflow characteristics can be estimated with accuracy ranging from acceptable to excellent levels.  相似文献   

4.
Headwater streams have a significant nexus or physical, chemical, and/or biological connection to downstream reaches. Generally, defined as 1st‐3rd order with ephemeral, intermittent, or perennial flow regimes, these streams account for a substantial portion of the total stream network particularly in mountainous terrain. Due to their often remote locations, small size, and large numbers, conducting field inventories of headwater streams is challenging. A means of estimating headwater stream location and extent according to flow regime type using publicly available spatial data is needed to simplify this complex process. Using field‐collected headwater point of origin data from three control watersheds, streams were characterized according to a set of spatial parameters related to topography, geology, and soils. These parameters were (1) compared to field‐collected point of origin data listed in three nearby Jurisdictional Determinations, (2) used to develop a geographic information system (GIS)‐based stream network for identifying ephemeral, intermittent, and perennial streams, and (3) applied to a larger watershed and compared to values obtained using the high‐resolution National Hydrography Dataset (NHD). The parameters drainage area and local valley slope were the most reliable predictors of flow regime type. Results showed the high‐resolution NHD identified no ephemeral streams and 9 and 65% fewer intermittent and perennial streams, respectively, than the GIS model.  相似文献   

5.
ABSTRACT: The impact of various urban land uses on water flow and quality in streams is being studied by monitoring small streams in the Milwaukee urban area. This paper compares the responses of an urban watershed and an agricultural watershed to an autumn rainfall of 2.2 cm. Flow from the urban basin showed a substantially greater response to the rain than that from the rural. Dilution, resulting from the greater quantities of surface runoff in the urban watershed, caused lower concentrations of sodium, chloride, calcium, magnesium, bicarbonate and total dissolved solids in the urban stream. The total quantity of these materials removed per unit drainage area of the urban basin was much greater, however. Road salt was still among the dominant dissolved materials in the urban water chemistry seven months after the last road salting. Sodium was apparently being released from adsorption by clays in the urban basin. Suspended sediment concentrations and total loads were higher in the urban stream.  相似文献   

6.
ABSTRACT: We analyzed data from riffle and snag habitats for 39 small cold water streams with different levels of watershed urbanization in Wisconsin and Minnesota to evaluate the influences of urban land use and instream habitat on macroinvertebrate communities. Multivariate analysis indicated that stream temperature and amount of urban land use in the watersheds were the most influential factors determining macroinvertebrate assemblages. The amount of watershed urbanization was nonlinearly and negatively correlated with percentages of Ephemeroptera‐Plecoptera‐Trichoptera (EPT) abundance, EPT taxa, filterers, and scrapers and positively correlated with Hilsenhoff biotic index. High quality macroinvertebrate index values were possible if effective imperviousness was less than 7 percent of the watershed area. Beyond this level of imperviousness, index values tended to be consistently poor. Land uses in the riparian area were equal or more influential relative to land use elsewhere in the watershed, although riparian area consisted of only a small portion of the entire watershed area. Our study implies that it is extremely important to restrict watershed impervious land use and protect stream riparian areas for reducing human degradation on stream quality in low level urbanizing watersheds. Stream temperature may be one of the major factors through which human activities degrade cold‐water streams, and management efforts that can maintain a natural thermal regime will help preserve stream quality.  相似文献   

7.
Applications of Turbidity Monitoring to Forest Management in California   总被引:1,自引:1,他引:0  
Many California streams have been adversely affected by sedimentation caused by historic and current land uses, including timber harvesting. The impacts of timber harvesting and logging transportation systems on erosion and sediment delivery can be directly measured, modeled, or inferred from water quality measurements. California regulatory agencies, researchers, and land owners have adopted turbidity monitoring to determine effects of forest management practices on suspended sediment loads and water quality at watershed, project, and site scales. Watershed-scale trends in sediment discharge and responses to current forest practices may be estimated from data collected at automated sampling stations that measure turbidity, stream flow, suspended sediment concentrations, and other water quality parameters. Future results from these studies will provide a basis for assessing the effectiveness of modern forest practice regulations in protecting water quality. At the project scale, manual sampling of water column turbidity during high stream flow events within and downstream from active timber harvest plans can identify emerging sediment sources. Remedial actions can then be taken by managers to prevent or mitigate water quality impacts. At the site scale, manual turbidity sampling during storms or high stream flow events at sites located upstream and downstream from new, upgraded, or decommissioned stream crossings has proven to be a valuable way to determine whether measures taken to prevent post-construction erosion and sediment production are effective. Turbidity monitoring at the project and site scales is therefore an important tool for adaptive management. Uncertainty regarding the effects of current forest practices must be resolved through watershed-scale experiments. In the short term, this uncertainty will stimulate increased use of project and site-scale monitoring.  相似文献   

8.
Understanding trends in stream chemistry is critical to watershed management, and often complicated by multiple contaminant sources and landscape conditions changing over varying time scales. We adapted spatially referenced regression (SPARROW) to infer causes of recent nutrient trends in Chesapeake Bay tributaries by relating observed fluxes during 1992, 2002, and 2012 to contemporary inputs and watershed conditions. The annual flow‐normalized nitrogen flux to the bay from its watershed declined by 14% to 127,000 Mg (metric tons) between 1992 and 2012, due primarily (more than 80% of the decline) to reduced point sources. The remainder of the decline was due to reduced atmospheric deposition (13%) and urban nonpoint sources. Agricultural inputs, which contribute most nitrogen to the bay, changed little, although trends in the average nitrogen yield (flux per unit area) from cropland and pasture to streams in some settings suggest possible effects of evolving nutrient applications or other land management practices. Point sources of phosphorus to local streams declined by half between 1992 and 2012, while nonpoint inputs were relatively unchanged. Annual phosphorus delivery to the bay increased by 9% to 9,570 Mg between 1992 and 2012, however, due mainly to reduced retention in the Susquehanna River at Conowingo Reservoir.  相似文献   

9.
Agricultural production in the state of Alabama, USA, is mostly rain-fed, because of which it is vulnerable to drought during growing season. Since Alabama receives a significant portion of its annual precipitation during winter months, the goal of this study was to evaluate the feasibility of water withdrawal from streams during winter months for irrigation in the growing season. The Soil and Water Assessment Tool (SWAT) was used to estimate the quantity of water that can be sustainably withdrawn from streams during winter high flow periods. The model was successfully calibrated and validated for surface runoff, base flow, and total stream flow. The stream flows generated by the model at several locations within the watershed were then used to examine how much water can be sustainably withdrawn from streams of various orders (first, second and third). Although there was a considerable year-to-year variability in the amount of water that can be withdrawn, a 16-year average showed that first, second, and third order streams can irrigate about 11.6, 10.3, and 10.6% of their drainage areas, respectively. The percentage of drainage area that can be irrigated was not a function of stream order.  相似文献   

10.
Understanding variation in stream thermal regimes becomes increasingly important as the climate changes and aquatic biota approach their thermal limits. We used data from paired air and water temperature loggers to develop region-scale and stream-specific models of average daily water temperature and to explore thermal sensitivities, the slopes of air–water temperature regressions, of mostly forested streams across Maryland, USA. The region-scale stream temperature model explained nearly 90 % of the variation (root mean square error = 0.957 °C), with the mostly flat coastal plain streams having significantly higher thermal sensitivities than the steeper highlands streams with piedmont streams intermediate. Model R 2 for stream-specific models was positively related to a stream’s thermal sensitivity. Both the regional and the stream-specific air–water temperature regression models benefited from including mean daily discharge from regional gaging stations, but the degree of improvement declined as a stream’s thermal sensitivity increased. Although catchment size had no relationship to thermal sensitivity, steeper streams or those with greater amounts of forest in their upstream watershed were less thermally sensitive. The subset of streams with three or more summers of temperature data exhibited a wide range of annual variation in thermal sensitivity at a site, with the variation not attributable to discharge, precipitation patterns, or physical attributes of streams or their watersheds. Our findings are a useful starting point to better understand patterns in stream thermal regimes. However, a more spatially and temporally comprehensive monitoring network should increase understanding of stream temperature variation and its controls as climatic patterns change.  相似文献   

11.
Stream temperature changes as a result of forest practices have been a concern in the Pacific Northwest for several decades. As a result of this concern, stream protection requirements for forest lands were first adopted in the early 1970s and have become progressively more stringent. While there have been multiple studies examining the effects of stream protection buffers on water temperature, there are few studies examining temperature patterns over long periods on intensively managed forests. Water temperature in the upper Deschutes River watershed, Washington has been monitored since 1975 and represents one of the longest studies of water quality on managed forests in the Pacific Northwest. This data record, collected from basins of varying sizes, has enabled us to examine the combined effects of hydro‐climatic patterns and forest management on stream temperature. Effects of harvest conducted prior to buffer regulations were clearly identifiable and most pronounced on smaller streams. We were not able to detect any response on larger channels to more recent timber harvest where riparian buffers were required. This analysis also emphasizes that it is critical to account for changing climate when examining long‐term temperature patterns. We found that in many cases the temperature improvements associated with more stringent buffer requirements implemented over the last 35 years in the Deschutes watershed have been offset by warming climatic conditions.  相似文献   

12.
ABSTRACT: This study tests the hypothesis that climatic data can be used to develop a watershed model so that stream flow changes following forest harvest can be determined. Measured independent variables were precipitation, daily maximum and minimum temperature, and concurrent relative humidity. Computed variables were humidity deficit, saturated vapor pressure, and ambient vapor pressure. These climatic variables were combined to compute a monthly evaporation index. Finally, the evaporation index and monthly precipitation were regressed with measured monthly stream flow and the monthly estimates of stream flow were combined for the hydrologic year. A regression of predicted versus measured annual stream flow had a standard error of 1.5 inches (within 6.1 percent of the measured value). When 10, 15, and 20 years of data were used to develop the regression equations, predicted minus measured stream flow for the last 7 years of record (1972–1978) were within 16.8, 11.5, and 9.7 percent of the measured mean, respectively. Although single watershed calibration can be used in special conditions, the paired watershed approach is expected to remain the preferred method for determining the effects of forest management on the water resource.  相似文献   

13.
Evaluation of a denitrification wall to reduce surface water nitrogen loads   总被引:1,自引:0,他引:1  
Denitrification walls have significantly reduced nitrogen concentrations in groundwater for at least 15 yr. This has spurred interest in developing methods to efficiently increase capture volume to reduce N loads in larger watersheds. The objective of this study was to maximize treatment volume by locating a wall where a large groundwatershed was funneled toward seepage slope headwaters. Nitrogen concentration and load were measured before and after wall installation in paired treatment and control streams. Beginning 2 d after installation, nitrogen concentration in the treatment stream declined from 6.7 ± 1.2 to 3.9 ± 0.78 mg L and total N loading rate declined by 65% (391 kg yr) with no corresponding decline in the control watershed. This wall, which only comprised 10 to 11% of the edge of field area that contributed to the treatment watershed, treated approximately 60% of the stream discharge, which confirmed the targeted approach. The total load reduction measured in the stream 155 m downstream from the wall (340 kg yr) was higher than that found in another study that measured load reductions in groundwater wells immediately around the wall (228 kg yr). This indicated the possibility of an extended impact on denitrification from carbon exported beyond the wall. This extended impact was inauspiciously confirmed when oxygen levels at the stream headwaters temporarily declined for 50 d. This research indicates that targeting walls adjacent to streams can effectively reduce N loading in receiving waters, although with a potentially short-term impact on water quality.  相似文献   

14.
Mass wasting and channel incision are widespread in the Nemadji River watershed of eastern Minnesota and northwestern Wisconsin. While much of this is a natural response to glacial rebound, sediment coring and tree ring data suggest that land use has also influenced these erosional processes. We characterized land use, inventoried mass wasting, surveyed stream channels and collected discharge data along segments of five streams in the Nemadji River watershed. Due to natural relief in this region, wetlands and agricultural lands are concentrated in the flatter terrain of the uplands of the Nemadji watershed, while forestland (coniferous or deciduous) is concentrated in the deeply incised (50-200% slope) stream valleys. Bankfull discharge was higher where forests had been converted from coniferous to deciduous forests and where there were fewer wetlands. Mass wasting increased exponentially with bankfull flows. While mass wasting was not correlated with forest type conversion and agricultural land use, it was negatively dependent upon wetland extent in headwater areas. Interactions between the spatial distribution of land use and terrain obfuscate any clear cause-and-effect relationships between land use, hydrology and fluvial processes.  相似文献   

15.
ABSTRACT: Hydraulic geometry relationships, or regional curves, relate bankfull stream channel dimensions to watershed drainage area. Hydraulic geometry relationships for streams throughout North Carolina vary with hydrology, soils, and extent of development within a watershed. An urban curve that is the focus of this study shows the bankfull features of streams in urban and suburban watersheds throughout the North Carolina Piedmont. Seventeen streams were surveyed in watersheds that had greater than 10 percent impervious cover. The watersheds had been developed long enough for the streams to redevelop bankfull features, and they had no major impoundments. The drainage areas for the streams ranged from 0.4 to 110.3 square kilometers. Cross‐sectional and longitudinal surveys were conducted to determine the channel dimension, pattern, and profile of each stream and power functions were fitted to the data. Comparisons were made with regional curves developed previously for the rural Piedmont, and enlargement ratios were produced. These enlargement ratios indicated a substantial increase in the hydraulic geometry for the urban streams in comparison to the rural streams. A comparison of flood frequency indicates a slight decrease in the bankfull discharge return interval for the gaged urban streams as compared to the gaged rural streams. The study data were collected by North Carolina State University (NCSU), the University of North Carolina at Charlotte (UNC), and Charlotte Storm Water Services. Urban regional curves are useful tools for applying natural channel design in developed watersheds. They do not, however, replace the need for field calibration and verification of bankfull stream channel dimensions.  相似文献   

16.
Abstract: Regional curves, which relate bankfull channel dimensions and discharge to watershed drainage area, are developed to aid in identifying the bankfull stage in ungaged watersheds, and estimating the bankfull discharge and dimensions for river studies and natural channel design applications. This study assessed 26 stable stream reaches in two hydro‐physiographic regions of the Florida Coastal Plain: the Northwest Florida Coastal Plain (NWFCP) and the North Florida Coastal Plain (NFCP). Data from stream reaches in Georgia and Alabama were also used to develop the Florida regional curves, since they are located in the same hydro‐physiographic region. Reaches were selected based on the presence of U.S. Geological Survey gage stations and indicators of limited watershed development (e.g., <10% impervious surface). Analyses were conducted to determine bankfull channel dimensions, bankfull discharge, average channel slope, and Rosgen stream classification. Based on these data, significant relationships were found between bankfull cross‐sectional area, width, mean depth, and discharge as a function of drainage area for both regions. Data from this study suggested that bankfull discharges and channel dimensions were larger from NWFCP streams than from Coastal Plain streams in North Carolina and Maryland. Bankfull discharges were similar between NFCP and Georgia coastal plain streams; therefore, the data were combined into one regional curve. In addition, the data were stratified by Rosgen stream type. This stratification strengthened the relationships of bankfull width and mean depth as a function of drainage area.  相似文献   

17.
ABSTRACT: Hydrograph analysis of six streams on the south shore of Long Island indicates that eastward urbanization during the last three decades has significantly reduced base flow to streams. Before urbanization, roughly 95 percent of total annual stream flow on Long Island was base flow. In urbanized southwestern Nassau County, storm water sewerage, increased impervious surface area, and sanitary sewerage have reduced base flow to 20 percent of total stream flow. In an adjacent urbanized but unsewered area in southeastern Nassau County, base flow has decreased to 84 percent of total annual stream flow. In contrast, base flow in two streams in rural areas has remained virtually constant, averaging roughly 95 percent of total annual flow throughout the 1955-70 study period. Double-mass curve analysis of base flow as a percentage of total annual stream flow indicates that (1) changes in stream flow characteristics began in the early 1960's in the sewered area and in the late 1960's in the later urbanized, unsewered area, and (2) a new equilibrium has been established between the streams in the sewered area and the new hydrologic characteristics of their urbanized drainage basins.  相似文献   

18.
The solution chemistry of forested streams primarily in western North America is explained by considering the major factors that influence this chemistry — geological weathering; atmospheric precipitation and climate; precipitation acidity; terrestrial biological processes; physical/chemical reactions in the soil; and physical, chemical, and biological processes within streams. Due to the complexity of all these processes and their varying importance for different chemicals, stream water chemistry has exhibited considerable geographic and temporal variation and is difficult to model accurately. The impacts of forest harvesting on stream water chemistry were reviewed by considering the effects of harvesting on each of the important factors controlling this chemistry, as well as other factors influencing these impacts ‐ extent of the watershed harvested, presence of buffer strips between streams and harvested areas, nature of post‐harvesting site preparation, revegetation rate following harvesting, pre‐harvesting soil fertility, and soil buffering capacity. These effects have sometimes reinforced one another but have sometimes been counterbalancing or slight so that harvesting impacts on stream water chemistry have been highly variable. Eight major knowledge gaps were identified, two of which — a scarcity of detailed stream chemical budgets and knowledge of longitudinal variation in stream chemistry — relate to undisturbed streams, while the remainder relate to forest harvesting effects.  相似文献   

19.
This study analyzed stream characteristics in a mountain watershed in southwestern Colorado and developed a three‐level hierarchical classification scheme using national datasets to demonstrate jurisdictional evaluation as “waters of the United States (U.S.)” under U.S. Clean Water Act Section 404 at the watershed scale. The National Hydrography Dataset and USGS StreamStats were used with field observations to classify streams in the 53 km2 Cement Creek Watershed based on flow duration (Level 1), stream order (Level 2), and other biophysical metrics (Level 3). Kruskal‐Wallis tests and discriminant analysis showed significant differences among Level 2 classes. Level 3 classification used cluster analysis for stream length, distance to the downstream traditional navigable water (TNW), and the ratio of mean annual flow from the source stream to the TNW. Results showed all perennial and intermittent streams are jurisdictional relatively permanent waters (RPWs), which include over a third of all streams, 64% are intermittent or ephemeral, and almost half are ephemeral first order. All ephemeral reaches are non‐RPWs requiring significant nexus evaluation to determine jurisdiction. These ephemeral first‐order streams can contribute 5% of the annual flow to the TNW at the confluence, while the Cement Creek main stem contributes 21% of the TNW flow. The study demonstrated that the classification provides key biophysical and regulatory information to aid jurisdictional evaluations in mountain watersheds.  相似文献   

20.
The Stream Performance Assessment (SPA), a new rapid assessment method, was applied to 93 restored, 21 impaired, 29 reference, and 13 reference streams with some incision throughout North Carolina. Principal component analysis (PCA) indicated restored streams align more closely with reference streams rather than impaired streams. Further, PCA‐based factor analysis revealed restored streams were similar to reference streams in terms of morphologic condition, but exhibited a greater range of scores relative to aquatic habitat and bedform. Macroinvertebrate sampling and GIS watershed analyses were conducted on 84 restored streams. SPA and watershed data were compared to Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa to determine which factors indicate stream health. SPA and watershed factors were used in least squares, ridge, and principal component regression (PCR) to develop a prediction model for EPT taxa. All three methods produced reasonable predictions for EPT taxa. Cross‐validation indicated ridge regression resulted in the lowest prediction error. The ridge model was then used to predict EPT taxa numbers for 21 impaired and 25 reference streams in addition to the 84 restored streams. Statistical comparisons of the predicted scores indicated urban streams (>10% impervious watershed cover) have lower expected numbers of EPT taxa. Rural restored streams have macroinvertebrate metric scores similar to those predicted for rural reference streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号