The presence of toxic substances in wastewaters and outdoor bodies of water is an important ecotoxicological issue. The aim of this review is to illustrate how duckweeds, which are small, simply constructed, floating aquatic plants, are well suited to addressing this concern. The ability of duckweeds to grow rapidly on nutrient-rich water and to facilitate the removal of many substances from aqueous solution comprises the potential of these macrophytes for the remediation of wastewater and polluted aqueous reservoirs, while producing usable biomass containing the unwanted substances having been taken up. Their ease of cultivation under controlled and even sterile conditions makes duckweeds excellent test organisms for determining the toxicity of water contaminants, and duckweeds are important as model aquatic plants in the assessment of ecotoxicity. Duckweeds are also valuable for establishing biomarkers for the toxic effects of water contaminants on aquatic higher plants, but the current usefulness of duckweed biomarkers for identifying toxicants is limited. The recent sequencing of a duckweed genome holds the promise of combining the determination of water contaminant toxicity with toxicant diagnostics by means of gene expression profiling via DNA microarrays. 相似文献
Water shortage and pollution are serious challenges for many countries. Nanomaterials are promising new tools for water quality management due to unique physicochemical properties, high economic benefit, high removal efficiency and environmental friendliness. Here we describe four types of nanomaterials used for water treatment: nanofiltration membranes, photocatalytic nanomaterials, adsorption nanomaterials and reducing nanomaterials. We discuss their properties, applications and mechanisms for pollutant removal. We also review nanomaterials used for water quality monitoring, notably nanomaterials used for the detection of trace pollutants and pathogens. These nanomaterials include carbon nanotubes, magnetic nanoparticles, noble metal nanomaterials and quantum dots. 相似文献
Nanotechnology has revolutionized plethora of scientific and technological fields; environmental safety is no exception. One of the most promising and well- developed environmental applications of nanotechnology has been in water remediation and treatment where different nanomaterials can help purify water through different mechanisms including adsorption of heavy metals and other pollutants, removal and inactivation of patho- gens and transformation of toxic materials into less toxic compounds. For this purpose, nanomaterials have been produced in different shapes, integrated into various composites and functionalized with active components. Nanomaterials have also been incorporated in nanostructured catalytic membranes which can in turn help enhance water treatment. In this article, we have provided a succinct review of the most common and popular nanomaterials (titania, carbon nanotubes (CNTs), zero-valent iron, dendrimers and silver nanomaterials) which are currently used in environmental remediation and particularly in water purification. The catalytic properties and functionalities of the mentioned materials have also been discussed. 相似文献
Phytoremediation technology is regarded as a simple and efficient way to remove heavy metals from contaminated soil. A reasonable disposal of metal hyperaccumulators is always and resource-saving. The a major issue in waste reuse heavy metal-accumulating Cynondon dactylon (L.) was investigated where heavy metals were desorbed by a facile acid-treatment. The result indicated that more than 90% of heavy metals (Zn, Pb and Cu) was extracted from Cynondon daetylon with 0.2 mmol· L^-1 HCl. The plant residue was used to adsorb heavy metals ions. The adsorption fitted the Langmuir isotherm model with the saturation adsorption capacity of 9.5 mg·g^-1 Zn^2+, 36.2 mg·g^-1 Pb2+ and 12.9 mg·g^-1 Cu^2+, and the surface eomplexation and the backfilling of heavy metal imprinting cavities existed simultaneously during the adsorption. The treatment of wastewaters indicated that the plant residue exhibited a high removal rate of 97% for Cu. Also, the material could be recycled. The method offers a new disposal approach for heavy metal hyperaccumulator. 相似文献
• Quantitative global ARGs profile in dialysis water was investigated.• Totally 35 ARGs were found in the dialysis treatment train.• 29 ARGs (highest) were found in carbon filtration effluent.• erm and mtrD-02 occurred in the final effluent.• The effluent was associated with health risks even after RO treatment. Dialysis water is directly related to the safety of hemodialysis patients, thus its quality is generally ensured by a stepwise water purification cascade. To study the effect of water treatment on the presence of antibiotic resistance genes (ARGs) in dialysis water, this study used propidium monoazide (PMA) in conjunction with high throughput quantitative PCR to analyze the diversity and abundance of ARGs found in viable bacteria from water having undergone various water treatment processes. The results indicated the presence of 35 ARGs in the effluents from the different water treatment steps. Twenty-nine ARGs were found in viable bacteria from the effluent following carbon filtration, the highest among all of the treatment processes, and at 6.96 Log (copies/L) the absolute abundance of the cphA gene was the highest. Two resistance genes, erm (36) and mtrD-02, which belong to the resistance categories macrolides-lincosamides-streptogramin B (MLSB) and other/efflux pump, respectively, were detected in the effluent following reverse osmosis treatment. Both of these genes have demonstrated the potential for horizontal gene transfer. These results indicated that the treated effluent from reverse osmosis, the final treatment step in dialysis-water production, was associated with potential health risks. 相似文献
The energy crisis and environmental pollution have recently fostered research on efficient methods such as environmental catalysis to produce biofuel and to clean water. Environmental catalysis refers to green catalysts used to breakdown pollutants or produce chemicals without generating undesirable by-products. For example, catalysts derived from waste or inexpensive materials are promising for the circular economy. Here we review environmental photocatalysis, biocatalysis, and electrocatalysis, with focus on catalyst synthesis, structure, and applications. Common catalysts include biomass-derived materials, metal–organic frameworks, non-noble metals nanoparticles, nanocomposites and enzymes. Structure characterization is done by Brunauer–Emmett–Teller isotherm, thermogravimetry, X-ray diffraction and photoelectron spectroscopy. We found that water pollutants can be degraded with an efficiency ranging from 71.7 to 100%, notably by heterogeneous Fenton catalysis. Photocatalysis produced dihydrogen (H2) with generation rate higher than 100 μmol h−1. Dihydrogen yields ranged from 27 to 88% by methane cracking. Biodiesel production reached 48.6 to 99%.
• PPCPs had the highest removal efficiency in A2O combined with MBR process (86.8%).• ARGs and OPFRs were challenging to remove (6.50% and 31.0%, respectively).• Octocrylene and tris(2-ethylhexyl) phosphate posed high risks to aquatic organisms.• Meta-analysis was used to compare the ECs removal in wastewater treatment.• Membrane treatment technology is the most promising treatment for ECs removal. Reclaimed water has been widely applied in irrigation and industrial production. Revealing the behavior of emerging contaminants in the production process of reclaimed water is the first prerequisite for developing relevant water quality standards. This study investigated 43 emerging contaminants, including 22 pharmaceuticals and personal care products (PPCPs), 11 organophosphorus flame retardants (OPFRs), and 10 antibiotic resistance genes (ARGs) in 3 reclaimed wastewater treatment plants (RWTPs) in Beijing. The composition profiles and removal efficiencies of these contaminants in RWTPs were determined. The results indicated that the distribution characteristics of the different types of contaminants in the three RWTPs were similar. Caffeine, sul2 and tris(1-chloro-2-propyl) phosphate were the dominant substances in the wastewater, and their highest concentrations were 27104 ng/L, 1.4 × 107 copies/mL and 262 ng/L, respectively. Ofloxacin and sul2 were observed to be the dominant substances in the sludge, and their highest concentrations were 5419 ng/g and 3.7 × 108 copies/g, respectively. Anaerobic/anoxic/oxic system combined with the membrane bioreactor process achieved a relatively high aqueous removal of PPCPs (87%). ARGs and OPFRs were challenging to remove, with average removal rates of 6.5% and 31%, respectively. Quantitative meta-analysis indicated that tertiary treatment processes performed better in emerging contaminant removal than secondary processes. Diethyltoluamide exhibited the highest mass load discharge, with 33.5 mg/d per 1000 inhabitants. Octocrylene and tris(2-ethylhexyl) phosphate posed high risks (risk quotient>1.0) to aquatic organisms. This study provides essential evidence to screen high priority pollutants and develop corresponding standard in RWTPs. 相似文献
Nanosized magnetite has emerged as an adsorbent of pollutants in water remediation. Nanoadsorbents include magnetic iron oxide and its modifiers/stabilizers, such as carbon, silica, clay, organic moieties (polymers, aminoacids, and fatty acids) and other inorganic oxides. This review is focused on the recent developments on the synthesis and use of magnetic nanoparticles and nanocomposites in the treatment of contaminated water. The emphasis is on the influence of the iron oxide modifiers on some properties of interest such as size, BET area, and magnetization. The characteristics of these nanomaterials are related to their ability to eliminate heavy metal ions and dyes from wastewater. Comparative analysis of the actual literature was performed aiming to present the magnetic material, its preparation methodology and performance in the elimination of the selected pollutants. Vast information has been properly summarized according to the materials, their properties and preferential affinity for selected contaminants. The mechanisms governing nanomaterial’s formation as well as the interactions with heavy metals and dyes have been carefully analyzed and associated to their efficiency. 相似文献
The main objective of this study was to investigate the efficiency of different substrates to reduce the extraction of heavy metals concentration in a heavily contaminated soil. Two contaminated soils by Cu and Zn were used to evaluate the effectiveness of eight substrates (calcium carbonate, bentonite, kaolinite, charcoal, manganese oxide, iron oxide, zeolite, phosphate) to reduce metal availability and to study the change of metals speciation in different forms using sequential extraction technique (single step). Sequential extraction technique (single step, 0.11 M acetic acid, HONH3Cl, H2O2+NH4OAc, Aqua regia) was applied on contaminated soils after and before treatment to evaluate metals speciation. Results indicate that the most effective treatments in decreasing available metal concentrations were calcium carbonate, zeolite and manganese or iron oxide. Metal sequential fractionations indicate that the exchangeable fraction of Cu and Zn in contaminated soils can be transformed into unavailable forms after chemical remediation. 相似文献
Aromatics-contaminated soil is of particular environmental concern as it exhibits carcinogenic and mutagenic properties. Bioremediation, a biological approach for the removal of soil contaminants, has several advantages over traditional soil remediation methodologies including high efficiency, complete pollutant removal, low expense and limited or no secondary pollution. Bioaugmentation, defined as the introduction of specific competent strains or consortia of microorganisms, is a widely applied bioremediation technology for soil remediation. In this review, it is concluded which several successful studies of bioaugmentation of aromatics-contaminated soil by single strains or mixed consortia. In recent decades, a number of reports have been published on the metabolic machinery of aromatics degradation by microorganisms and their capacity to adapt to aromatics-contaminated environments. Thus, microorganisms are major players in site remediation. The bioremediation/bioaugmentation process relies on the immense metabolic capacities of microbes for transformation of aromatic pollutants into essentially harmless or, at least, less toxic compounds. Aromatics-contaminated soils are successfully remediated with adding not only single strains but also bacterial or fungal consortia. Furthermore several novel approaches, which microbes combined with physical, chemical or biological factors, increase remediation efficiency of aromatics-contaminated soil. Meanwhile, the environmental factors also have appreciable impacts on the bioaugmentation process. The biostatistics method is recommended for analysis of the effects of bioaugmentation treatments. 相似文献
In phased sampling, data obtained in one phase is used to design the sampling network for the next phase. GivenN total observations, 1, ...,N phases are possible. Experiments were conducted with one-phase, two-phase, andN-phase design algorithms on surrogate models of sites with contaminated soils. The sampling objective was to identify through interpolation, subunits of the site that required remediation. The cost-effectiveness of alternate methods was compared by using a loss function. More phases are better, but in economic terms, the improvement is marginal. The optimal total number of samples is essentially independent of the number of phases. For two phase designs, 75% of samples in the first phase is near optimal; 20% or less is actually counterproductive.The U.S. Environmental Protection Agency (EPA) through its Office of Research and Development (ORD), partially funded and collaborated in the research described here. It has been subjected to the Agency's peer review and has been approved as an EPA publication. The U.S. Government has a non-exclusive, royalty-free licence in and to any copyright covering this article. 相似文献
• Mitigating energy utilization and carbon emission is urgent for wastewater treatment.• MPEC integrates both solar energy storage and wastewater organics removal.• Energy self-sustaining MPEC allows to mitigate the fossil carbon emission.• MPEC is able to convert CO2 into storable carbon fuel using renewable energy.• MPEC would inspire photoelectrochemistry by employing a novel oxidation reaction. Current wastewater treatment (WWT) is energy-intensive and leads to vast CO2 emissions. Chinese pledge of “double carbon” target encourages a paradigm shift from fossil fuels use to renewable energy harvesting during WWT. In this context, hybrid microbial photoelectrochemical (MPEC) system integrating microbial electrochemical WWT with artificial photosynthesis (APS) emerges as a promising approach to tackle water-energy-carbon challenges simultaneously. Herein, we emphasized the significance to implement energy recovery during WWT for achieving the carbon neutrality goal. Then, we elucidated the working principle of MPEC and its advantages compared with conventional APS, and discussed its potential in fulfilling energy self-sustaining WWT, carbon capture and solar fuel production. Finally, we provided a strategy to judge the carbon profit by analysis of energy and carbon fluxes in a MPEC using several common organics in wastewater. Overall, MPEC provides an alternative of WWT approach to assist carbon-neutral goal, and simultaneously achieves solar harvesting, conversion and storage. 相似文献
An alternative to the cleaning-up of agricultural soil contaminated by heavy metals is to avoid their transfer from soil to plant by inoculating soil with selected microorganisms able to biosorb heavy metals. Here, four bacteria species and a fungus isolated from contaminated soils revealed their ability to grow in the presence of high cadmium level. We tested their growth capacity related to pH and Cd concentration on synthetic and soil extract media. The comparison of their growth rate, the biosorbed cadmium rate and the specific biosorption allowed to select the most efficient microorganism to be used in bioremediation. 相似文献
ABSTRACTThe aim of this investigation was to examine the ability of enhanced electrokinetic (EK) remediation to efficiently remove quinoline from contaminated kaolinite soils. In order to accomplish this, the effect of a voltage gradient and anode buffer concentration on migration of quinoline in kaolinite was determined. The results showed that EK transport process effectively stimulated desorption and movement of quinoline in kaolinite. The rate and distance of migration rose with increasing voltage gradient and anode buffer concentration under certain conditions. The mechanisms that drive quinoline migration by electrodynamic processes were established as attributed to either electromigration or electroosmosis, and both played key roles in driving quinoline to migrate towards the cathode. 相似文献