首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Shanghai is the largest industrial and commercial city of China, where in-use stocks of metals are likely to be significant. The in-use stocks of copper in this city are thus established by an extensive “bottom-up” study. Spatial distribution of copper stocks within Shanghai has further been characterized for better understanding of copper utilization pattern of this city. For the year 2012, the results are a total stock of 914.6 Gg Cu, and 38.4–64.1 kg Cu per capita. Nearly 94% of copper stocks distribute in subcategories of electric power transmission and distribution, water transmission and distribution, buildings, and household durable. Features of spatial distribution show that three central districts of Jing An, Hong Kou and Huang Pu have the spatial density of more than 1 Gg/km2. And Chong Ming county and Jin Shan District have the lowest spatial density of about 0.01 Gg/km2. It has been found that the copper stock density within Shanghai is largely determined by population density and economic development level.  相似文献   

2.
Dynamic stocks and flows analysis was applied to the anthropogenic aluminum cycle in Italy in order to detect and quantify metal flows and in-use stocks over the years 1947–2009. The model utilized a top-down approach, including data for production, consumption, loss, and trade flows of aluminum. Seven end-use markets were considered, namely buildings and construction, transportation, consumer durables, machinery and equipment, electrical engineering, containers and packaging, and miscellaneous appliance types. The results of this dynamic stocks and flows analysis model quantified the contemporary anthropogenic reservoirs (or in-use stocks) of aluminum at about 320 kg per capita, mainly embedded within the transportation and building and construction sectors. Cumulative in-use stock represents approximately 11 years of supply at current usage rates (about 20 Mt versus 1.7 Mt/year), implying significant potential for recycling in the future as this stock comes out of use. Flow analysis revealed that Italy imports mainly unwrought aluminum and exports final products, while the main material losses occur during alumina refining and collection of old scrap: specifically, containers and packaging have the highest old scrap generation rate, but for the lowest recovery rate (50%). Increasing support to collection of scrap and initiatives oriented to aluminum recovery specifically would allow Italy to increase its reliance on domestic material, and may also allow a decline of the country import-dependence on primary sources. The dynamic stocks and flows model created here provides a quantitative historical record of the aluminum required by Italian society during important periods of development and provides guidance for future decision-making around the use of domestic secondary resources.  相似文献   

3.
To establish a sustainable society, it is necessary to understand the flows and stocks of materials. However, traditional material flow analysis requires large quantities of data relating to the consumption and trade of materials in the past and the lifetime distributions of end use. To overcome the problem that such data may not be available, we have proposed using nighttime light images to estimate the in-use stocks of materials in countries for which the data are unavailable. In the previous study, in-use steel stock for civil engineering and building in 2006 was estimated using nighttime light images. However, several aspects of the methodology must be improved, and time-series analyses using nighttime light images have not yet been performed. Therefore, in this study, we improved the estimation of in-use steel stock by using new geological information (i.e., LandScan population distribution data) and correcting the pixel area. We prepared radiance-calibrated nighttime light data for 2006 and 2010 and conducted time-series analyses of the in-use steel stock using the nighttime light data. The in-use steel stock for civil engineering and building in 2010 was found to amount to approximately 11.3 Gt, which was approximately 21% higher than that in 2006.  相似文献   

4.
Based on the method of material flow analysis (MFA), a static model of Austrian aluminum (Al) flows in 2010 was developed. Extensive data research on Al production, consumption, trade and waste management was conducted and resulted in a detailed model of national Al resources. Data uncertainty was considered in the model based on the application of a rigorous concept for data quality assessment. The model results indicated that the growth of the Austrian “in-use” Al stock amounts to 11 ± 3.1 kg yr−1 cap−1. The total “in-use” Al stock was determined using a bottom-up approach, which produced an estimate of 260 kg Al cap−1. Approximately 7 ± 1 kg of Al yr−1 cap−1 of old scrap was generated in 2010, of which 20% was not recovered because of losses in waste management processes. Quantitatively, approximately 40% of the total scrap input to secondary Al production originated from net imports, highlighting the import dependency of Austrian Al refiners and remelters. Uncertainties in the calculation of recycling indicators for the Austrian Al system with high shares of foreign scrap trade were exemplarily illustrated for the old scrap ratio (OSR) in secondary Al production, resulting in a possible range of OSRs between 0 and 66%. Overall, the detailed MFA in this study provides a basis to identify resource potentials as well as resource losses in the national Al system, and it will serve as a starting point for a dynamic Al model to be developed in the future.  相似文献   

5.
Reduction of carbon emissions from tropical deforestation and forest degradation is being considered a cost-effective way of mitigating the impacts of global warming. If such reductions are to be implemented, accurate and repeatable measurements of forest cover change and biomass will be required. In Papua New Guinea (PNG), which has one of the world's largest remaining areas of tropical forest, we used the best available data to estimate rainforest carbon stocks, and emissions from deforestation and degradation. We collated all available PNG field measurements which could be used to estimate carbon stocks in logged and unlogged forest. We extrapolated these plot-level estimates across the forested landscape using high-resolution forest mapping. We found the best estimate of forest carbon stocks contained in logged and unlogged forest in 2002 to be 4770 Mt (±13%). Our best estimate of gross forest carbon released through deforestation and degradation between 1972 and 2002 was 1178 Mt (±18%). By applying a long-term forest change model, we estimated that the carbon loss resulting from deforestation and degradation in 2001 was 53 Mt (±18%), rising from 24 Mt (±15%) in 1972. Forty-one percent of 2001 emissions resulted from logging, rising from 21% in 1972. Reducing emissions from logging is therefore a priority for PNG. The large uncertainty in our estimates of carbon stocks and fluxes is primarily due to the dearth of field measurements in both logged and unlogged forest, and the lack of PNG logging damage studies. Research priorities for PNG to increase the accuracy of forest carbon stock assessments are the collection of field measurements in unlogged forest and more spatially explicit logging damage studies.  相似文献   

6.
Tellurium is increasingly used in solar photovoltaics in the form of cadmium–telluride (CdTe) thin films. There are concerns regarding whether tellurium availability could be a constraint on large-scale deployment of CdTe photovoltaics. The present work brings a new perspective to the discussion of tellurium availability by providing the first extant global tellurium cycles constructed with material flow analysis principles. The tellurium cycles, for 1940–2010, present information on the production, fabrication and manufacturing, use, and resource management stages during this period. The results of the analysis show that during 1940–2010 approximately 11 Gg of refined tellurium was produced. This represents about 4.5% of the tellurium that was extracted from the ground during copper mining. Almost 80% of the refined tellurium, 8.5 Gg, was dissipated into end-uses such as metallurgical additives to iron, steel, and nonferrous metals, and thereby lost to potential reuse. As of 2010, the in-use tellurium stock is estimated at 1.1 Gg, which mainly accumulated after 1990s with the increasing tellurium use in electronics, specifically photovoltaic and thermoelectric devices. Because tellurium is a byproduct of copper ores, its supply can be enhanced by more attention to recovery during processing of the copper parent. Tellurium can also, in principle, be recovered from end-of-life electronics; the increasing in-use stock indicates the potential for significant end-of-life recycling in the coming decades.  相似文献   

7.
The low productivity of salmonids in many river systems across the UK is testament to their intolerance of water quality perturbations including those associated with excessive sedimentation. Catchment and fishery managers concerned with combating such issues require reliable information on the key sources of the sediment problem to target management and on the efficacy of the mitigation options being implemented. In recognition of the latter requirement, a pre- and post-remediation sediment sourcing survey was used to examine the potential for using sediment tracing to assemble preliminary information on the efficacy of riparian fencing schemes for reducing sediment contributions from eroding channel banks to salmonid spawning gravels in the Rivers Camel, Fal, Lynher, Plym, Tamar and Tavy in the south west of the UK. Respective estimates of the overall mean proportion (±95% confidence limits) of the interstitial sediment input to salmonid spawning gravels originating from eroding channel banks during the pre- (1999–2000) and post-remediation (2008–2009) study periods were computed at 97 ± 1% vs. 69 ± 1%, 94 ± 1% vs. 91 ± 1%, 12 ± 1% vs. 10 ± 1%, 92 ± 1% vs. 34 ± 1%, 31 ± 1% vs. 16 ± 1% and 90 ± 1% vs. 66 ± 1%. Whilst the study demonstrates the potential utility of the fingerprinting approach for helping to assemble important information on the efficacy of bank fencing as a sediment source control measure at catchment scale, a number of limitations of the work and some suggestions for improving experimental design are discussed. Equivalent data are urgently required for many sediment mitigation options to help inform the development of water quality policy packages designed to protect aquatic ecosystems.  相似文献   

8.
Substance flow analysis (SFA) of cadmium in Korea was carried out to analyze and predict cadmium flows, stocks, and future flows using both static and dynamic models. Cadmium is widely used in industry due to its strong corrosion and chemical resistance at high temperature, excellent electrical conduction, and low melting-point. Cadmium is produced as a by-product from the production processes for zinc and lead ingots. It is used for Ni–Cd batteries, polyvinylchloride (PVC) stabilizers, alloy products, pigments, and others.This examines the current cadmium flows and stocks using static SFA, and aims in predicting the future cadmium flows and stocks in Korea using dynamic SFA. From the static model, 2820 tonnes of cadmium ingots were produced, 0.04 tonnes imported and 2740 tons exported in Korea in 2009. In addition, 81 tonnes of cadmium were used in the manufacture of cadmium products: 80 tonnes for cadmium alloy products and 1 tonne for others. Finally, 175 tonnes of cadmium were imported into Korea for Ni–Cd batteries, 140 tonnes for PVC stabilizers, and 55 tonnes for pigments. Cadmium was used in various industries such as construction (221 tonnes), electrics and electronics (130 tonnes – including cadmium in imported products), transportation (30 tonnes) and others (30 tonnes). In 2009, 430 tonnes of industrial cadmium were discharged, with 10 tonnes being recycled and 420 tonnes discarded.From the dynamic model, cadmium stocks in Korea were estimated to be about 5120 tonnes in 2009. The industrial consumption in 2030 will be reduced to only 110 tonnes, only 27% of the current consumption of 410 tonnes in 2009, due to DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS). One possible solution to the Cd oversupply problem is use in cadmium telluride photovoltaic (CdTe PV) systems which have low life cycle Cd emissions (0.02 g Cd/GWh) and high end-of-life semiconductor recycling yields (95%).  相似文献   

9.
Selenium plays an important role in emerging thin film solar energy technologies. As solar energy is expected to have a larger share in the world's future energy portfolio, the long-term availability of selenium becomes a potential concern, yet no global cycles have ever been generated. In this work, the global cycles, stocks, and flows of selenium are characterized for the entire time period 1940–2010 by using principles of material flow analysis (MFA). The cycles present information on the production, fabrication and manufacturing, use, and resource management stages during that period. The results of the analysis show that during 1940–2010 approximately 90 Gg of refined selenium was produced and entered into fabrication and manufacturing worldwide. 60 Gg of this amount (two-thirds!) was dissipated into the environment through end-uses such as chemicals, pigments, glass manufacturing, metallurgical additives, and fertilizer and feed additives. The in-use stock of selenium is estimated at 2.7 Gg as of 2010. Because of data limitations such as proprietary and withheld information, these figures represent informed estimates rather than exact values. Selenium can be recovered from end-of-life electrical and electronic equipment, while for other end-uses recycling is difficult or impossible. One of the ways to buttress supplies of selenium for future technologies would be to deploy recycling schemes for photovoltaics as well as other electronics applications.  相似文献   

10.
Phosphorus (P) is a finite and non-substitutable resource that is essential to sustaining high levels of agricultural productivity but is also responsible for environmental problems, e.g., eutrophication. Based on the methodology of Material Flow Analysis, this study attempts to quantify all relevant flows and stocks of phosphorus (P) in Austria, with a special focus on waste and wastewater management. The system is modeled with the software STAN, which considers data uncertainty and applies data reconciliation and error propagation. The main novelty of this work lies in the high level of detail at which flows and stocks have been quantified to achieve a deeper understanding of the system and to provide a sound basis for the evaluation of various management options. The budget confirms on the one hand the dependence of mineral P fertilizer application (2 kg cap−1 yr−1), but it highlights on the other hand considerable unexploited potential for improvement. For example, municipal sewage sludge (0.75 kg cap−1 yr−1) and meat and bone meal (0.65 kg cap−1 yr−1) could potentially substitute 70% of the total applied mineral P fertilizers. However, recycling rates are low for several P flows (e.g., 27% of municipal sewage sludge; 3% of meat and bone meal). Therefore, Austria is building up a remarkable P stock (2.1 kg P cap−1 yr−1), mainly due to accumulation in landfills (1.1 kg P cap−1 yr−1) and agricultural soils (0.48 kg P cap−1 yr−1).  相似文献   

11.
Inadequate management of household solid waste is a serious problem in many developing cities. The study aimed to evaluate the quantities and composition of household solid waste generation in Abuja within different socioeconomic groups. The wastes from 74 households across different socioeconomic levels in Abuja were collected, weighted and classified on a daily basis for seven days in February 2012. The result showed that the average daily per capita household waste generation is 0.634 kg/capita/day. The characteristic of solid waste in Abuja are typical for the developing cities and dominated by organic waste. Households waste consisted of 63.6% organic waste, 9.7% paper, 8.7% plastics, 3.2% metal, 2.6% glass, 1.6% textile and 10.6% others (unclassified) and the bulk density was 240 kg/m3. The evaluation of relationship between income and daily per capita household waste generation showed a positive relationship. The study revealed a statistically significant difference between household size and daily per capita household waste generation in high-income group; a slight significant difference between household size and daily per capita household waste generation in medium income group and no statistically significant difference between household size and daily per capita household waste generation in low-income group.  相似文献   

12.
In 2002, about 17.1 million bales of cotton were ginned in the United States and the estimated cotton gin waste was 2.25 × 109 kg. The disposal of cotton gin waste (CGW) is a significant problem in the cotton ginning industry, but CGW could be potentially used as feedstock for bioethanol. Freshly discharged CGW and stored CGW were characterized for storage stability and potential for ethanol production by determining their summative compositions. The bulk densities of the fresh wet and dry CGW were 210.2 ± 59.9 kg m−3 and 183.3 ± 52.2 kg m−3, respectively. After six months of storage the volume of piles A, B, and C decreased by 38.7%, 41.5%, and 33.3%, respectively, relative to the volume of the pile at the start of the storage. The ash content of the CGW was very high ranging from 10% to 21% and the acid-insoluble fraction was high (21–24%). The total carbohydrate content was very low and ranged from 34% to 49%. After three months storage, chemical compositional analysis showed the loss of total carbohydrates was minimal but after six months, the losses were as high as 25%. This loss of carbohydrates suggests that under open storage conditions, the feedstock must be processed within three months to reduce ethanol yield losses.  相似文献   

13.
14.
Concentrated, aqueous piperazine (PZ) is a novel solvent for carbon dioxide (CO2) capture by absorption/stripping. One of the major advantages of PZ is its resistance to thermal degradation and oxidation.At 135 and 150 °C, 8 m PZ is up to two orders of magnitude more resistant to thermal degradation than 7 m monoethanolamine (MEA). After 18 weeks at 150 °C, only 6.3% of the initial PZ was degraded, yielding an apparent first order rate constant for amine loss of 6.1 × 10?9 s?1. PZ was the most resistant amine tested, with the other screened amines shown in order of decreasing resistance: 7 m 2-amino-2-methyl-1-propanol, 7 m Diglycolamine®, 7 m N-(2-hydroxyethyl)piperazine, 7 m MEA, 8 m ethylenediamine, and 7 m diethylenetriamine. Thermal resistance allows the use of higher temperatures and pressures in the stripper, potentially leading to overall energy savings.Concentrated PZ solutions demonstrate resistance to oxidation compared to 7 m MEA solutions. Experiments investigating metal-catalyzed oxidation found that PZ solutions were 3–5 times more resistant to oxidation than MEA. Catalysts tested were 1.0 mM iron (II), 4.0–5.0 mM copper (II), and a combination of stainless steel metals (iron (II), nickel (II), and chromium (III)). Inhibitor A reduced PZ degradation catalyzed by iron (II) and copper (II).  相似文献   

15.
The European Union has set ambitious objectives for the recovery rates of end-of life vehicles (ELVs). The directive 2000/53/CE (DIR, 2000) states that by 1st January 2015 at least 95% of the mass of an ELV must be reused and recovered, of which a maximum of 10% should be in the form of energy.In order to identify the key factors for improving the rate of material reuse, recycling and recovery of ELVs, ACYCLEA (PRAXY group) launched the “OPTIVAL VHU (ELV)” research program in collaboration with INSA Lyon in 2009. Three experimental campaigns were conducted on the industrial site of ACYCLEA to compare different scenarios of deconstruction. The campaigns were done on samples of 90 ELVs. The average mass (MELV) and age were estimated at 989 kg/ELV and 14 years, respectively. This article presents the results concerning the material balances of the successive operations. The contribution of each stage of the treatment (namely (i) depollution, (ii) deconstruction, and (iii) shredding and sorting operations) to the rate of recycling, reuse and recovery was calculated.Results showed firstly that the contribution of the operations of depollution was low (3.6 ± 0.1% of the mass of vehicles). The contribution of the operations of deconstruction was higher and increased logically with the degree of deconstruction. It ranged from 5% of MELV for the minimal level of deconstruction (campaign 1) to almost 10% with the highest level of deconstruction (campaign 3). The specific contribution of the operations of deconstruction to the rate of metal recycling was found to be quite low however, in the range of 2.6–2.8% of MELV, Shredding and post-shredding sorting operations enabled the recovery of the largest amounts of recyclable materials but no significant differences were observed between the overall recovery rates in the three campaigns (results ranged from 67 to 70% of MELV). Differences were observed however, for specific fractions such as the automotive shredder residues whose recovery rate was 16.3 ± 0.7%, 13.0 ± 0.5%, and 12.8 ± 0.2% for campaigns 1, 2 and 3, respectively. A larger production of non-ferromagnetic fraction was also observed in campaign 3, probably due to the extraction of the textiles during the dismantling operations which improved the efficiency of post-shredding sorting operations.The highest overall rate of reuse, recycling and energy recovery obtained in this study with the most rigorous approach was 81.5 ± 0.6% of the average mass of the ELV even with the highest level of deconstruction. It therefore appears that the European regulatory target of 95% would be difficult to achieve in 2015, except with a much greater optimization of the sorting technologies and the development of recycling processes.  相似文献   

16.
A novel CO2 separation concept is described wherein the enzyme carbonic anhydrase (CA) is used to increase the overall rate of CO2 absorption after which hydrated CO2 reacts with regenerable amine-bearing polyacrylamide buffering beads (PABB). Following saturation of the material's immobilized tertiary amines, CA-bearing carrier water is separated and recycled to the absorption stage while CO2-loaded material is thermally regenerated. Process application of this concept would involve operation of two or more columns in parallel with thermal regeneration with low-pressure steam taking place after the capacity of a column of amine-bearing polymeric material was exceeded. PABB CO2-bearing capacity was evaluated by thermogravimetric analysis (TGA) for beads of three acrylamido buffering monomer ingredient concentrations: 0 mol/kg bead, 0.857 mol/kg bead, and 2 mol/kg bead. TGA results demonstrate that CO2-bearing capacity increases with increasing PABB buffering concentration and that up to 78% of the theoretical CO2-bearing capacity was realized in prepared PABB samples (0.857 mol/kg recipe). The highest observed CO2-bearing capacity of PABB was 1.37 mol of CO2 per kg dry bead. TGA was also used to assess the regenerability of CO2-loaded PABB. Preliminary results suggest that CO2 is partially driven from PABB samples at temperatures as low as 55 °C, with complete regeneration occurring at 100 °C. Other physical characteristics of PABB are discussed. In addition, the effectiveness of bovine carbonic anhydrase for the catalysis of CO2 dissolution is evaluated. Potential benefits and drawbacks of the proposed process are discussed.  相似文献   

17.
The objective of this work was to analyze the effect of the interaction between feeding strategy and COD/sulfate ratio on the removal efficiency of sulfate and organic matter from a synthetic wastewater. An anaerobic sequencing batch reactor with recirculation of the liquid phase and containing immobilized biomass on polyurethane foam (AnSBBR) was used. The AnSBBR with a total volume of 3.7 L, treated 2.0 L synthetic wastewater in 8-h cycles at 30 ± 1 °C and was inoculated with anaerobic biomass from a UASB. Two feeding strategies were assessed: (a) batch and (b) batch followed by fed-batch. In strategy (a) the reactor was fed in 10 min with 2 L wastewater containing sulfate and carbon sources. In strategy (b) 1.2 L wastewater (containing only the sulfate source) was fed during the first 10 min of the cycle and the remaining 0.8 L (containing only the carbon source) in 240 min. The COD/sulfate ratios assessed were 1 and 3. Based on these values and on the concentrations of organic matter (0.5–11.25 gCOD/L) and sulfate (0.5 and 2.5 gSO42?/L), the sulfate and organic matter loading rates applied equaled 1.5 and 4.5 gSO42?/L d for sulfate and 1.5, 4.5 and 13.5 gCOD/L d for organic matter. After stabilization of the system time profiles were run of monitored parameters (COD, sulfate, sulfide and sulfite). In general, the reactor showed to be robust for use in the anaerobic treatment of wastewaters containing sulfate. Gradual feeding (strategy b) of the carbon source favored sulfate reduction, resulting in sulfate removal efficiencies of 84–98% and organic matter removal efficiencies of 48–95%. The best results were observed under COD/sulfate ratio equal to 1 (loading rates of 1.5 and 4.5 gSO42?/L d for sulfate, and 1.5 and 4.5 gCOD/L d for organic matter). When COD/sulfate ratio was 3 (loading rates of 1.5 and 4.5 gSO42?/L d for sulfate, and 4.5 and 13.5 gCOD/L d for organic matter) the effect of feed mode became less significant. These results show that the strategy batch followed by fed-batch is more advantageous for COD/sulfate ratios near the stoichiometric value (0.67) and higher organic matter and sulfate concentrations.  相似文献   

18.
This study was undertaken to evaluate the quantity and composition of household solid waste to identify opportunities for waste recycling in Can Tho city, the capital city of the Mekong Delta region in southern Vietnam. Two-stage survey of 100 households was conducted for dry season and rainy season in 2009. Household solid waste was collected from each household and classified into 10 physical categories and 83 subcategories. The average household solid waste generation rate was 285.28 g per capita per day. The compostable and recyclable shares respectively accounted for 80.02% and 11.73%. The authors also analyzed the relations between some socioeconomic factors and household solid waste generation rates by physical categories and subcategories. The household solid waste generation rate per capita per day was positively correlated with the population density and urbanization level, although it was negatively correlated with the household size. The authors also developed mathematical models of correlations between the waste generation rates of main physical categories and relevant factors, such as household size and household income. The models were proposed by linear models with three variables to predict household solid waste generation of total waste, food waste, and plastic waste. It was shown that these correlations were weak and a relationship among variables existed. Comparisons of waste generation by physical compositions associated with different factors, such as seasonal and daily variation were conducted. Results presented that the significant average differences were found by the different seasons and by the different days in a week; although these correlations were weak. The greenhouse gas baseline emission was also calculated as 292.25 g (CO2 eq.) per capita per day from biodegradable components.  相似文献   

19.
In this study the biosorption of Yellow RL, a metal-complex anionic dye, by dried Rhizopus arrhizus, a filamentous fungus, was investigated as a function of initial solution pH, initial dye concentration and initial salt (sodium chloride) concentration. The fungus exhibited the maximal dye uptake at pH 2 in the absence and in the presence of salt. Dye uptake increased with the dye concentration up to 1000 mg l?1 and diminished considerably in the presence of increasing concentrations of salt up to 50 g l?1. The fungus biosorbed 85.4 mg dye g?1of dried biomass at 100 mg l?1 initial dye concentration in the absence of salt. When 50 g l?1 salt was added to the biosorption medium, this value dropped to 60.8 mg g?1 resulting in 28.8% reduction in biosorption capacity. The Redlich–Peterson and Langmuir–Freundlich were the most suitable adsorption models for describing the biosorption equilibrium data of the dye both individually and in salt containing medium. The pseudo-second-order and saturation type kinetic models depicted the biosorption kinetics accurately for all cases studied. Equilibrium and kinetic constants varied with the level of salt were expressed as a function of salt concentration.  相似文献   

20.
The purpose of this article is to study the energy and carbon dioxide intensities of Thailand's steel industry and to propose greenhouse gas emission trends from the year 2011 to 2050 under plausible scenarios. The amount of CO2 emission from iron and steel production was calculated using the 2006 Intergovernmental Panel on Climate Change (IPCC) guidelines in the boundary of production process (gate to gate). The results showed that energy intensity of semi-finished steel product was 2.84 GJ/t semi-finished steel and CO2 intensity was 0.37 tCO2eq/t semi-finished steel. Energy intensity of steel finishing process was 1.86 GJ/t finished steel and CO2 intensity was 0.16 tCO2eq/t finished steel. Using three plausible scenarios from Thailand's steel industry, S1: without integrated steel plant (baseline scenario), S2: with a traditional integrated BF–BOF route and S3: with an alternative integrated DR-EAF route; the Greenhouse Gas emissions from the year 2011 to 2050 were projected. In 2050, the CO2 emission from S1 (baseline scenario) was 4.84 million tonnes, S2 was 21.96 million tonnes increasing 4.54 times from baseline scenario. The CO2 emission from S3 was 7.12 million tonnes increasing 1.47 times from baseline scenario.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号