首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 176 毫秒
1.
This research investigated the possibility of using recycled asphalt concrete as surface course in airport pavement. The basic properties of recycled asphalt binder after short- and long-term aging were firstly tested and compared with those of the virgin asphalt. Then, a series of laboratory tests were performed to evaluate the performance of recycled asphalt concrete (containing 40% and 70% RAP), in which the HMA mixture without RAP was used as a control. Furthermore, an experimental pavement consisting of three sections (corresponding to 0%, 40% and 70% RAP content) was constructed to verify the laboratory test results. These results indicated that the recycled asphalt could achieve the similar properties against long-term aging as virgin asphalt. Recycled asphalt concrete containing 40% RAP could be used as surface course in airport pavement as it exhibited similar performance as control mixture both from the laboratory and experimental pavement test results. On the contrary, recycled asphalt concrete containing 70% RAP was not recommended as its fatigue property was much poorer compared with that of virgin asphalt mixture.  相似文献   

2.
A holistic evaluation of the feasibility of producing 100% recycled mixtures is presented. Eleven technologies readily available for producing 100% Reclaimed Asphalt Pavement (RAP) hot asphalt mixtures are described in the article and the complementary video (http://youtu.be/coj-e5mhHEQ). The recorded performance of 100% RAP mixtures is analyzed along with identification of typical high RAP distresses. Recommended mix design procedures and the best RAP management strategies are described. A cradle-to-gate analysis of environmental effects indicated 18 kg or 35% CO2eq savings per t of produced 100% RAP asphalt mixture compared to virgin mix, while cost analysis showed at least 50% savings in material related expenses.  相似文献   

3.
With the pavement industry adopting sustainable practices to align itself with the global notion of habitable environments, there has been growing use of life-cycle assessment (LCA). A hybrid LCA was used to analyze the environmental footprint of using a reclaimed asphalt pavement (RAP) content in asphalt binder mixtures. The analysis took into consideration the material, construction, and maintenance and rehabilitation phases of the pavement life cycle. The results showed significant reductions in energy consumption and greenhouse gas (GHG) emissions with an increase in RAP content. The contribution of the construction phase to the GHGs and energy consumption throughout pavement life cycle is minimal. Feedstock energy, though not consequential when comparing asphalt mixtures only, has a significant impact on total energy. Based on LCA analysis performed for various performance scenarios, breakeven performance levels were identified for mixtures with RAP. The study highlighted the importance of achieving equivalent field performance for mixtures with RAP and virgin mixtures.  相似文献   

4.
We try to elucidate which environmental and soil factors control nitrogen uptake efficiency in citrus. Effects of residence time and nitrogen (N) concentration (three 500-mL applications of 7 mg N L(-1), representative of reclaimed water used for citrus irrigation in central Florida, or one 150-mL application of 70 mg N L(-1)) on nitrogen uptake efficiency (NUE) of young citrus seedlings were studied. Increasing residence times from 2 to 8 h increased NUE from 36 to 82% and from 17 to 34% for high and low application frequencies, respectively. We developed a model to predict N uptake based on root density, N concentration, and soil temperature (Ts). Assuming a base temperature (Tb) of 10 degrees C, N uptake temperature sum (UTS) = sigma(Ts - Tb)/24 (degrees CdN, degree day units of N uptake). To eliminate the risk of N leaching for young seedlings, minimum uptake periods of 5 and 16 degrees CdN were required at initial soil N concentrations of 0.9 and 2.5 mg N L(-1), respectively. After correcting for differences in root length, this information was then used to predict the effect of irrigation practices on N uptake from reclaimed water for mature trees. Applying 2500 mm yr(-1) vs. 400 mm yr(-1) reclaimed water reduced the NUE of N in this water from 100 to 63% during the summer and from 100 to 28% during the winter. Reductions in NUE at higher irrigation rates appeared to be related to N displacement below the root zone prior to complete N uptake.  相似文献   

5.
This article presents a model of remedial action planning, which includes four key variables that determine progress in plan development and implementation and explain the differing level of achievement in individual sites. The model is illustrated by the characteristics and developments of four remedial action plan (RAP) processes (Lower Green Bay and Fox River, Collingwood Harbour, Spanish Harbour, and the Metro Toronto and Region RAPs). Differences in the local context of the plans have, to a significant degree, predisposed individual planning and implementation experiences. Local context includes three variables, namely geographical—technical and sociopolitical aspects and the previous history of water pollution management in the area. RAP precursors are a necessary precondition for progress in planning and substantive achievements. While there is a tendency that most geographically focused RAPs in administratively simple areas accomplish most, the motivation and political clout of RAP participants are strongly intervening factors. Resource input from upper levels of government, in particular financial commitment for plan implementation, is the fourth necessary ingredient for progress due to the RAPs' weak regulatory and institutional framework. Unfortunately, upper levels of government have shown widespread reluctance to lead in remedial action planning. This was only in part offset by local commitment and support for RAP and its cause.  相似文献   

6.
Mechanical recycling of 100% post-consumer plastic waste into high-quality products has been performed. The chemical and physical properties of these recycled materials have been compared with similar products manufactured from virgin resins. The properties of a blow-moulded bottle prepared from 100% post-consumer high-density polyethylene (HDPE) showed that this recycled polymer exceeded the materials specifications for virgin plastic designs. Similarly, a sample of thermoplastic polyolefin (TPO, 100% polypropylene), obtained entirely from shredder residue (SR) displayed sufficient material strength for future separation and reprocessing.  相似文献   

7.
Nitrogen (N) loss during beef cattle (Bos taurus) feedlot manure composting may contribute to greenhouse gas emissions and increase ammonia (NH(3)) in the atmosphere while decreasing the fertilizer value of the final compost. Phosphogypsum (PG) is an acidic by-product of phosphorus (P) fertilizer manufacture and large stockpiles currently exist in Alberta. This experiment examined co-composting of PG (at rates of 0, 40, 70, and 140 kg PG Mg(-1) manure plus PG dry weight) with manure from feedlot pens bedded with straw or wood chips. During the 99-d composting period, PG addition reduced total nitrogen (TN) loss by 0.11% for each 1 kg Mg(-1) increment in PG rate. Available N at the end of composting was significantly higher for wood chip-bedded (2180 mg kg(-1)) than straw-bedded manure treatments (1820 mg kg(-1)). Total sulfur (TS) concentration in the final compost increased by 0.19 g kg(-1) for each 1 kg Mg(-1) increment in PG rate from 5.2 g TS kg(-1) without PG addition. Phosphogypsum (1.6 g kg(-1) P) addition had no significant effect on total phosphorus (TP) concentration of the final composts. Results from this study demonstrate the potential of PG addition to reduce overall N losses during composting. The accompanying increase in TS content has implications for use of the end-product on sulfur-deficient soils. Co-composting feedlot manure with PG may provide an inexpensive and technologically straightforward solution for managing and improving the nutrient composition of composted cattle manure.  相似文献   

8.
Environmental impact and management of phosphogypsum   总被引:2,自引:0,他引:2  
The production of phosphoric acid from natural phosphate rock by the wet process gives rise to an industrial by-product called phosphogypsum (PG). About 5 tons of PG are generated per ton of phosphoric acid production, and worldwide PG generation is estimated to be around 100–280 Mt per year. This by-product is mostly disposed of without any treatment, usually by dumping in large stockpiles. These are generally located in coastal areas close to phosphoric acid plants, where they occupy large land areas and cause serious environmental damage. PG is mainly composed of gypsum but also contains a high level of impurities such as phosphates, fluorides and sulphates, naturally occurring radionuclides, heavy metals, and other trace elements. All of this adds up to a negative environmental impact and many restrictions on PG applications. Up to 15% of world PG production is used to make building materials, as a soil amendment and as a set controller in the manufacture of Portland cement; uses that have been banned in most countries. The USEPA has classified PG as a “Technologically Enhanced Naturally Occurring Radioactive Material” (TENORM).  相似文献   

9.
Management strategy impacts on ammonia volatilization from swine manure   总被引:1,自引:0,他引:1  
Ammonia emitted from manure can have detrimental effects on health, environmental quality, and fertilizer value. The objective of this study was to measure the potential for reduction in ammonia volatilization from swine (Sus scrofa domestica) manure by temperature control, stirring, addition of nitrogen binder (Mohave yucca, Yucca schidigera Roezl ex Ortgies) or urease inhibitor [N-(n-butyl) thiophosphoric triamide (NBPT)], segregation of urine from feces, and pH modification. Swine manure [total solids (TS) = 7.6-11.2%, total Kjeldahl nitrogen (TKN) = 3.3-6.2 g/L, ammonium nitrogen NH(+)(4)-N = 1.0-3.3 g/L] was stored for 24, 48, 72, or 96 h in 2-L polyvinyl chloride vessels. The manure was analyzed to determine pre- and post-storage concentrations of TS and volatile solids (VS), TKN, and NH(+)(4)-N. The concentration of accumulated ammonia N in the vessel headspace (HSAN), post-storage, was measured using grab sample tubes. Headspace NH(3) concentrations were reduced 99.3% by segregation of urine from feces (P < 0.0001). Stirring and NBPT (152 microL/L) increased HSAN concentration (119 and 140%, respectively). Headspace NH(3) concentration increased by 2.7 mg/m(3) for every 1 degree C increase in temperature over 35 degrees C. Slurry NH(+)(4)-N concentrations were reduced by segregation (78.3%) and acidification to pH 5.3 (9.4%), and increased with stirring (4.8%) and increasing temperature (0.06 g/L per 1 degree C increase in temperature over 35 degrees C). Temperature control, urine-feces segregation, and acidification of swine manure are strategies with potential to reduce or slow NH(+)(4)-N formation and NH(3) volatilization.  相似文献   

10.
A comprehensive life cycle assessment of asphalt pavements was conducted including hot mix asphalt (HMA), warm mix asphalt (WMA) with the addition of synthetic zeolites, and asphalt mixes with reclaimed asphalt pavement (RAP). The environmental impacts associated with energy consumption and air emissions were assessed, as well as other environmental impacts resulting from the extraction and processing of minerals, binders and chemical additives; asphalt production; transportation of materials; asphalt paving; road traffic on the pavement; land use; dismantling of the pavement at the end-of-life and its landfill disposal or recycling. Monte Carlo simulations were also conducted to take into account the variability of critical input parameters. Taking into account the entire life cycle, the impacts of zeolite-based WMA pavements were almost equal to the impacts of HMA pavements with the same RAP content. The reduction in the impacts of WMA resulting from the lowering of the manufacturing temperature was offset by the greater impacts of the materials used, especially the impacts of the synthetic zeolites. Moreover, by comparing asphalt mixes with different RAP contents, it was shown that the impacts of asphalt mixes were significantly reduced when RAP was added. All endpoint impacts as well as climate change, fossil depletion and total cumulative energy demand were decreased by 13–14% by adding 15% RAP. A key advantage of WMA is the potentially greater use of RAP. Thus, the decrease in the impacts achieved by adding large amounts of RAP to WMA could turn these asphalt mixes into a good alternative to HMA in environmental terms.  相似文献   

11.
Electric arc furnace dust (EAFD) is one of the by-products of steelmaking industry which has been classified as hazardous due to containing some heavy metals such as Zinc, Cobalt, Copper, Lead or Cadmium. This research aims at solving the problem of this hazardous waste by solidification/stabilization through mixing it with asphalt cement to be used for road construction. EAFD was used as an additive to the asphalt concrete mixtures with five percentages (0%, 5%, 10%, 15% and 20%) by volume of binder. Penetration, ductility, specific gravity, softening point, flash point, fire point and rotational viscosity were analyzed. It was found that while the penetration and ductility were decreasing with the increase of EAFD concentration in the binder, specific gravity, softening point, flash point, fire point and rotational viscosity were increasing. Finally it has been concluded that the results are promising for dual achievement (1) to solve an environmental problem and (2) to use the EAFD for road construction.  相似文献   

12.
This study was carried out to assess the radiological impact of Syrian phosphogypsum (PG) piles in the compartments of the surrounding ecosystem. Estimating the distribution of naturally occurring radionuclides (i.e. (226)Ra, (238)U, (232)Th, (210)Po and (210)Pb) in the raw materials, product and by-product of the Syrian phosphate fertilizer industry was essential. The data revealed that the concentrations of the radionuclides were enhanced in the treated phosphate ore. In PG, (226)Ra content had a mean activity of 318 Bq kg(-1). The uranium content in PG was low, ca. 33 Bq kg(-1), because uranium remained in the phosphoric acid produced. Over 80% of (232)Th, (210)Po and (210)Pb present partitioned in PG. The presence of PG piles did not increase significantly the concentration of (222)Rn or gamma rays exposure dose in the area studied. The annual effective dose was only 0.082 mSv y(-1). The geometric mean of total suspended air particulates (TSP) ca. 85 μg m(-3). The activity concentration of the radionuclides in filtrates and runoff waters were below the detection limits (ca. 0.15 mBq L(-1) for (238)U, 0.1 mBq L(-1) for (232)Th and 0.18 mBq L(-1) for both of (210)Po and (210)Pb); the concentration of the radionuclides in ground water samples and Qattina Lake were less than the permissible limits set for drinking water by the World Health Organisation, WHO, (10, 1 and 0.1 Bq L(-1) for (238)U, (232)Th and both of (210)Po and (210)Pb, respectively). Eastern sites soil samples of PG piles recorded the highest activity concentrations, i.e. 26, 33, 28, 61 and 40 Bq kg(-1) for (226)Ra, (238)U, (232)Th, (210)Po and (210)Pb, respectively, due to the prevailing western and north-western wind in the area, but remained within the natural levels reported in Syrian soil (13-32 Bq kg(-1) for (226)Ra, 24.9-62.2 Bq kg(-1) for (238)U and 10-32 Bq kg(-1) for (232)Th). The impact of PG piles on plants varied upon the plant species. Higher concentrations of the radionuclides were recorded for grass in comparison to broad-leaved plants. Among the species that grow naturally on PG piles, Inula, Ecballium and Polygonium may be radionuclides accumulators. A determined effort is needed at a national level to achieve a common and coherent approach to regulate PG piles or to consider it a resource material rather than waste or residue.  相似文献   

13.
Durability of conventional concretes containing black rice husk ash   总被引:1,自引:0,他引:1  
In this study, black rice husk ash (BRHA) from a rice mill in Thailand was ground and used as a partial cement replacement. The durability of conventional concretes with high water–binder ratios was investigated including drying shrinkage, autogenous shrinkage, depth of carbonation, and weight loss of concretes exposed to hydrochloric (HCl) and sulfuric (H2SO4) acid attacks. Two different replacement percentages of cement by BRHA, 20% and 40%, and three different water–binder ratios (0.6, 0.7 and 0.8) were used. The ratios of paste volume to void content of the compacted aggregate (γ) were 1.2, 1.4, and 1.6. As a result, when increasing the percentage replacement of BRHA, the drying shrinkage and depth of carbonation reaction of concretes increased. However, the BRHA provides a positive effect on the autogenous shrinkage and weight loss of concretes exposed to hydrochloric and sulfuric acid attacks. In addition, the resistance to acid attack was directly varied with the (SiO2 + Al2O3 + Fe2O3)/CaO ratio. Results show that ground BRHA can be applied as a pozzolanic material and also improve the durability of concrete.  相似文献   

14.
The macroalga Caulerpa lentillifera was found to have adsorption capacity for a basic dye, Astrazon Blue FGRL. For the whole range of concentrations employed in this work (20-1280 mgl(-1)), the adsorption reached equilibrium within the first hour. The kinetic data corresponded well with the pseudo second-order kinetic model where the rate constants decreased as initial dye concentrations increased. At low dye concentrations (20-80 mgl(-1)), an increase in the adsorbent dosage resulted in a higher removal percentage of the dye, but a lower amount of dye adsorbed per unit mass (q). The adsorption isotherm followed both the Langmuir and Freundlich models within the temperature range employed in this work (18-70 degrees C). The highest maximum adsorption capacity (q(m)) was obtained at 50 degrees C. The enthalpy of adsorption was estimated at 14.87 kJmol(-1) suggesting a chemical adsorption mechanism.  相似文献   

15.
This study estimated the potential effects of pesticide drift on terrestrial ecosystems outside target areas, for the Dutch situation. A series of field trials was conducted to estimate the effects of drift on different species groups at different distances from a treated plot for different categories of pesticide: herbicides, fungicides and insecticides. Measurements of the pesticide drift deposition resulting from standard agricultural practice were used to model deposition outside the treated area. These data were then combined with national statistics on cropland and pesticide use to assess the ecological effects of pesticide drift for the Netherlands as a whole. Three scenarios were considered: the recent past (1998), the present (2005) and an optimised scenario based on 'best available practice' (2010). In the recent past the impact of herbicide drift on sensitive life stages non-target vascular plants is estimated to have exceeded the 50% effect level on 59% of adjacent linear landscape elements such as ditch banks and hedgerows. For the impact of insecticides and fungicides on non-target insects and fungi this 50% effect figure was 29% and 28% of linear elements, respectively. In the present situation, with (narrow) unsprayed buffer zones and other measures in place, these percentages are down to 41% for herbicides, 21% for insecticides and 14% for fungicides. In the optimised scenario, with a greater buffer width of 2.25m for potatoes (compared to 1.50m in 2005) and 1m for other crops (compared to 0.25 and 0.5m in 2005) and 'best available practice', these percentages can be cut to zero. In natural areas located within farming regions the 10% effect level can be reduced from 31% of such areas (1998) to 0% under conditions of 'best available practice'.  相似文献   

16.
Sinking of military ships, dumping of munitions during the two World Wars, and military training have resulted in the undersea deposition of numerous unexploded ordnances (UXOs). Leaching of energetic compounds such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from these UXOs may cause adverse ecological effects so that the long-term fate of these chemicals in the sea should be known. The present study assesses the contribution of alkaline hydrolysis into the natural attenuation of RDX and HMX in coastal waters. Alkaline hydrolysis rates were shown to be unaffected by the presence of sodium chloride, the most common component in marine waters. Kinetic parameters (E(a), ln A, k(2)) quantified for the alkaline hydrolysis of RDX and HMX in deionized water (30-50 degrees C, pH 10-12) agreed relatively well with abiotic degradation rates determined in sterilized natural coastal waters (50 and 60 degrees C, variable salinity) even if the latter were generally slightly faster than the former. Furthermore, similar products (HCHO, NO(2)(-), O(2)NNHCH(2)NHCHO) were obtained on alkaline hydrolysis in deionized water and abiotic degradation in coastal waters. These two findings suggested that degradation of nitramines in sterilized natural coastal waters, away from light, was mainly governed by alkaline hydrolysis. Kinetic calculations using the present parameters showed that alkaline hydrolysis of RDX and HMX in marine waters at 10 degrees C would respectively take 112 +/- 10 and 2408 +/- 217 yr to be completed (99.0%). We concluded that under natural conditions hydrolysis should not contribute significantly to the natural attenuation of HMX in coastal waters whereas it could play an active role in the natural attenuation of RDX.  相似文献   

17.
In this study, the environmental impact of recycling portable nickel–cadmium (NiCd) batteries in Sweden is evaluated. A life cycle assessment approach was used to identify life cycle activities with significant impact, the influence of different recycling rates and different time boundaries for emissions of landfilled metals. Excluding the user phase of the battery, 65% of the primary energy is used in the manufacture of batteries while 32% is used in the production of raw materials. Metal emissions from batteries to water originate (96–98%) from landfilling and incineration. The transportation distance for the collection of batteries has no significant influence on energy use and emissions. Batteries manufactured with recycled nickel and cadmium instead of virgin metals have 16% lower primary energy use. Recycled cadmium and nickel metal require 46 and 75% less primary energy, respectively, compared with extraction and refining of virgin metal. Considering an infinite time perspective, the potential metal emissions are 300–400 times greater than during the initial 100 years. From an environmental perspective, the optimum recycling rate for NiCd batteries tends to be close to 100%. It may be difficult to introduce effective incitements to increase the battery collection rate. Cadmium should be used in products that are likely to be collected at the end of their life, otherwise collection and subsequent safe storage in concentrated form seems to offer the best solution to avoid dissipative losses.  相似文献   

18.
The City of Montreal, Canada, evaluated the environmental impact and usefulness of in-ground copper (Cu)-treated baskets in controlling root growth of hardwood trees in nursery culture. Using baskets planted with 5-yr-old Norway maple (Acer platanoides L.) trees, the amount and temporal pattern of Cu release from the basket surface into soil was determined for two copper formulations: Cu metal powder and Cu(OH)2. Release of both Cu formulations from the basket surface decreased exponentially over time, with Cu concentration at the basket surface dropping to 2% of the initial Cu applied by the end of the second field season. Total Cu content increased significantly in the soil around the baskets (from 7 to 28 mg Cu kg(-1) soil) and in the baskets (from 7 to 50-70 mg Cu kg(-1) soil) over the two years of the study. Three levels of phosphorus application (33, 66, and 100% of the regular nursery rate of 465 kg ha(-1) yr(-1)) did not affect release of Cu from the basket surface. The release of Cu metal at 28 and 105 d in the field was significantly increased by inoculation with the symbiotic arbuscular mycorrhizal fungus (AMF) Glomus intraradices Schenck & Smith; however, AMF inoculation had no affect on Cu(OH)2 release. Trees grown in Cu-treated baskets and inoculated with G. intraradices had similar colonization to non-inoculated trees, suggesting that inoculation was not very effective and that AMF inoculum was already present in the root ball of the trees at planting. After two years, copper basket-grown trees had significantly less root colonization than isolated control trees growing in the open field. This strongly suggests that conditions inside the baskets were not favorable to AMF.  相似文献   

19.
The bioavailability and biodegradation of polycyclic aromatic hydrocarbons (PAHs) can be increased through the addition of surfactants. Previous studies of this nature have been conducted under mesophilic conditions. Hence, the aim of the present study was to investigate the effects of synthetic surfactants and biosurfactants on solubilization and degradation of phenanthrene (PHE) in a series of batch solution experiments under thermophilic conditions. Tween 80, Triton X-100, and biosurfactants produced from Pseudomonas aeruginosa strain P-CG3 (P-CG3) and Pseudomonas aeruginosa ATCC 9027 (P. 9027) were used in this study. Surfactants effectively enhanced the solubility of PHE at 50 degrees C and the biosurfactant from P-CG3 was most effective with a 28-fold increase in apparent solubility of PHE at a concentration of 10 x critical micelle concentration (CMC) compared with the controls. However, addition of synthetic surfactants or biosurfactants inhibited the biodegradation of PHE in mineral salts medium by an isolate Bacillus sp. B-UM. Degradation of PHE diminished with increasing surfactant concentrations, and PHE degradation was completely inhibited for all the surfactants tested when the concentrations were greater than their respective CMC. The growth test suggested that Tween 80 and biosurfactants were degradable, but preferential utilization of these surfactants as substrates was not the mechanism for explaining the inhibition of PHE biodegradation. Because of the hydrophobic property of B-UM, degradation inhibition of PHE by surfactants was probably due to the reduction of direct contact between bacterial cells and PHE.  相似文献   

20.
Due to geochemical processes, peat soils often have elevated concentrations of trace elements, which are gradually released following drainage for agriculture. Our objectives were to use incubation temperatures to vary microbial activity in two metalliferous peats (M7 acidic peat and M3 neutral peat) from the Elba, New York region, and to use periodic leaching to assess the extent of trace element release from these soils. Dried soils were mixed with glass beads to maintain aeration, moistened, and incubated at 4, 16, 28, and 37 degrees C in 10-cm-diameter x 8-cm-tall columns. Five incubation-leaching cycles were performed, each consisting of 7.3 d of incubation (28 d for the final cycle) followed by 16 h of leaching with synthetic acid rain at 2.5 mm h(-1). Microbial activity was determined initially and after the final leaching by measuring C mineralization following glucose stimulation. Cumulative respiration results were ranked 28 > 16 > 4 > 37 degrees C, with M7 acidic peat respiration values greater than M3 neutral peat at each temperature. Initial leachate pH levels were between 2 and 4, with acidification less pronounced and shorter-lived for the M3 peat. Leachate S, dissolved organic carbon (DOC), NO3-N, and trace elements declined with successive leachings (rebounding slightly in the final M3 leachate), with concentrations typically greater in the M7 leachate. Elemental losses followed the same general ranking (28 > 16 > 4 > 37 degrees C); losses at 28 degrees C were 15 to 22% for As, Cd, Ni, and Zn from the M7 peat; losses from M3 were comparable only for Cu (1%) and Ni (19%). The correlation of respiration with S, DOC, and trace elements losses indicates that microbial processes mediated the release of trace elements in both peat soils. Neutral M3 peat pH levels limited losses of most analytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号