首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
采用碱熔融活化法,由固硫灰制备地聚合物。在前期开展的单因素实验的基础上,采用正交实验,考察了NaOH和固硫灰的质量比、煅烧温度、煅烧时间3个因素对固硫灰基地聚合物的抗压强度的影响。采用XRD,SEM,IR等手段分析固硫灰碱熔融活化前后的物相、微观形貌以及硅铝化学键的变化。实验结果表明,以在NaOH与固硫灰的质量比为0.60、煅烧温度为550 ℃、煅烧时间为60 min的条件下制备的碱熔融固硫灰为原料,制备的固硫灰基地聚合物的抗压强度为38.00 MPa。表征结果显示:通过碱熔融活化固硫灰制备的地聚合物的XRD谱图中出现了地聚合物的特征衍射峰;碱熔融固硫灰的结构松散,在颗粒表面及内部存在大量孔隙;经碱熔融处理后固硫灰的硅酸盐和铝酸盐发生了解聚。  相似文献   

2.
含砷废渣的固化处理   总被引:4,自引:1,他引:3  
为了处理有色金属冶炼厂产生的含砷废渣(简称砷渣),以水泥、粉煤灰、矿渣、黄砂等作为固化材料对砷渣进行了固化研究。确定了砷渣固化的最佳工艺条件:w(砷渣):50%、w(水泥)=15%、w(粉煤灰):20%、w(矿渣)=10%、w(黄砂)=5%;砷渣、粉煤灰预先混合球磨10min,加水搅拌后陈化4h,烘干后与水泥、矿渣一起球磨20min,再与水(水与混合物料的质量比为0.175)、添加剂(质量分数为0.05%的添加剂B)及黄砂一起在搅拌机中搅拌6min,然后加压成型,成型后的固化体先放入24℃水泥砼试体养护箱养护14d,然后取出在室温下自然养护14d,养护时间共28d。扫描电子显微镜分析结果显示,砷渣固化体的胶凝状态良好。测试结果表明,砷渣固化体7d抗压强度为8.13MPa,28d抗压强度为14.20 MPa;As的浸出浓度为0.07mg/L,Hg的浸出浓度为0.008mg/L。砷渣固化体的性能达到了国家建材行业标准(JC239-2001《粉煤灰砖》)和危险废物鉴别标准(GB5085.3~1996《危险废物答别标准——浸出毒性答别》)的要求。  相似文献   

3.
通过钙类化合物对动力用煤固硫作用的模拟试验 ,对不同钙化合物固硫率 (J)与Ca/S及助剂关系的研究 ,得到了钙类化合物固硫率的次序 ,即 :JNaOH +CaO>JCaCO3>JCaO>JCa(OH) 2 ,结果说明固硫率与钙类化合物的存在形式有关 ,并解释了其固硫作用机理  相似文献   

4.
采用改性β-半水磷石膏(MPG)(组成(w):50% β-半水磷石膏、23%矿渣、15%磷渣、10%熟料和2%生石灰)对含铅淤泥进行固化稳定化.实验结果表明:MPG固化材料对含铅淤泥固化效果显著,养护28 d后MPG固化体的无侧限抗压强度比水泥固化体提高了73.59%,pH降低了18.24%;MPG固化体的含水率比未固...  相似文献   

5.
张海军  罗洁  王亚举  杨剑  黄胜 《化工环保》2016,36(4):421-427
以电厂废弃物粉煤灰为原料、采用碱熔-水热法制备了粉煤灰合成A型沸石(以下简称沸石),再以沸石对溶液中的Cs+进行分离富集,最后在碱激发剂的作用下以粉煤灰和吸附后的沸石制得地聚合物固化体。对固化体的性能进行了评价,并探讨了固化机理。实验结果表明:在吸附温度25℃、初始Cs+质量浓度100 mg/L、固液比10.0 g/L的条件下,沸石对的Cs+的吸附率达98%,比粉煤灰提高了2倍以上;沸石掺量为20%~30%(w)时,固化体的抗压强度符合GB 14569.1—2011要求,固化体中Cs+的42 d浸出率和累计浸出分数均远优于GB 14569.1—2011限值,表现出优异的抗浸出性能。  相似文献   

6.
铬渣水泥固化体稳定性研究   总被引:7,自引:0,他引:7  
宁丰收  赵谦  陈盛明 《化工环保》2004,24(6):409-412
采用水泥固化的方法对铬渣进行处理。在水泥与铬渣、砂、水、硅酸钠的质量比为1:0.6:0.45:0.15:0.1时固化效果较好。固化体经28d的养护后,表面Cr^6 的浸出率为10^-5数量级,即使破碎至5mm以下的粒度,其Cr^6 的浸出质量浓度仍在国家标准以下。模拟酸溶试验和固化体抗压强度测试结果表明,固化体用于填埋是长期安全的。  相似文献   

7.
采用溶胶-凝胶法制备了纳米羟基磷灰石(n-HAP),使用FTIR、XRD、气体吸附仪等表征了n-HAP的物相及微观结构,并研究了n-HAP对模拟含Pb2+废水中Pb2+的吸附特性。实验结果表明:所制备的n-HAP粒径为24.39 nm,比表面积为53.50 m2/g,孔体积为0.32 cm3/g;n-HAP对Pb2+的去除率随吸附时间、吸附温度和溶液pH(小于6.5的实验范围)的增加而增大,随初始Pb2+质量浓度增大而减小;n-HAP对Pb2+的吸附较符合准二级吸附动力学方程,颗粒内扩散过程是吸附速率的控制步骤;Langmuir吸附等温方程比Freundlich吸附等温方程更适合描述n-HAP对Pb2+的吸附热力学行为,Pb2+在n-HAP上的吸附符合单分子层吸附形式。  相似文献   

8.
分别采用传统沉淀法和并流加料沉淀法处理含铜锌废水,考察了废水进样速率、废水pH、搅拌速率对重金属离子残留质量浓度的影响。采用FTIR、XRD和SEM表征了所得污泥的物相和形貌。实验结果表明:并流加料沉淀法所得滤液中Zn~(2+)、Cu~(2+)和Al3+的质量浓度远低于传统沉淀法;在废水进样速率1.0 mL/min、废水pH 9、搅拌速率500 r/min的最佳工艺条件下,滤液中Cu~(2+)和Zn~(2+)基本没有残留,Al3+质量浓度仅为0.2 mg/L,达到工业排放标准;所得污泥结晶度良好,为类水滑石Cu_3Zn_3Al_2(OH)_(16)CO_3·4H_2O(PDF#37-0629)结构。  相似文献   

9.
采用超临界水氧化(SCWO)技术处理煤气化生化污泥,优化了处理工艺条件,考察了有机污染物和重金属的去除效果。实验结果表明,处理含水率为90%(w)的污泥的最佳工艺条件为:反应温度580℃、反应压力25MPa、氧化系数(初始反应加入的H_2O_2的摩尔数与理论上废水完全氧化所需的H2O2的摩尔数之比)4.0、反应时间2 min。SCWO处理后的气相产物为O2、CO2和少量N2,清洁环保,可直接排放或回收利用。液相产物中的主要有机污染物和重金属含量均大幅降低,出水达到GB 8978—1996《污水综合排放标准》,可直接排放或回用。固相残渣浸出液中重金属含量均低于GB 5085.3—2007《危险废物鉴别标准浸出毒性鉴别》,可直接进行填埋处理或资源化利用。  相似文献   

10.
以含油污泥热解残渣为原料,在充分考察其组成特性的基础上,通过添加复合固化剂(水泥和粉煤灰的混合物)及液态黏结剂,制备路基材料,考察了影响路基材料性能的主要因素。分析结果表明:热解残渣的主要组分为SiO2、Al2O3、CaO和SO3,与传统路基材料较为相似;热解残渣的pH、矿物油含量和铜、镉、铅等重金属含量均满足《农用污泥污染物控制标准》(GB 4284—2018)的要求。实验结果表明,在复合固化剂配比(水泥与粉煤灰质量比)为3∶2、复合固化剂与热解残渣质量比为3∶2、液态黏结剂加入量(m(液态黏结剂)∶m(复合固化剂和热解残渣))为0.15~0.20、养护龄期为7 d的条件下,所制得的路基材料抗压强度达到最佳,为2.77 MPa。  相似文献   

11.
Advanced ash management technologies for CFBC ash   总被引:3,自引:0,他引:3  
The combustion of high-sulphur coal demands the reduction of sulphur emissions. The sorbent most often used in sulphur capture technology is calcium-based. Ashes from technologies such as circulating fluidized bed combustion (CFBC), therefore, contain high calcium levels. The use and disposal of these ashes poses challenges, because of highly exothermic reactions with water, high-pH leachates, and excessive expansion of solidified materials. This paper looks at the potential of two post-combustion ash treatment processes, CERCHAR hydration and AWDS disposal, in solving these challenges. A high-sulphur coal-derived CFBC ash is examined, after CERCHAR hydration treatment, in conjunction with a conventionally hydrated ash, in a range of chemical, geotechnical and utilization scenarios. The ashes are used to make no-cement and roller-compacted concrete as well as Ash Water Dense Suspensions (AWDS). The solidified mortar paste from no-cement concrete is subjected to an extensive geochemical examination to determine how solidification progresses and strength develops, from a chemical point of view.  相似文献   

12.
The sludge from a steel processing unit bearing zinc, lead, iron, and manganese was solidified with ordinary Portland cement. The waste was stabilized in the specimens with a waste/binder ratio range of 0.16–4.0. On the basis of the available leaching and unconfined compressive strength, the performance of the solidified/stabilized waste was compared for different numbers of curing days. It was found that curing up to 28 days resulted in a performance improvement, as shown by less leaching of heavy metals and the increased unconfined compressive strength of the specimen. The treatment effectiveness of the solidification/stabilization process was assessed for the metals Pb, Zn, Fe, and Mn, and was found to be 89%, 95%, 74%, and 90%, respectively, for an optimum ratio of 4.0 after 28 days of curing.  相似文献   

13.
Circulating fluidized bed combustion (CFBC) ashes from nine operational periods at the 183 MWe CFBC boiler at Point Aconi were examined for exothermic behaviour. Bed ashes and fly ashes were investigated using a Parr 1455 solution calorimeter. Limited tests were also carried out with additional samples from Point Aconi and from the 160 MWe TVA Bubbling Fluidized Bed Combustion boiler to evaluate the effects of particle size and aging on exothermic behaviour. For the Point Aconi ashes, heat release from the bed ash ranged from 11 to 52 J/g, and the maximum heat release rates ranged from 0.06 to 0.17 J/g/s. For the fly ash heat release varied from 114 to 187 J/g and the maximum heat release rates ranged from 0.8 to 1.9 J/g/s. In the fly ash samples, 50% or more of available CaO was converted to Ca(OH)2, while for the bed ash a third or less of the CaO was converted to Ca(OH)2. The exothermicity of the bed ash is directly proportional to the CaO content of the ash. However, this is not true for the fly ash. The exothermic behaviour of fresh FBC ash appeared to be greatly reduced by exposure in air over a 48-h period. Another conclusion of this work is that particle size effects the exothermic behaviour.  相似文献   

14.
Synthetic aggregates from combustion ashes using an innovative rotary kiln   总被引:1,自引:0,他引:1  
This paper describes the use of a number of different combustion ashes to manufacture synthetic aggregates using an innovative rotary 'Trefoil' kiln. Three types of combustion ash were used, namely: incinerated sewage sludge ash (ISSA); municipal solid waste incinerator bottom ash (MSWIBA-- referred to here as BA); and pulverised fuel ash (Pfa). The fine waste ash fractions listed above were combined with a binder to create a plastic mix that was capable of being formed into 'green pellets'. These pellets were then fired in a Trefoil kiln to sinter the ashes into hard fused aggregates that were then tested for use as a replacement for the natural coarse aggregate in concrete. Results up to 28 days showed that these synthetic aggregates were capable of producing concretes with compressive strengths ranging from 33 to 51 MPa, equivalent to between 73 and 112% of that of the control concrete made with natural aggregates.  相似文献   

15.
Two combustion tests were performed in a fluidized bed combustor of a thermo-electric power plant: (1) combustion of coal; (2) co-combustion of coal (68.7% w/w), sewage sludge (9.2% w/w) and meat and bone meal (MBM) (22.1% w/w). Three samples of ashes (bottom, circulating and fly ashes) were collected in each combustion test. The ashes were submitted to the following assays: (a) evaluation of the leaching behaviour; (b) stabilization/solidification of fly ashes and evaluation of the leaching behaviour of the stabilized/solidified (s/s) materials; (c) production of concrete from bottom and circulating ashes. The eluates of all materials were submitted to chemical and ecotoxicological characterizations. The crude ashes have shown similar chemical and ecotoxicological properties. The s/s materials have presented compressive strengths between 25 and 40 MPa, low emission levels of metals through leaching and were classified as non-hazardous materials. The formulations of concrete have presented compressive strengths between 12 and 24 MPa. According to the Dutch Building Materials Decree, some concrete formulations can be used in both scenarios of limited moistening and without insulation, and with permanent moistening and with insulation.  相似文献   

16.
Solidification of municipal incineration bottom ash (MIBA) has been carried out using a hydrothermal processing method, in which the MIBA was first compacted in a mold at 5-20 MPa, and then hydrothermally cured in an autoclave under saturated steam pressure at 150-250 degrees C for 10-72 h. Experimental results showed that the tensile strength of the solidified body was greatly influenced by the addition of NaOH solution and fresh cement in the MIBA. The hydrothermal curing temperature and time exerted a significant influence on the development of tensile strength of solidified body. The strength development is speculated to be due primarily to the formation of 1.1 nm tobermorite. Laboratory leaching tests were conducted to determine the amount of heavy metals dissolved from the solidified bodies and the results showed that under the hydrothermal conditions of this study the leaching of heavy metals was very low. As such, the hydrothermal processing method may have a high potential for recycling MIBA.  相似文献   

17.
The possibility of using incinerator bottom ash as a substitute for natural aggregates was investigated. Rough, porous surface of bottom ash, which diminishes the strength of solidified products, was improved by colloidal silica solution. As a result, a significant increase of mechanical strength was accomplished by a slight amount of silica (<1 wt% to total). Moreover, pozzolanic reaction was induced in initial cement hydration due to the nano-particle size of about 20 nm in colloidal silica solution. Cylindrical specimens and bricks were prepared from bottom ash added to a colloidal silica (SiO2) solution and cement, and then their compressive strengths were evaluated. Cylindrical specimens showed an increase of approximately 60% in compressive strength when colloidal solution containing 4 wt% silica particles was sprayed onto the bottom ash. The strength of bricks containing colloidal silica was in excess of 20 MPa, which meets the requirement of construction materials. Results of leaching tests based on Toxicity Characteristic Leaching Procedure (TCLP) proved that the solidified bottom ash possessed good chemical stability.  相似文献   

18.
This paper presents the results of a wider experimental programme conducted in the framework of the NNAPICS ("Neural Network Analysis for Prediction of Interactions in Cement/Waste Systems") project funded by the European Commission and a number of industrial partners under Brite-EuRamIII. Based on the fact that bottom ashes from waste incineration are classified as non-hazardous wastes according to the European Waste Catalogue, the aim of the present work was to investigate the feasibility of addressing the potential use of such residues in cement-based mixtures. This issue was suggested by the analysis of the properties of different bottom ashes coming from Italian municipal and hospital solid waste incinerators, which showed a chemical composition potentially suitable for such applications. Different mixes were prepared by blending bottom ash with ordinary Portland cement in different proportions and at different water dosages. The solidified products were tested for setting time and bulk density, unconfined compressive strength and evaporable water content at different curing times. The results of the experimental campaign were analysed through a statistical procedure (analysis of variance), in order to investigate the effect of mixture composition (waste replacement level and water dosage) on the product properties.  相似文献   

19.
Fly ash produced by coal combustion using two types of desulphurization process were studied: a conventional pulverized coal boiler equipped with lime injection (PCL ash), and a circulating fluidized bed combustion boiler with limestone injection (CFBC ash). The ashes were characterized completely: granulometry, morphology, mineralogy, chemical composition and behaviour to water contact. Both PCL ash and CFBC ash present similar features: fine granulometry, presence of anhydrite phase and sulphate content. However, PCL ash also shows lots of spherical particles, unlike CFBC ash, and a much higher lime content, due to the lower desulphurization rate in PC boilers. Unlike CFBC ash, most of the trace elements in PCL ash show an inverse concentration–particle size dependence. Leachates obtained from both samples are rich in soluble salts [CaSO4and Ca(OH)2] and arsenic and selenium are prevented from solubilizing by high lime content. In wetted PCL ash, the formation of ettringite crystals stabilizes calcium and sulphate ions. Simultaneously, arsenate, selenate and chromate anions are trapped in the crystal. CFBC ash does not really harden because the lime content is too low. However, the leached selenium concentration is cut down in wetted CFBC ash samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号