首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
改性膨润土对水中蒽的吸附和解吸   总被引:6,自引:0,他引:6  
分别用长碳链季铵盐阳离子型表面活性剂溴化十六烷基三甲铵(HDTMAB)、短碳链季铵盐阳离子型表面活性剂四甲铵化溴(TMAB)及非离子型表面活性剂聚乙二醇(PEG)对天然膨润土进行改性。比较了不同类型改性膨润土对水中蒽的吸附性能,探讨了吸附机理。实验结果表明,天然膨润土及改性膨润土对水中蒽的吸附能力依次为HDTMAB改性膨润土〉PEG改性膨润土〉TMAB改性膨润土〉天然膨润土;吸附等温线均是直线,说明该吸附行为是分配作用的结果。不同蒽初始质量浓度下,各种改性膨润土对蒽的吸附量由大至小的顺序为HDTMAB改性膨润土〉PEG改性膨润土〉TMAB改性膨润土,而天然膨润土对蒽的吸附量随蒽初始质量浓度的变化很小。改性膨润土加入量为30~80g/L时,各种改性膨润土对水中蒽的去除率均可达到90%以上,且解吸率均在5%以下。  相似文献   

2.
采用包头钢铁集团炼铁厂的高炉渣为吸附剂(粒径0.154 nm)对Cd2+进行吸附,运用SEM技术对吸附剂进行了表征,研究了初始Cd2+质量浓度、吸附剂加入量、吸附时间、吸附温度和废水pH对Cd2+去除率的影响,并探讨了吸附机理。表征结果显示:高炉渣吸附剂具有疏松多孔的特点,表面十分粗糙,比表面积较大。实验结果表明:当吸附温度为室温(28℃)、废水pH为7、初始Cd2+质量浓度为10 mg/L、吸附剂加入量为8 g/L、吸附时间为60 min时,Cd2+去除率达到98.55%;高炉渣对Cd2+的吸附符合拟二级动力学方程和Langmuir等温吸附模型,且吸附反应易发生。  相似文献   

3.
吴威  龚继来  曾光明 《化工环保》2015,35(4):426-431
采用液相还原法制备氧化石墨烯负载纳米零价铁吸附剂(Fe0/GO),并用于吸附去除溶液中的亚甲基蓝(MB)。考察了溶液p H、吸附温度、吸附时间、初始MB质量浓度对Fe0/GO吸附MB的影响。SEM等表征结果显示:Fe0以球形或短链形负载在GO上,增加了材料的反应活性位点;Fe0/GO的比表面积为158.32 m2/g,等电点为3。实验结果表明:在溶液p H为6、吸附时间5 h、吸附温度25℃的最佳条件下,加入400 mg/L的Fe0/GO,处理初始MB质量浓度为160 mg/L的MB溶液,MB去除率为89.26%,吸附量为125.5 mg/g;Langmuir等温吸附方程和Frenudlich等温吸附方程均能较好地描述Fe0/GO对MB的吸附过程;Fe0/GO对MB的吸附行为遵循准二级动力学方程;计算得出吸附温度为25℃、初始MB质量浓度为160 mg/L时的饱和吸附量为201.2 mg/g,平衡吸附量为124.3 mg/g。  相似文献   

4.
罗平  田英 《化工环保》2013,33(1):6-9
以天然膨润土为吸附剂,还原吸附处理含Cr(Ⅵ)模拟废水。实验结果表明:以(NH42FeSO4为还原剂吸附效果最佳;在还原剂加入量为理论值的0.8倍、膨润土加入量为6 g/L、吸附时间为30 min、吸附温度为30 ℃、初始Cr(Ⅵ)质量浓度为1 mg/L的条件下,Cr(Ⅵ)去除率可达99.6%,处理后模拟废水中总铬质量浓度低至0.003 mg/L。天然膨润土对Cr(Ⅵ)的还原吸附符合准二级动力学模型及Freundlich等温吸附模型。  相似文献   

5.
采用共沉淀法制备了吸附剂铝掺加赤铁矿(Al-Hem),并通过XRD、TEM等手段进行了表征,考察了初始pH、Al15-Hem加入量、吸附时间和初始U(Ⅵ)质量浓度对U(Ⅵ)去除率的影响。实验结果表明:在吸附温度为25℃、初始pH为6、Al15-Hem加入量为0.20 g/L、初始U(Ⅵ)质量浓度为5 mg/L、吸附时间为120 min的条件下,Al15-Hem对U(Ⅵ)的去除率为98.8%;Al15-Hem经4次解吸后,对U(Ⅵ)的去除率仍大于77.6%,具有一定的重复利用性;Al15-Hem对U(Ⅵ)的吸附以化学吸附为主,其机理可能是U(Ⅵ)与吸附剂表面含氧官能团发生了配位反应。  相似文献   

6.
微波改性锆-铝柱撑膨润土对水中Cr(Ⅵ)的吸附   总被引:1,自引:1,他引:0  
以膨润土为原料,通过微波辐射加热法制备锆-铝柱撑膨润土(MZAPB)吸附剂,研究了 MZAPB 加入量、溶液 pH、吸附时间、温度等因素对 Cr(Ⅵ)吸附效果的影响.研究结果表明:当溶液初始 Cr(Ⅵ)质量浓度为 25mg/L、MZAPB 加入量为 10 g/L、溶液 pH 为 5.6、吸附温度 25℃、吸附时间为 6...  相似文献   

7.
采用天然黄铁矿对水中的Cr(Ⅵ)进行吸附去除,考察了Cr(Ⅵ)去除效果的影响因素,并对吸附机理进行了探讨。实验结果表明:黄铁矿吸附去除水中Cr(Ⅵ)的优化条件为黄铁矿过200目筛(粒径小于0.075 mm)、吸附p H 3.0、黄铁矿投加量20 g/L、初始Cr(Ⅵ)质量浓度6 mg/L、吸附温度25℃,此条件下平衡时的Cr(Ⅵ)去除率达90%以上;酸性条件下,黄铁矿对Cr(Ⅵ)的去除效果均较好,且p H越低达到平衡所需时间越短;黄铁矿粒径越小,其对Cr(Ⅵ)的吸附速率越快,平衡时的去除率也越高;黄铁矿对Cr(Ⅵ)的吸附过程符合Langmuir等温吸附模型和Lagergren准二级动力学方程。  相似文献   

8.
采用低温等离子体技术将甲基丙烯酸缩水甘油酯(GMA)接枝在聚丙烯(PP)纤维表面,再用二乙烯三胺(DETA)胺化,制得PP-g-GMA-DETA螯合纤维,并应用于含铅模拟废水的处理。考察了吸附时间、溶液pH和初始Pb2+质量浓度对吸附量的影响。实验结果表明:PP-g-GMA-DETA螯合纤维对Pb2+的吸附速率很快,15 min时基本达到平衡吸附量,约为24.83 mg/g;随溶液pH的增加吸附量先迅速升高后保持平稳,在溶液pH为5.0时达到25.37 mg/g;随初始 Pb2+质量浓度的增加,吸附量迅速上升,当初始Pb2+质量浓度达到60 mg/L后,吸附量增长缓慢,最终保持吸附平衡。PP-g-GMA-DETA螯合纤维对Pb2+的吸附符合Langmuir等温吸附模型,是典型的单分子层吸附,饱和吸附量为31.40 mg/g。  相似文献   

9.
采用氯化铝和高锰酸钾对生物炭进行改性,研究生物炭表面Sb(Ⅲ)的吸附规律及吸附机理。实验结果表明,在固液比为2.5 g/L、pH为4、吸附温度为25 ℃、吸附时间为240 min、溶液初始质量浓度为10.0 mg/L时,BC、Al-BC和KMnO4-BC对Sb(Ⅲ)的平衡吸附量分别为1.13,2.12,2.98 mg/g。KMnO4-BC和Al-BC的吸附机理不同,KMnO4-BC等温吸附曲线符合Langmuir等温模型,吸附动力学过程遵循拟二级动力学方程;Freundlich模型和拟一级动力学方程更适合描述Al-BC对Sb(Ⅲ)的吸附。3种生物炭的吸附过程都以物理吸附为主,同时有化学吸附的参与。BET比表面积与FTIR分析结果表明,Al-BC吸附量大主要得益于比表面积及孔体积的增大。  相似文献   

10.
以粉煤灰为原料,采用碱熔融-水热法制备了3种沸石分子筛,运用XRD、XRF、SEM和BET等手段进行了表征,并将分子筛用于吸附溶液中的氨氮,考察了影响氨氮吸附效果的主要因素、氨氮等温吸附特征和吸附动力学特征。结果表明:分子筛B(Na20.8Al23Si36O117·7.69 H2O)对氨氮的吸附效果最佳,在初始氨氮质量浓度100 mg/L、分子筛B加入量2 g/L、初始溶液pH 7、吸附温度25℃、转速150 r/min的条件下,吸附60 min后,氨氮吸附量和去除率分别为40.61 mg/g和90%;4种阳离子对氨氮吸附效果的影响顺序依次为K+>Ca2+>Na+>Mg2+;分子筛B对氨氮的吸附为单分子层吸附,具有化学吸附的特征;分子筛B吸附氨氮的的最佳工艺条件为初始溶液pH 7、吸附温度45℃、初始氨氮质量浓度40 mg/L,在该条件下,氨氮去除率为93%。  相似文献   

11.
超细粉煤灰对模拟废水中孔雀石绿的吸附性能   总被引:1,自引:0,他引:1  
以球磨制得的超细粉煤灰为吸附材料,采用振荡吸附法研究了其对模拟废水中孔雀石绿的吸附性能.实验结果表明:在超细粉煤灰加入量为10g/L、吸附温度为298K、初始孔雀石绿质量浓度为500mg/L、振荡时间为120min、孔雀石绿废水自然酸碱度条件下,达到吸附平衡时的吸附量为49.97 mg/g,孔雀石绿几乎全部被超细粉煤灰所吸附;该吸附反应很好地符合二级吸附动力学方程,Ea为3.95kJ/mol,吸附反应速率较快,吸附过程由孔雀石绿在超细粉煤灰颗粒内部的扩散控制;该吸附符合Langmuir吸附等温方程,随吸附温度升高,饱和吸附量下降,298K下的饱和吸附量可达526.32mg/g,是自发进行的放热反应过程.  相似文献   

12.
以木质素磺酸钠为原料单体、环氧氯丙烷为交联剂,采用反相乳液聚合法制备了木质素磺酸钠交联聚合物(SLCP),并将其用于水中有机染料的吸附。表征结果显示:SLCP基本保留了木质素磺酸钠的骨架和官能团,具有良好的热稳定性。实验结果表明:SLCP对亚甲基蓝(MB)有较好的吸附选择性,在加入量为0.5 g/L时就有较高的吸附效率;在溶液p H2~6范围内吸附量随溶液p H增大而迅速提高,溶液p H6后吸附量趋于稳定;最佳吸附温度为35℃;在SLCP加入量0.5 g/L、溶液p H 6.5、吸附温度25℃、初始MB质量浓度100.5 mg/L的条件下,吸附150 min基本可达平衡,吸附平衡时的吸附量和MB去除率分别为191.2 mg/g和95.1%;SLCP对MB的吸附符合Langmuir等温吸附模型,吸附动力学符合Lagergren拟二级动力学方程。  相似文献   

13.
罗洁  张海军  刘璟  杨剑  黄胜  邓仕明 《化工环保》2015,35(2):192-198
将粉煤灰进行碱激发改性,运用XRD和SEM技术对碱激发粉煤灰进行了表征,通过静态平衡吸附实验研究了碱激发粉煤灰对Cs+的吸附动力学和热力学特性,并对吸附前后的碱激发粉煤灰进行了FTIR分析。表征结果显示,碱激发处理后,粉煤灰的晶相发生了改变,且粉煤灰表面密实的硬壳层被破坏。实验结果表明:在初始Cs+质量浓度为200 mg/L、吸附温度为25℃、溶液pH为10、碱激发粉煤灰投加量为12.0 g/L的条件下,碱激发粉煤灰对Cs+的平衡吸附率可达80%以上,其吸附能力比碱激发前提高了3倍以上;吸附过程可用准二阶动力学方程来描述,并较好地符合Langmuir等温吸附模型;碱激发粉煤灰对Cs+的吸附是吸热过程,且能自发进行;该过程以物理吸附为主,并伴随化学吸附。  相似文献   

14.
陈东  曾玉彬  李源  汪勉  李嘉晨 《化工环保》2015,35(5):481-486
以纳米γ-Fe2O3为磁性介质制备了磁性纳米γ-Fe2O3/SiO2,并将其用于水中亚甲基蓝的吸附。表征结果显示:制备的γ-Fe2O3/SiO2呈不规则核壳结构,平均粒径为38 nm,比表面积为74.35 m2/g,比饱和磁化强度为55 A·m2/kg。实验结果表明:γ-Fe2O3/SiO2对亚甲基蓝的吸附适宜在中碱性条件下进行,4 h即可达吸附平衡;在初始亚甲基蓝质量浓度为180 mg/L、γ-Fe2O3/SiO2加入量为2 g/L、初始溶液pH为7.0、吸附温度为298 K的条件下,吸附量最高为25.4 mg/g;共存金属离子会降低吸附效率,而少量的腐殖酸则会促进吸附;吸附过程符合准二级动力学方程,颗粒内扩散不是唯一的控速步骤;等温吸附满足Langmuir模型,该吸附是一个物理吸附过程;用乙醇洗涤的γ-Fe2O3/SiO2重复使用4次时仍能保持约80%的原吸附量。  相似文献   

15.
玉米秸秆生物炭对苯胺的吸附   总被引:1,自引:0,他引:1       下载免费PDF全文
以玉米秸秆为原料制备生物炭吸附剂,研究了生物炭对水中苯胺的吸附性能。表征结果显示:制备的生物炭的比表面积为449.7 m2/g,体积平均粒径为103μm,主要以小粒径存在;制备的生物炭表面以碱性含氧官能团为主,含量为1.31 mmol/g。实验结果表明:在溶液p H 3、生物炭加入量10 g/L、吸附温度313 K、吸附时间3.0h的最佳反应条件下处理初始苯胺质量浓度为400 mg/L的苯胺溶液,苯胺去除率为94.0%,吸附量为37 mg/g;生物炭对苯胺的吸附过程符合拟二级动力学方程,吸附等温线满足Freundlich等温吸附方程;生物炭对苯胺的吸附是自发、吸热的过程;吸附过程中存在着水分子从生物炭表面的解吸。  相似文献   

16.
石家豪  韩非  邱磊  丁珣 《化工环保》2012,40(2):180-185
将粉煤灰(FA)与Na2CO3混合焙烧后浸渍负载Fe2+,制备了复合改性粉煤灰(CMFA)。通过多种手段对CMFA进行了表征,并将其用于含磷废水的吸附处理。表征结果显示:改性后的粉煤灰表面疏松多孔,比表面积增大了21倍,产生了金属盐类熔出物及羟基氧化铁和羟基官能团。实验结果表明:当初始磷质量浓度为50 mg/L、吸附温度为20 ℃、溶液pH为4.3、CMFA投加量为5 g/L、吸附时间为30 min时,磷去除率可达98.01%,较FA的50.10%大幅提升;20 ℃时,CMFA对磷的饱和吸附量可达22.15 mg/g;用拟二级动力学模型可较准确地描述CMFA对磷的吸附过程,该过程为自发的吸热过程,符合Langmuir等温吸附模型,为以离子交换为主的化学吸附。  相似文献   

17.
陈一萍  黄耀裔 《化工环保》2014,34(4):394-397
以碳纳米管(CNTs)和海藻酸钠(SA)为主要原料,制备了环境友好型的复合吸附材料——CNTs-SA。采用TEM和FTIR技术对吸附材料进行了表征,并采用静态法考察了溶液pH、吸附时间、原料固液比(m(CNTs)∶V(SA))等因素对CNTs-SA吸附Cr(Ⅲ)的影响。表征结果显示,CNTs-SA表面引入了更多的—COOH和—CO基团,导致其吸附Cr(Ⅲ)的效果较CNTs有了显著的提高。实验结果表明:在室温、初始Cr(Ⅲ)质量浓度4 000 mg/L、CNTs-SA加入量21 mg/mL、溶液pH 5、吸附时间3 h、m(CNTs)∶V(SA)=1.0 mg/mL的条件下,CNTs-SA对Cr(Ⅲ)的吸附量为120 mg/g,Cr(Ⅲ)去除率为61.5%;Freundlich等温吸附方程适合描述CNTs-SA对Cr(Ⅲ)的吸附行为。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号