首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
在氧化沟中构建了微生物燃料电池,经测定微生物燃料电池电压为0.24~0.39 V,均值为0.29 V.经计算该微生物燃料电池的产电功率为0.05~0.15 mW,均值为0.08 mW.构建了微生物燃料电池的氧化沟COD去除率为75%~ 90%,TN去除率为5%~38%;无微生物燃料电池的氧化沟COD去除率为77%~89%,TN去除率为5%~23%.构建微生物燃料电池后能减少氧化沟内外沟中污泥的增加量,约减少15%.  相似文献   

2.
构建了单腔室微生物燃料电池(MFC),分别以乙酸钠、丁二酸、蔗糖及对苯二甲酸(TA)为底物,研究了Pt-C、聚苯胺(PANI)、碳纳米管(MWNTs)和PANI-MWNTs分别作为阴极催化剂的MFC产电性能。研究结果表明:分别以乙酸钠、丁二酸、蔗糖及TA为底物时,PANI-MWNTs阴极可获得最大开路电压分别为445,457,460,410 mV,最高功率密度分别为371,374,429,317 mW/m2;PANI-MWNTs阴极具有与Pt-C阴极接近的产电性能,反应35 h时,Pt-C阴极对上述4种底物的COD去除率分别为95.8%、95.9%、96.4%和89.1%;PANIMWNTs阴极分别为96.6%、97.0%、95.6%和97.3%。  相似文献   

3.
本文介绍了人工湿地-微生物燃料电池(CW-MFC)的基本结构与工作原理,综述了微生物、植物、基质和电极对CW-MFC系统的影响,总结了在不同运行参数条件下CW-MFC系统的性能,最后指出了CW-MFC系统的优先研究内容与潜在应用领域。  相似文献   

4.
微生物燃料电池对苯酚的降解及其产电性能   总被引:1,自引:0,他引:1       下载免费PDF全文
构建了单室空气阴极微生物燃料电池(MFC),研究了苯酚含量对以苯酚和葡萄糖为底物的MFC产电性能及苯酚去除率的影响。实验结果表明:当CODB(苯酚贡献的COD)为0时,MFC的运行周期为36 h,最大输出电压为560 m V,最大功率密度为489 m W/m2;CODB为1 000 mg/L时,MFC的运行周期为54 h,最大输出电压为436 m V,最大功率密度为98 m W/m2;当CODB为200 mg/L时,MFC的COD去除率、苯酚去除率和库伦效率(CE)均达到最大,分别为89.7%、99.9%和7.2%,同时,MFC的阳极生物膜产生的氧化峰电流最高,表明在葡萄糖-苯酚双底物对微生物的协同作用下,MFC的阳极生物膜氧化性最强;随着CODB的增大,COD去除率、苯酚去除率和CE均逐渐减小,说明苯酚的抑制作用导致微生物活性降低。  相似文献   

5.
含盐废水处理中生物脱氮是难题,重点阐述了盐分对不同脱氮方式微生物的影响,总结了含盐废水生物脱氮强化措施,指出应从细胞分子水平研究盐分对脱氮微生物的胁迫机制,加快耐盐脱氮菌种特别是嗜盐菌的筛选,以及针对不同微生物结合反应器做出参数优化策略。  相似文献   

6.
重点介绍了微生物燃料电池的原理和微生物燃料电池技术在废水净化中的应用,并从微生物燃料电池的结构、微生物菌种种类、影响因素等方面分析了微生物燃料电池技术在废水净化过程中存在的问题,对今后的研究提出了建议。  相似文献   

7.
氨氮废水生物脱氮研究进展   总被引:7,自引:0,他引:7  
郑杨春  邓旭 《化工环保》2004,24(Z1):141-144
与传统的硝化-反硝化氨氮废水脱氮方法相比,短程硝化-反硝化和同时硝化-反硝化都是近年来研究开发的新型生物脱氮工艺,具有能耗低、运行时间短、氮去除效率高等特点.结合国内外废水生物脱氮的研究现状,系统综述了短程硝化-反硝化和同时硝化-反硝化两种新工艺的研究进展, 并深入讨论了短程硝化-反硝化中亚硝酸盐累积问题.  相似文献   

8.
检索了微生物燃料电池在中国的发明专利文献,综述了微生物燃料电池在废水处理中的应用及与现有技术中其他水处理技术耦合的专利进展,并对其实际应用的前景进行了展望。  相似文献   

9.
高氮低碳废水生物脱氮研究进展   总被引:11,自引:0,他引:11  
针对传统生物脱氮工艺在处理高氨氮、低碳源废水时存在的问题,提出了短程硝化一反硝化和厌氧氨氧化两种生物脱氮新技术,初步探讨了影响亚硝酸盐积累和厌氧氨氧化工艺的因素。介绍了半硝化-厌氧氨氧化工艺的原理和特征,为高氨氮、低碳源废水生物脱氮工艺的没计提供 全新的理论和思路。  相似文献   

10.
以实际中药废水作为阳极基质、实际含镉废水作为阴极电解液,构建了连续流双室微生物燃料电池(MFC),考察了其产电性能及对两种废水的处理效果。78 d的运行数据表明:系统可实现最大输出电压417mV、最大体积功率密度11.8 W/m3,最大体积功率密度运行条件下的库伦效率为18.5%;在阳极进水有机物浓度变化较大的情况下,实现了阳极对中药废水中有机物的有效去除,平均COD去除率为81.5%;阴极对含镉废水中Cd2+的去除率为79.4%~84.8%。这表明MFC同步处理中药废水及重金属废水具有一定的可行性。  相似文献   

11.
综述了干法脱硝、湿法脱硝、微生物法和化学吸收-生物还原法脱除烟气中氮氧化物的原理、技术特点和存在的问题。指出:化学吸收-生物还原法是未来脱除烟气中氮氧化物的主要研究方向之一,可通过提高NO在水中的溶解性,利用微生物去除氮氧化物,力争将其从实验室研究推广至工业应用。  相似文献   

12.
潜流人工湿地除氮机理的研究进展   总被引:5,自引:1,他引:5  
介绍了湿地的概念及人工湿地的发展现状,阐述了人工湿地除氮的机理,提出了国内外提高污水中氮去除率的研究方法.提高人工湿地硝化能力,就可以提高湿地中氮去除率.调整湿地内部的结构,改善湿地内部的微环境,是提高人工湿地硝化能力的主要途径.  相似文献   

13.
反硝化处理硝氮废水的动力学研究   总被引:2,自引:0,他引:2  
对反硝化法处理高浓度硝氮废水的动力学进行了研究,获得了最佳动力学条件,在温度为30℃左右,pH为7-8,MLSS为3g/L左右,C/N为0.95-1.0,进水硝氮质量浓度为300mg/L,水力停留时间为6-8h的条件下,出水NOx^--N的质量浓度小于20mg/L,COD小于100mg/L。  相似文献   

14.
烟气脱硝技术的研究   总被引:12,自引:0,他引:12  
氮氧化物(NOx)的污染危害是一个不容忽视的问题.目前,我国燃煤电厂排放烟气的SO2治理已逐步走向正轨,新建的燃煤电厂基本都安装效率较高的脱硫装置.因此,控制NOx的排放将是下一步的主要任务.对选择性催化还原法(SCR)、非选择性催化还原法(SNCR)、电子束或电晕放电脱硝法、光催化氧化法等烟气中NOx控制技术的机理、现状、发展趋势和主要优缺点进行了详尽的论述.通过对各种工艺技术的脱除效率、应用条件、经济性等方面的分析、比较和总结,提出了未来脱硝技术研究工作的重点.基于我国的实际情况提出了烟气脱硝的可行方案,从而为工业废气脱硝技术的进一步开发和研究提供参考.  相似文献   

15.
采用十六烷基三甲基溴化铵(HDTMA)溶液和LaCl3溶液对人造沸石进行改性,以实现其对废水的同步脱氮除磷。通过正交试验确定了改性沸石制备的最佳条件,并运用SEM、BET、EDS、FTIR、XRD和TG技术对改性沸石进行了表征。实验结果表明:改性可提高人造沸石对废水中氨氮(NH4+-N)和总磷(TP)的去除率;改性沸石制备的最佳条件为HDTMA质量浓度12 g/L、LaCl3质量浓度9 g/L、HDTMA溶液和LaCl3溶液的体积比1∶5,固液比1∶90;采用该条件下制备的改性沸石吸附处理NH4+-N和TP的质量浓度分别为23.78 mg/L和11.78 mg/L的废水,NH4+-N和TP的去除率分别达96.88%和95.12%。表征结果显示,改性后,HDTMA和LaCl3有效负载于人造沸石表面,且未改变人造沸石的基本骨架。  相似文献   

16.
ClO_2溶液去除烟气中NO的效果及工程应用   总被引:1,自引:0,他引:1  
采用实验室规模喷淋脱硝装置对ClO_2溶液去除NO的效果及影响因素进行探讨,通过脱硝产物的测定对ClO_2溶液去除NO的能力及机理进行分析;在此基础上考察ClO_2溶液对供热厂燃煤锅炉烟气的实际脱硝效果。实验结果表明:在液气比为20L/m~3、反应温度为20℃,反应pH为4.0、进气NO质量浓度为250 mg/m~3,ClO_2质量浓度为200 mg/L的条件下,NO去除率达97%以上;ClO_2溶液可将NO氧化吸收为NO_3~-,氧化后产生的NO_x也可被NaOH溶液吸收转化为NO_2~-和NO_3~-;在ClO_2质量浓度为200~500 mg/L,反应pH为5.5~7.0的条件下处理初始NO质量浓度为212~230 mg/m~3的燃煤锅炉烟气,NO去除率为85.7%~94.6%,NO_x去除率为80.4%~88.8%,出口NO_x质量浓度低于46 mg/m~3,远低于GB 13271—2014规定的排放限值。  相似文献   

17.
肖慧  董永星 《化工环保》2018,38(5):566-568
为解决采矿行业微生物浸矿酸性废水中和处理沉渣多、固液分离困难的问题,采用柠檬酸钠和环氧氯丙烷改性处理的壳聚糖在pH=2.2条件下吸附模拟废水中的Cu2+和Fe3+,用正交实验优化了壳聚糖改性工艺条件。实验结果表明,最适宜的工艺条件为:处理100 mL壳聚糖质量分数为2%的壳聚糖-冰醋酸溶液,柠檬酸钠缓冲溶液加入量200 mL,环氧氯丙烷加入量300 mL,反应时间6 h。改性壳聚糖对Fe3+的最大吸附容量为6.703 7 mg/g,对Cu2+的最大吸附容量为4.378 7 mg/g,Fe3+和Cu2+在改性壳聚糖上的吸附是单分子层形式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号