首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The work outlined in this paper had three objectives. The first was to explore the effects of ozone pollution on grain yield and quality of commercially-grown winter wheat cultivars. The second was to derive a stomatal ozone flux model for winter wheat and compare with those already developed for spring wheat. The third was to evaluate exposure- versus flux–response approaches from a risk assessment perspective, and explore the implications of genetic variation in modelled ozone flux.Fifteen winter wheat cultivars were grown in open-top chambers where they were exposed to four levels of ozone. During fumigation, stomatal conductance measurements were made over the lifespan of the flag leaf across a range of environmental conditions. Although significant intra-specific variation in ‘ozone sensitivity’ (in terms of impacts on yield) was identified, yield was inversely related (R2 = 0.63, P < 0.001) to the accumulated hourly averaged ozone exposure above 40 ppb during daylight hours (AOT40) across the dataset. The adverse effect of ozone on yield was principally due to a decline in seed weight. Algorithms defining the influence of environmental variables on stomatal uptake were subtly different from those currently in use, based on data for spring wheat, to map ozone impacts on pan-European cereal yield. Considerable intra-specific variation in phenological effects was identified. This meant that an ‘average behaviour’ had to be derived which reduced the predictive capability of the derived stomatal flux model (R2 = 0.49, P < 0.001, 15 cultivars included). Indeed, given the intra-specific variability encountered, the flux model that was derived from the full dataset was no better in predicting O3 impacts on wheat yield than was the AOT40 index. The study highlights the need to use ozone risk assessment tools appropriate to specific vegetation types when modelling and mapping ozone impacts at the regional level.  相似文献   

2.
Applications of a parameterised Jarvis-type multiplicative stomatal conductance model with data collated from open-top chamber experiments on field grown wheat and potato were used to derive relationships between relative yield and stomatal ozone uptake. The relationships were based on thirteen experiments from four European countries for wheat and seven experiments from four European countries for potato. The parameterisation of the conductance model was based both on an extensive literature review and primary data. Application of the stomatal conductance models to the open-top chamber experiments resulted in improved linear regressions between relative yield and ozone uptake compared to earlier stomatal conductance models, both for wheat (r2=0.83) and potato (r2=0.76). The improvement was largest for potato. The relationships with the highest correlation were obtained using a stomatal ozone flux threshold. For both wheat and potato the best performing exposure index was AFst6 (accumulated stomatal flux of ozone above a flux rate threshold of 6 nmol ozone m−2 projected sunlit leaf area, based on hourly values of ozone flux). The results demonstrate that flux-based models are now sufficiently well calibrated to be used with confidence to predict the effects of ozone on yield loss of major arable crops across Europe. Further studies, using innovations in stomatal conductance modelling and plant exposure experimentation, are needed if these models are to be further improved.  相似文献   

3.
It has been proposed that stomatal flux of ozone would provide a more reliable basis than ozone exposure indices for the assessment of the risk of ozone damage to vegetation across Europe. However, implementation of this approach requires the development of appropriate models which need to be rigorously tested against actual data collected under field conditions. This paper describes such an assessment of the stomatal component of the model described by Emberson et al. (2000. Modelling stomatal ozone flux across Europe. Environmental Pollution 110). Model predictions are compared with field measurements of both stomatal conductance (g(s)) and calculated ozone flux for shoots of mature Norway spruce (Picea abies) growing in the Tyrol Mountains in Austria. The model has been developed to calculate g(s) as a function of leaf phenology and four environmental variables: photosynthetic flux density (PFD), temperature, vapour pressure deficit (VPD) and soil moisture deficit (SMD). The model was run using climate data measured on site, although the SMD component was omitted since the necessary data were not available. The model parameterisation for Norway spruce had previously been collected from the scientific literature and therefore established independently from the measurement study. Overall, strong associations were found between model predictions and measured values of stomatal conductance to ozone (GO(3)) and calculated stomatal ozone flux (FO(3)). Average diurnal profiles of GO(3) and FO(3) showed good agreement between the field data and modelled values except during the morning period of 1990. The diurnal pattern of ozone flux was determined primarily by PFD and VPD, as there was little diurnal variation in ozone concentration. In general, the model predicted instances of high ozone flux satisfactorily, indicating its potential applicability in identifying areas of high ozone risk for this species.  相似文献   

4.
Modelling stomatal ozone flux across Europe   总被引:4,自引:0,他引:4  
A model has been developed to estimate stomatal ozone flux across Europe for a number of important species. An initial application of this model is illustrated for two species, wheat and beech. The model calculates ozone flux using European Monitoring and Evaluation Programme (EMEP) model ozone concentrations in combination with estimates of the atmospheric, boundary layer and stomatal resistances to ozone transfer. The model simulates the effect of phenology, irradiance, temperature, vapour pressure deficit and soil moisture deficit on stomatal conductance. These species-specific microclimatic parameters are derived from meteorological data provided by the Norwegian Meteorological Institute (DNMI), together with detailed land-use and soil type maps assembled at the Stockholm Environment Institute (SEI). Modelled fluxes are presented as mean monthly flux maps and compared with maps describing equivalent values of AOT40 (accumulated exposure over threshold of 40 ppb or nl l(-1)), highlighting the spatial differences between these two indices. In many cases high ozone fluxes were modelled in association with only moderate AOT40 values. The factors most important in limiting ozone uptake under the model assumptions were vapour pressure deficit (VPD), soil moisture deficit (for Mediterranean regions in particular) and phenology. The limiting effect of VPD on ozone uptake was especially apparent, since high VPDs resulting in stomatal closure tended to co-occur with high ozone concentrations. Although further work is needed to link the ozone uptake and deposition model components, and to validate the model with field measurements, the present results give a clear indication of the possible implications of adopting a flux-based approach for future policy evaluation.  相似文献   

5.
Sitka spruce and Norway spruce were grown in controlled environments and then exposed to ozone (O3) for short periods as in mid-afternoon episodes experienced in the forest. For concentrations of between 20 and 300 nl litre(-1) there were linear relationships between exposure concentration and O3 uptake rates. Increasing photon flux densities increased rates of photosynthesis and transpiration, the increases being larger in actively growing than dormant seedlings. Physiological condition (dormancy or active growth), species and photon flux density were found to influence O3 flux via their effects on stomatal conductance. Exposure to 80 nl litre(-1) O3 resulted in consistent increases of stomatal conductance and there were also indications that water-use efficiency was decreased.  相似文献   

6.
A simulation model was developed to estimate the stomatal conductance and ozone flux to Norway spruce saplings in open-top chambers. The model was parameterized against needle conductance measurements that were made on 4-6-year-old spruce saplings, grown in open-top chambers, in July-September during three different seasons. The spruce saplings were either maintained well watered or subject to a 7-8 week drought period in July-September each year. The simulated conductance showed a good agreement with the measured conductance for the well-watered as well as the drought stress-treated saplings. The simulations were significantly improved when different vapour pressure deficit (VPD) functions were applied for well-watered and drought-stressed spruce saplings. The cumulated ozone uptake which was calculated from the conductance simulations showed less variation between years, compared to the cumulative ozone exposure index AOT40 (accumulated exposure over a threshold of 40 ppb or nl l(-1)) for the corresponding time periods. Measurements in May 1995 demonstrated the occurrence of long-term 'memory-effects' from the drought stress treatments on the conductance. Memory-effects need to be considered when simulation models for stomatal conductance are to be applied to long-lived forest trees under a multiple stress situation.  相似文献   

7.
Ozone (O(3)) flux into Norway spruce (Picea abies) and cembran pine (Pinus cembra) needles was estimated under ambient conditions at six rural sites between 580 and 1950 m a.s.l. We also assessed age-related differences in O(3) flux by examining changes in leaf conductance across the life span of Norway spruce. At the leaf level O(3) flux into the needles was effectively controlled by stomatal conductance and, hence by factors such as temperature, irradiance and humidity, which control stomatal conductance. Seasonal variations in O(3) flux were mainly attributed to the course of the prevailing temperature. During the growing season, however, data have emphasised leaf-air vapour pressure difference as the environmental factor most likely to control stomatal conductance and O(3) flux into the needles. In the sun crown stomatal conductance averaged over the growing season decreased with increasing tree age from 42.0+/-3.5 mmol O(3) m(-2) s(-1) in 17-year-old trees to 7.1+/-1.0 mmol O(3) m(-2) s(-1) in 216-year-old trees, indicating that O(3) concentration in the substomatal cavities is higher in young than in old trees. Independent from tree age stomatal conductance and O(3) flux were approximately 50% lower in shade needles as compared to sun-exposed needles. Stomatal conductance was also greater in the current flush (24+/-5.6 mmol O(3) m(-2) s(-1)) and in 1-year old needles (16+/-4 mmol O(3) m(-2) s(-1)) than in older needle age classes (12+/-1 mmol O(3) m(-2) s(-1), averaged across the four older needle age classes). In trees similar in age (60-65 years old) average O(3) flux into sun needles increased from 0.55+/-0.36 nmol m(-2) s(-1) at the valley floor to 0.9 nmol m(-2) s(-1) in 1950 m a.s.l. Cumulative O(3) uptake during the vegetation period increased from 11.4+/-1.7 mol m(-2) in the valley to 14 mol m(-2) at the alpine timberline. Although stomatal conductance provides the principal limiting factor for O(3) flux, additional field research is necessary in order to improve our understanding concerning the quantitative 'physiological threshold dose' which internally can be active and can have adverse effects of O(3) on forest trees.  相似文献   

8.
This study evaluates the robustness of the AOTX and AF(st)Y indices for assessing the ozone-induced risk to vegetation. These indices represent the accumulated concentration and stomatal flux, respectively, above a threshold value. The robustness is expressed as the sensitivity to changes in inputs and the uncertainty due to input errors. The input data are taken from a regional-scale chemical transport model. Both indices show increasing sensitivity with increasing threshold values. The sensitivity depends on the threshold and the characteristics of the frequency distribution for concentrations and stomatal fluxes. AF(st)Y appears less sensitive than AOTX for the thresholds adopted for critical levels. The couplings between concentration gradients and deposition algorithms complicate the assessment of the total uncertainty. For AF(st)Y, the uncertainty due to the modelled stomatal conductance may sometimes increase, but sometimes decrease, the overall uncertainty significantly. In particular, the maximum stomatal conductance plays an important role in determining the uncertainty.  相似文献   

9.
Two different indices have been proposed for estimation of the risk caused to forest trees across Europe by ground-level ozone, (i) the concentration based AOT40 index (Accumulated Over a Threshold of 40 ppb) and (ii) the recently developed flux based AFstY index (Accumulated stomatal Flux above a flux threshold Y). This paper compares the AOT40 and AFstY indices for three forest trees species at different locations in Europe. The AFstY index is estimated using the DO(3)SE (Deposition of Ozone and Stomatal Exchange) model parameterized for Scots pine (Pinus sylvestris), beech (Fagus sylvatica) and holm oak (Quercus ilex). The results show a large difference in the perceived O(3) risk when using AOT40 and AFstY indices both between species and regions. The AOT40 index shows a strong north-south gradient across Europe, whereas there is little difference between regions in the modelled values of AFstY. There are significant differences in modelled AFstY between species, which are predominantly determined by differences in the timing and length of the growing season, the periods during which soil moisture deficit limits stomatal conductance, and adaptation to soil moisture stress. This emphasizes the importance of defining species-specific flux response variables to obtain a more accurate quantification of O(3) risk.  相似文献   

10.
Spring wheat (Triticum aestivum L. cv. Turbo) was exposed to different levels of ozone and water supply in open-top chambers in 1991. Air was charcoal filtered (CF), non-filtered (NF) and CF plus proportional addition of ambient or twice ambient ozone (CF1, CF2). Seasonal means of O(3), taken over 24 h, were 2.3, 20.6, 17.3, and 34.5 nl litre(-1) for CF, NF, CF1 and CF2 treatments, respectively. A split-plot design was used to obtain two levels of water supply: one-half of the pots was irrigated sufficiently not to show any symptoms of drought stress; the others were exposed to low water supply and received 50% of these amounts. Using a steady-state porometer approximately 800 measurements of stomatal conductance (g(s)) were made on flag leaves from 68 to 106 days after sowing. The measurements yielded only small differences of maximum conductance between the two levels of water supply. Therefore, low water supply did not protect wheat plants against ozone injury via reduced stomatal uptake in this experiment. To describe the effects of environmental variables on the stomatal behaviour, boundary-line analysis and non-linear regression analysis were used. Besides microclimatic parameters, the ozone dose of flag leaves was introduced as an independent variable affecting stomatal aperture. A well-defined boundary line for ozone dose was found, suggesting that increasing ozone dose caused stomatal closure in wheat flag leaves. But at high ozone doses, co-acting senescence seems also responsible for the decrease in stomatal conductance. A multiplicative boundary-line model was used to predict stomatal conductance from combinations of environmental variables. In the test carried out with the measurements of stomatal conductance, the model accounted only for 40% of the variation of g(s). Generalized stomatal response patterns of the herbaceous growth form, the dependence of the variables' age and ozone dose and the lack of an important factor influencing stomatal response (water status of the plant) in the model, are suggested as explanations of the poor results of the test.  相似文献   

11.
For a quantitative estimate of the ozone effect on vegetation reliable models for ozone uptake through the stomata are needed. Because of the analogy of ozone uptake and transpiration it is possible to utilize measurements of water loss such as sap flow for quantification of ozone uptake. This technique was applied in three beech (Fagus sylvatica) stands in Switzerland. A canopy conductance was calculated from sap flow velocity and normalized to values between 0 and 1. It represents mainly stomatal conductance as the boundary layer resistance in forests is usually small. Based on this relative conductance, stomatal functions to describe the dependence on light, temperature, vapour pressure deficit and soil moisture were derived using multivariate nonlinear regression. These functions were validated by comparison with conductance values directly estimated from sap flow. The results corroborate the current flux parameterization for beech used in the DO3SE model.  相似文献   

12.
Local ozone concentration and visible foliar injury were measured over the 1994 growing season on open-grown black cherry (Prunus serotina Ehrh.) trees of varying size (age) within forest stands and adjacent openings at a site in north-central Pennsylvania. Relationships were determined between visible ozone injury and ozone exposure, as well as calculated between injury and ozone uptake expressed as the product of stomatal conductance and ozone concentration. In addition, simultaneous measurements of visible symptoms and leaf gas exchange were also conducted to determine the correlation between visible and physiological injury and ozone exposure. By September, the amount of leaf area affected by visible foliar ozone injury was greatest for seedlings (46%), followed by canopy trees (20%) and saplings (15%). A large amount of variability in foliar ozone symptom expression was observed among trees within a size class. Sum40 and Sum60 (ozone concentration > 40 and > 60 nl liter(-1)) cumulative exposure statistics were the most meaningful indices for interpretation of foliar injury response. Seedlings were apparently more sensitive to ozone injury than larger trees because their higher rates of stomatal conductance resulted in higher rates of ozone uptake. Seedlings also had higher rates of early leaf abscission than larger trees with an average of nearly 30% of the leaves on a shoot abscised by 1 September compared to approximately 5% for larger trees. However, per unit ozone uptake into the leaf, larger trees exhibited larger amounts of foliar injury. The amount of visible foliar injury was negatively correlated (r(2) = 0.82) with net photosynthetic rates, but was not related to stomatal conductance. Net photosynthesis and stomatal conductance thus became uncoupled at high levels of visible foliar injury.  相似文献   

13.
In this study we tested and compared a multiplicative stomatal model and a coupled semi-empirical stomatal-photosynthesis model in their ability to predict stomatal conductance to ozone (gst) using leaf-level data from oilseed rape (Brassica napus L.) and broccoli (Brassica oleracea L. var. italica Plenck). For oilseed rape, the multiplicative model and the coupled model were able to explain 72% and 73% of the observed gst variance, respectively. For broccoli, the models were able to explain 53% and 51% of the observed gst variance, respectively. These results support the coupled semi-empirical stomatal-photosynthesis model as a valid alternative to the multiplicative stomatal model for O3 flux modelling, in terms of predictive performance.  相似文献   

14.
Visible injury caused by ozone is recorded every year in native plant species growing in Great Smoky Mountains National Park (USA). One of the most sensitive species, cutleaf coneflower (Rudbeckia laciniata L.), shows great variation in symptoms between and within populations but the causes of this variation and its ecological significance are currently unknown. This paper presents data relating to genetic variation, ozone concentrations, stomatal conductance and light (PAR) within populations. The data show that populations differ in genetic diversity, one consisting of only three genets while another was very diverse. In the former population, symptoms varied greatly within a single genet, pointing to a large micro-environmental influence. Measurements of ozone, stomatal conductance and PAR within plant canopies suggest that variation in symptom expression is unlikely to be due to differences in ozone flux and more likely to be due to variation in light. The variation in visible symptoms raises the question of what bioindicators actually indicate, and it suggests that symptoms should be interpreted with great caution until the underlying causes of that variation are fully understood.  相似文献   

15.
In highly polluted sites, stomatal behavior is sluggish with respect to light, vapor pressure deficit, and internal CO2 concentration (Ci) and poorly described by existing models. Statistical models were developed to estimate stomatal conductance (gs) of 40-year-old ponderosa pine at three sites differing in pollutant exposure for the purpose of calculating O3 uptake. Gs was estimated using julian day, hour of day, pre-dawn xylem potential and photosynthetic photon flux density (PPFD). The median difference between estimated and observed field gs did not exceed 10 mmol H2O m(-2) s(-1), and estimated gs within 95% confidence intervals. 03 uptake was calculated from hourly estimated gs, hourly O3 concentration, and a constant to correct for the difference in diffusivity between water vapor and 03. The simulation model TREGRO was also used to calculate the cumulative 03 uptake at all three sites. 03 uptake estimated by the statistical model was higher than that simulated by TREGRO because gas exchange rates were proportionally higher. O3 exposure and uptake were significantly correlated (r2>0.92), because O3 exposure and gs were highly correlated in both statistical and simulation models.  相似文献   

16.
Methane emissions from wastewater management   总被引:2,自引:0,他引:2  
Gas exchange and ozone-induced foliar injury were intensively measured during a 6-day period in mid-August 1998 on leaves of Acer pseudoplatanus, Betula pendula, Corylus avellana, Fagus sylvatica, Fraxinus excelsior, Morus nigra, Prunus avium, Prunus serotina, Rhamnus cathartica, and Viburnum lantana at a forest nursery site in Canton Ticino, Switzerland. Plants were grown in four open plots (AA), four open-top chambers receiving carbon-filtered (CF) air, and four receiving non-filtered (NF) air. Significant variation in gas exchange (F > 12.7, P < 0.001) was detected among species with average net photosynthesis and average stomatal conductance differing by a factor of two. Species also varied significantly in foliar injury for those leaves for which we measured gas exchange (F = 39.6, P < 0.001). Fraxinus excelsior, M. nigra, P. avium, P. serotina, R. cathartica, and V. lantana showed more injury than A. pseudoplatanus, B. pendula, C. avellana, and Fagus sylvatica. Plants grown in CF chambers had significantly higher net photosynthesis (A) and stomatal conductance to water vapor (gwv), and lower foliar injury than plants grown in NF chambers and AA plots; interactions between species and ozone treatments were significant for all variables (F > or = 2.2, P < 0.05) except gwv (F = 0.7, P > 0.1). Although A and gwv decreased and foliar injury increased with leaf age, the magnitude of these changes was lower for plants grown in CF chambers than for plants grown in NF chambers and AA plots. Neither ozone uptake threshold (r = 0.26, P > 0.20) nor whole-plant injury (r = -0.15, P > 0.41) was significantly correlated with stomatal conductance across these species. It appears that the relationships between stomatal conductance and foliar injury are species-specific and interactions between physiology and environments and leaf biochemical processes must be considered in determining species sensitivity to ambient ozone exposures.  相似文献   

17.
Naturally regenerated, 30-year-old Scots pines (Pinus Sylvestris L.) were grown in open-top chambers and exposed in situ to doubled ambient O(3), doubled ambient CO(2) and a combination of elevated O(3) and CO(2) from 15 April to 15 September for three growing seasons (1994-1996). To examine the effects of O(3) and/or CO(2) on photosynthesis, chlorophyll a fluorescence and gas exchange were measured simultaneously. Doubled ambient O(3) significantly decreased the rates of photosynthesis at all levels of photon flux density. This was related mainly to a significant decrease in the photochemical efficiency of photosystem II (PS II) and the rate of whole electron transport, rather than to a decrease in stomatal conductance. When measurements were made at doubled ambient concentration of CO(2) (700 micromol mol(-1)), doubled ambient CO(2) treatment did not lead to a significant change in the intrinsic capacity of photosynthesis, as manifested by no changes in PS II, the rate of electron transport, the maximal rate of photosynthesis and the apparent quantum yield of CO(2) assimilation. However, elevated CO(2) increased the sensitivity of stomatal conductance to light and decreased maximal stomatal conductance. When O(3) and CO(2) were combined, the O(3)-induced decrease in photosynthesis rate was reduced significantly by a high concentration of CO(2). This may be partly related to the decrease in stomatal conductance induced by the high concentration of CO(2). The complete mechanism behind this interaction is, however, still unclear.  相似文献   

18.
An Open-Top Chambers experiment on Fagus sylvatica and Quercus robur seedlings was conducted in order to compare the performance of an exposure-based (AOT40) and a flux-based approaches in predicting the appearance of ozone visible injuries on leaves. Three different ozone treatments (charcoal-filtered; non-filtered; and open plots) and two soil moisture treatments (watered and non-watered plots) were performed. A Jarvisian stomatal conductance model was drawn up and parameterised for both species and typical South Alpine environmental conditions, thus allowing the calculation of ozone stomatal fluxes for every treatment. A critical ozone flux level for the onset of leaf visible injury in beech was clearly identified between 32.6 and 33.6 mmolO3 m(-2). In contrast, it was not possible to identify an exposure critical level using the AOT40 index. Water stress delayed the onset of the leaf visible injuries, but the flux-based approach was able to take it into account accurately.  相似文献   

19.
The impact of the air pollution ozone on soil N dynamics and temporal and spatial patterns of streamflow nitrate flux at the Hubbard Brook Experimental Forest Watershed 6 during the 1964-1994 period was assessed using aggregated (one-cell) and spatially explicit (208-cell) versions of the SImple NItrogen Cycle (SINIC) model. Simulated ozone effects included reductions in stomatal conductance and plant N demand. Model uncertainty was evaluated using Monte Carlo simulations. Ambient ozone was estimated to cause an additional 0.042 gN/m2 per year of nitrate export, 12% of the mean annual streamflow nitrate flux. The 95% credible interval of this estimate was 0.002-0.083 gN/m2 per year, or 0.72-27.3% of the annual flux. The large uncertainty in this estimate suggests that it may be difficult to identify ozone effects on nitrate export utilizing long term data from a single site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号