首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The most consumed food samples of cereals (rice, maize and wheat), vegetables (lentil, brinjal, carrot, bean, potato, tomato, onion and chili), fruits (banana, mango and jackfruit), fish (taki, rui, pangas and tilapia), egg (chicken and duck), milk (cow) and meat (chicken, duck, beef and mutton) were collected from some markets of Bogra district northern part of Bangladesh to evaluate the levels of arsenic (As) and associated health risk to the adult’s and child inhabitants. Arsenic is a highly toxic element, and its presence in food composites is a matter of concern to the world scientists. Target hazard quotients (THQs) and target carcinogenic risk were calculated to evaluate the non-carcinogenic and carcinogenic health risk from ingested arsenic. The highest and the lowest mean concentrations of arsenic were noted in the Tilapia fish [(0.94 mg/kg, wet weight (ww)] and beef (0.012 mg/kg, ww). The daily intakes of arsenic via foodstuffs were 1.92 and 3.30 µg/kg-bw/day for rural adults and children and 1.69 and 3.04 µg/kg-bw/day for urban adults and children, respectively. The result shows the highest THQs of arsenic in cereals and vegetables for both the rural and urban inhabitants which exceed the safe limit (>1) indicating that cereals and vegetables are the main food items contributing to the potential health risk. The estimated target cancer risks from ingesting dietary arsenic all exceeded 10?6, indicating increased risk of cancer for adults and children in the study area.  相似文献   

2.
Heavy metals in suburban soils pose both indirect and direct health risks. This study assessed the concentrations of Cr, Zn, Pb, and Cd in Jengka (Malaysia) suburban soil and estimated the human health risk. Health risk assessment (HRA) was utilized to assess non-cancer and cancer risks. The concentrations of heavy metals increased in the following order: Cd < Zn < Cr < Pb. The heavy metals were found to be divided into two components using principal component analysis (PCA), with PC1 comprising Pb and Cd and PC2 containing Zn and Cr. PC1 originates from anthropogenic sources, while PC2 is often from mixed anthropogenic and natural sources. Despite having the lowest mean concentration, Cd was enriched based on the geo-accumulation index (Igeo) and enrichment factor (EF). Average hazard index values were below the acceptable threshold (HI < 1) for dermal and inhalation pathways suggesting a low non-cancer risk. Jengka suburban soil had total lifetime cancer risk values slightly higher than the acceptable threshold (1 × 10−5). Skin contact was the most prominent contributing exposure pathway for both non-carcinogenic and carcinogenic risks. This study suggests that heavy metal bioactivity levels be used to make a plausible HRA of heavy metal pollution in suburban soils.  相似文献   

3.
Canada's National Agri-Environmental Standards Initiative sought to develop an environmental benchmark for low-level waterborne pathogen occurrence in agricultural watersheds. A field study collected 902 water samples from 27 sites in four intensive agricultural watersheds across Canada from 2005 to 2007. Four of the sites were selected as reference sites away from livestock and human fecal pollution sources in each watershed. Water samples were analyzed for Campylobacter spp., Salmonella spp., Escherichia coli O157:H7, Cryptosporidium spp., Giardia spp., and the water quality indicator E. coli. The annual mean number of pathogen species was higher at agricultural sites (1.54 ± 0.07 species per water sample) than at reference sites (0.75 ± 0.14 species per water sample). The annual mean concentration of E. coli was also higher at agricultural sites (491 ± 96 colony-forming units [cfu] 100 mL(-1)) than at reference sites (53 ± 18 cfu 100 mL(-1)). The feasibility of adopting existing E. coli water quality guideline values as an environmental benchmark was assessed, but waterborne pathogens were detected at agricultural sites in 80% of water samples with low E. coli concentrations (<100 cfu 100 mL(-1)). Instead, an approach was developed based on using the natural background occurrence of pathogens at reference sites in agricultural watersheds to derive provisional environmental benchmarks for pathogens at agricultural sites. The environmental benchmarks that were derived were found to represent E. coli values lower than geometric mean values typically found in recreational water quality guidelines. Additional research is needed to investigate environmental benchmarks for waterborne pathogens within the context of the "One World, One Health" perspective for protecting human, domestic animal, and wildlife health.  相似文献   

4.
Hispanic residents suffer disproportionately from exposure to toxic pollution hazards, but little is known about why some Hispanic residents live in high-risk neighbourhoods while others are protected from similar risks. This study uses comparative interview-based methods to further understanding of Hispanic people’s residential decision-making and their associated exposures to hazardous air pollutants (HAPs) in the Miami Metropolitan Statistical Area (Florida), which is home to one of the most diverse Hispanic populations in the U.S. We use 22 in-depth interviews conducted with Hispanic householders living at high and low risk to HAPs, selected from a larger representative phone survey of 650 local residents. For Hispanic households at high risk, economic constraints, family ties, desiring a central location, a sense of community, and comfort in a shared culture contributed to their residences in high risk locations. In contrast, protective factors for Hispanic households living at low risk included the desire to live in an ethnically diverse setting, the ease of finding service work, and preferring environmental amenities and exclusivity. Findings demonstrate that there are considerable differences in factors shaping residential decision-making of low- and high-risk Hispanic residents, but that all were influenced by economic, socio-cultural, and environmental considerations to varying degrees.  相似文献   

5.
The objective of the Parafield Aquifer Storage Transfer and Recovery research project in South Australia is to determine whether stormwater from an urban catchment that is treated in a constructed wetland and stored in an initially brackish aquifer before recovery can meet potable water standards. The water produced by the stormwater harvesting system, which included a constructed wetland, was found to be near potable quality. Parameters exceeding the drinking water guidelines before recharge included small numbers of fecal indicator bacteria and elevated iron concentrations and associated color. This is the first reported study of a managed aquifer recharge (MAR) scheme to be assessed following the Australian guidelines for MAR. A comprehensive staged approach to assess the risks to human health and the environment of this project has been undertaken, with 12 hazards being assessed. A quantitative microbial risk assessment undertaken on the water recovered from the aquifer indicated that the residual risks posed by the pathogenic hazards were acceptable if further supplementary treatment was included. Residual risks from organic chemicals were also assessed to be low based on an intensive monitoring program. Elevated iron concentrations in the recovered water exceeded the potable water guidelines. Iron concentrations increased after underground storage but would be acceptable after postrecovery aeration treatment. Arsenic concentrations in the recovered water continuously met the guideline concentrations acceptable for potable water supplies. However, the elevated concentration of arsenic in native groundwater and its presence in aquifer minerals suggest that the continuing acceptable residual risk from arsenic requires further evaluation.  相似文献   

6.
ABSTRACT: Shallow ground water in areas of increasing urban development within the Upper Colorado River Basin was sampled for inorganic and organic constituents to characterize water‐quality conditions and to identify potential anthropogenic effects resulting from development. In 1997, 25 shallow monitoring wells were installed and sampled in five areas of urban development in Eagle, Grand, Gunnison, and Summit Counties, Colorado. The results of this study indicate that the shallow ground water in the study area is suitable for most uses. Nonparametric statistical methods showed that constituents and parameters measured in the shallow wells were often significantly different between the five developing urban areas. Radon concentrations exceeded the proposed USEPA maximum contaminant level at all sites. The presence of nutrients, pesticides, and volatile organic compounds indicate anthropogenic activities are affecting the shallow ground‐water quality in the study area. Nitrate as N concentrations greater than 2.0 mg/L were observed in ground water recharged between the 1980s and 1990s. Low concentrations of methylene blue active substances were detected at a few sites. Total coliform bacteria were detected at ten sites; however, E. coli was not detected. Continued monitoring is needed to assess the effects of increasing urban development on the shallow ground‐water quality in the study area.  相似文献   

7.
Remote national parks of the western U.S. and Alaska are not immune to contaminants of emerging concern. Semivolatile organic compounds (SOCs) such as pesticides and PCBs can selectively deposit from the atmosphere at higher rates in cold, high‐elevation and high‐latitude sites, potentially increasing risk to these ecosystems. In the environment, SOCs magnify up food chains and are known to increase health risks such as cancer and reproductive impairment. One hundred twenty‐eight fish in 8 national parks in Alaska and the western U.S. were analyzed for contaminant concentrations, assessed by region, and compared to human and wildlife health thresholds. SOC concentrations from an additional 133 fish from a previous study were also included, for a total of 31 water bodies sampled. PCBs, endosulfan sulfate, and p,p′‐DDE were among the most frequently detected contaminants. Concentrations of historic‐use pesticides dieldrin, p,p′‐DDE, and/or chlordanes in fish exceeded USEPA guidelines for human subsistence fish consumers and wildlife (kingfisher) health thresholds at 13 of 14 parks. Average concentrations in fish ranged from 0.6‐280 ng/g lipid (0.02‐7.3 μg/g ww). Contaminant loading was highest in fish from Alaskan and Sierra Nevada parks. Historic compounds were highest in Alaskan parks, while current‐use pesticides were higher in the Rockies and Sierra Nevada. This study provides a rigorous analysis of CECs in fish from national parks and identifies regions at potential risk.  相似文献   

8.
This paper describes tools developed through a community consultative process to help decision makers manage electrical and magnetic fields (EMF) health risk. The process involved in‐depth interviews with experts (N=12) and focus group discussions with seven different stakeholder groups. The results reveal commonly held intense public concerns about the long‐term health effects of EMF. These concerns were further reinforced by the lack of public trust in both government and industry with regards to EMF risk management. Overall, the participants wanted tools that can be used to manage EMF information, scientific uncertainty about EMF and the complex environment in which EMF issues are embedded. The findings contributed to a mapping out of response formats to address public concerns related to risk, hazard, trust, accountability and fairness across a range of stakeholder groups. These tools and their roles in the management of complex and variable risks, involving new circumstances (e.g. privatization) and information (e.g. new scientific studies) are presented. The importance of recognizing and working with uncertainty through adaptive management strategies, using qualitative approaches, is also discussed.  相似文献   

9.
Heavy metal pollutants in soils can usually enter the human body and pose heath risks through a soil-crop-human body pathway (indirect exposure) or soil-human body pathway (direct exposure). Previous studies often neglected the direct exposure in human health risk assessment, especially for children. We collected surface soil samples from urban and suburb areas in Changsha City, China, to analyze the content ofAs, Cd, Hg, Ni, Pb, and Zn. A combination of principal component analysis, geostatistics, and triangulated irregular network (TIN) model was successfully used to discriminate the sources of heavy metals. The direct exposure method, sequential indicator simulation, and geographical information system (GIS) technologies were used to perform a health risk assessment of heavy metal exposure to children living in the study area. Results show that heavy metal contamination in Changsha may originate from coal usage and industrial activities. One thousand equiprobable realizations suggest that not all sites within the study area may be suitable for housing or allotments without remediation. Most high hazard indexes are located in the suburb and mining areas. Moreover, arsenic presents a high health risk in comparison with other elements. Compared with inhalation and dermal contact in direct soil exposure, soil ingestion is the largest contribution to potential health risks for children. This study indicates that we should attach great importance to the direct soil exposure for children's health.  相似文献   

10.
Cancer risk factors (characterized by route, dose, dose rate per kilogram, fraction of lifetime exposed, species, and sex) were derived for workers exposed to benzene via inhalation or ingestion. Exposure at the current Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) and at leaking underground storage tank (LUST) sites were evaluated. At the current PEL of 1 ppm, the theoretical lifetime excess risk of cancer from benzene inhalation is ten per 1000. The theoretical lifetime excess risk for worker inhalation exposure at LUST sites ranged from 10 to 40 per 1000. These results indicate that personal protection should be required. The theoretical lifetime excess risk due to soil ingestion is five to seven orders of magnitude less than the inhalation risks.  相似文献   

11.
Landfill disposal and waste-to-energy (WTE) incineration remain the two principal options for managing municipal solid waste (MSW). One critical determinant of the acceptability of these options is the different health risks associated with each. In this analysis relying on published data and exposure modeling, we have performed health risk assessments for landfill disposal versus WTE treatment options for the management of New York City's MSW. These are based on the realistic scenario of using a waste transfer station (WTS) in Brooklyn and then transporting the untreated MSW by truck to a landfill in Pennsylvania or using a WTE facility in Brooklyn and then transporting the resultant ash by truck to a landfill in Pennsylvania. The overall results indicate that the individual cancer risks for both options would be considered generally acceptable, although the risk from landfilling is approximately 5 times greater than from WTE treatment; the individual non-cancer health risks for both options would be considered generally unacceptable, although once again the risk from landfilling is approximately 5 times greater than from WTE treatment. If one considers only the population in Brooklyn that would be directly affected by the siting of either a WTS or a WTE facility in their immediate neighborhood, individual cancer and non-cancer health risks for both options would be considered generally acceptable, but risks for the former remain considerably higher than for the latter. These results should be considered preliminary due to several limitations of this study such as: consideration of risks only from inhalation exposures; assumption that only volume and not composition of the waste stream is altered by WTE treatment; reliance on data from the literature rather than actual measurements of the sites considered, assuming comparability of the sites. However, the results of studies such as this, in conjunction with ecological, socioeconomic and equity considerations, should prove useful to environmental managers, regulators, policy makers, community representatives and other stakeholders in making sound and acceptable decisions regarding the optimal handling of MSW.  相似文献   

12.
Elevated levels of P in urban streams can pose significant water quality problems. Sources of P in urban streams, however, are difficult to identify. It is important to recognize both natural and anthropogenic sources of P. We investigated near-stream chemistry and land use factors on stream water P in the urbanizing Johnson Creek watershed in Portland, OR, USA. We sampled stream water and shallow groundwater soluble reactive P (SRP) and total P (TP) and estimated P flux at 13 sites along the main stem of Johnson Creek, with eight sites in urban land use areas and five sites in nonurban land use areas. At each site, we sampled the A and B horizons, measuring soil pH, water-soluble P, acid-soluble P, base-soluble P, total P, Fe, and Al. We found continuous input of P to the stream water via shallow groundwater throughout the Johnson Creek watershed. The shallow groundwater P concentrations were correlated with stream water P within the nonurban area; however, this correlation was not found in the urban area, suggesting that other factors in the urban area masked the relationship between groundwater P and stream water P. Aluminum and Fe concentrations were inversely correlated with shallow groundwater P, suggesting that greater P adsorption to Al and Fe oxides in the nonurban area reduced availability of shallow groundwater P. Using stepwise multiple regression analysis, however, we concluded that while riparian soil chemistry was related to stream water P, land use patterns had a more significant relationship with stream water P concentrations in this urbanizing system.  相似文献   

13.
The extensive literature on environmental justice has, by now, well defined the essential ingredients of cumulative risk, namely, incompatible land uses and vulnerability. Most problematic is the case when risk is produced by a large aggregation of small sources of air toxics. In this article, we test these notions in an area of Southern California, Southeast Los Angeles (SELA), which has come to be known as Asthmatown. Developing a rapid risk mapping protocol, we scan the neighborhood for small potential sources of air toxics and find, literally, hundreds of small point sources within a 2-mile radius, interspersed with residences. We also map the estimated cancer risks and noncancer hazard indices across the landscape. We find that, indeed, such large aggregations of even small, nondominant sources of air toxics can produce markedly elevated levels of risk. In this study, the risk profiles show additional cancer risks of up to 800 in a million and noncancer hazard indices of up to 200 in SELA due to the agglomeration of small point sources. This is significant (for example, estimates of the average regional point-source-related cancer risk range from 125 to 200 in a million). Most importantly, if we were to talk about the risk contour as if they were geological structures, we would observe not only a handful of distinct peaks, but a general “mountain range” running all throughout the study area, which underscores the ubiquity of risk in SELA. Just as cumulative risk has deeply embedded itself into the fabric of the place, so, too, must intervention seek to embed strategies into the institutions and practices of SELA. This has implications for advocacy, as seen in a recently initiated participatory action research project aimed at building health research capacities into the community in keeping with an ethic of care.  相似文献   

14.
Groundwater is a basic source of drinking water supply for urban and rural areas. This is especially the case for communities located in arid and semi-arid regions that rely on groundwater for drinking purposes. The present study set out to assess the potential health impacts of water impurities and to investigate the qualitative status of drinking water in Robat Karim rural areas, located in southwest Tehran, Iran. A total of 66 samples were collected from the water distribution network of 11 villages (33 sampling points, on two occasions) during September 2020 and were tested in terms of the most common quality parameters such as pH, mercury (Hg), lead (Pb), copper (Cu), zinc (Zn), chloride (Cl), chlorate (ClO3), nitrite (NO2), nitrate (NO3), and flouride (F). Multiple methods and indexes including water quality index (WQI), hazard quotient (HQ), and hazard index (HI), were worked out to assess the quality of water and health risk assessment of NO3 Pb2+ and Hg2+. The results revealed that 33% and 90% of sampling sites have significantly high nitrate and total hardness (TH) concentrations, exceeding the maximum permissible limits set by World Health Organization (WHO; 50 and 200 mg/L, respectively). Furthermore, five sampling points exhibited poor WQIs mainly related to NO3 and TH. HQ values higher than 1 for nitrate were noticed in most sampling locations. Except for one sampling point, the HQ obtained for Pb2+ and Hg2+ were below 1 indicating no obvious health hazard. This study represents that children and infants are at higher risk of chronic toxicity by excess NO3 intake. The health hazard that is yet imposed on the community by NO3 necessitates regular monitoring of drinking water, the use of advanced technologies to purify water or otherwise alternative resources should be proposed.  相似文献   

15.
The Acetochlor Registration Partnership conducted a prospective ground water (PGW) monitoring program to investigate acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide] transport to ground water at eight sites. The distribution of soil textures among these sites was weighted toward coarser soil types, while also including finer-textured soils that dominate most corn (Zea mays L.)-growing areas of the United States. Each site consisted of a 1.2-ha test plot adjacent to a 0.2-ha control plot. Suction lysimeters and monitoring wells were installed at multiple depths within each test and control plot to sample soil-pore water and near-surface ground water. Irrigation was applied to each site during the growing season to ensure water input of 110 to 200% of average historical rainfall. Acetochlor dissipated rapidly from surface soils at all sites with a DT(50) (time for 50% of the initial residues to dissipate) of only 3 to 9 d, but leaching was not an important loss mechanism, with only 0.25% of the 15,312 soil-pore water and ground water samples analyzed containing parent acetochlor at or above 0.05 microg L(-1). However, quantifiable residues of a soil degradation product, acetochlor ethanesulfonic acid, were more common, with approximately 16% of water samples containing concentrations at or above 1.0 microg L(-1). A second soil degradation product, acetochlor oxanilic acid, was present at concentrations at or above 1.0 microg L(-1) in only 0.15% of water samples analyzed. The acetochlor PGW program demonstrated that acetochlor lacks the potential to leach to ground water at detectable concentrations, and when applied in accordance with label restrictions, is unlikely to move to ground water at concentrations hazardous to human health.  相似文献   

16.
Contamination of heavy metals in fish and vegetables is regarded as a major crisis globally, with a large share in many developing countries. In Bogra District of Bangladesh, concentrations of six heavy metals, i.e., chromium (Cr), nickel (Ni), copper (Cu), arsenic (As), cadmium (Cd) and lead (Pb), were evaluated in the most consumed vegetables and fish species. The sampling was conducted during February–March 2012 and August–September 2013. The levels of metals varied between different fish and vegetable species. Elevated concentrations of As, Cd and Pb were observed in vegetable species (Solanum tuberosum, Allium cepa and Daucus carota), and fish species (Anabas testudineus and Heteropneustes fossilis) were higher than the FAO/WHO permissible limits, indicating these three metals might pose risk from the consumption of these vegetable and fish species. The higher concentration of heavy metals in these vegetable species might be due to the higher uptake from soil and sediment ingestion behavior in fish species. Multivariate principal component analysis (PCA) showed significant anthropogenic contributions of Cr, Ni, Cu and Pb in samples as the PCA axis scores were correlated with scores of anthropogenic activities. Target hazard quotients showed that the intakes of Cu, As and Pb through vegetables and fish were higher than the recommended health standards, indicated non-carcinogenic risk. Therefore, intakes of these elements via fish and vegetables for Bangladeshi people are a matter of concern.  相似文献   

17.
Abstract: Measured atrazine concentrations in Nebraska surface water have been shown to exceed water‐quality standards, posing risks to humans and to the ecosystem. To assess this risk, atrazine runoff was simulated at the field‐scale in Nebraska based on the pesticide component of the AGNPS model. This project’s objective was to determine the frequency that the atrazine concentration at the field outlet exceeded three different atrazine water‐quality criteria. The simulation was conducted for different farm management practices, soil moisture conditions, and five Nebraska topographic regions. If the criteria were exceeded, a risk to the drinking water consumer or freshwater aquatic life was hypothesized to exist. Three pesticide fate and transport processes were simulated with the model. Degradation was simulated using first‐order kinetics. Adsorption/desorption was modeled assuming a linear soil‐water partitioning coefficient. Advection (runoff) was based primarily on the USDA‐NRCS curve number method. Daily rainfall from the National Weather Service was used to compute the soil moisture conditions for the 1985‐2000 growing seasons. After each runoff event, the pesticide runoff concentration was compared with each of the three atrazine water‐quality criteria. The results show that environmental receptors (i.e., freshwater aquatic species) are exposed to unacceptable atrazine runoff concentrations in 20‐50% of the runoff events.  相似文献   

18.
This is a report of a social environmental audit of urban renewal schemes based on an investigation of environmental hazard risk perceptions of people in their homes, workplaces and other places of urban activity, in the vicinity of five major renewal sites in Sandwell, West Midlands, UK. The selection of the renewal schemes was designed to incorporate a range of the types of contemporary urban development in the UK. People were asked to give a scaled score response reflecting the perceived magnitude of risk of each of a series of hazards. Each person was asked to give two responses to each hazard, one response referring to the actual present situation post-renewal and the second response referring to an imagined present situation as if renewal had not occurred. The statistical analysis of the responses suggested that urban renewal had brought about an increase in certain perceived environmental risks and not necessarily a more desirable perceived environmental state than the alternative of dereliction.  相似文献   

19.
Many states have passed legislation that regulates agricultural P applications based on soil P levels and crop P uptake in an attempt to protect surface waters from nonpoint P inputs. Phytase enzyme and high available phosphorus (HAP) corn supplements to poultry feed are considered potential remedies to this problem because they can reduce total P concentrations in manure. However, less is known about their water solubility of P and potential nonpoint-source P losses when land-applied. This study was conducted to determine the effects of phytase enzyme and HAP corn supplemented diets on runoff P concentrations from pasture soils receiving surface applications of turkey manure. Manure from five poultry diets consisting of various combinations of phytase enzyme, HAP corn, and normal phytic acid (NPA) corn were surface-applied at 60 kg P ha(-1) to runoff boxes containing tall fescue (Festuca arundinacea Schreb.) and placed under a rainfall simulator for runoff collection. The alternative diets caused a decrease in manure total P and water soluble phosphorus (WSP) compared with the standard diet. Runoff dissolved reactive phosphorus (DRP) concentrations were significantly higher from HAP manure-amended soils while DRP losses from other manure treatments were not significantly different from each other. The DRP concentrations in runoff were not directly related to manure WSP. Instead, because the mass of manure applied varied for each treatment causing different amounts of manure particles lost in runoff, the runoff DRP concentrations were influenced by a combination of runoff sediment concentrations and manure WSP.  相似文献   

20.
Calculations regarding the long-term hazards to health from the radioactive gas radon which emanates from the tailings of milled uranium ores are presented here. The absolute and relative risks to the population from mill tailings, as well as technical solutions to the problem of disposal methods which would eliminate or minimize lung cancer risk, are discussed. Since the emission of radon from tailings will occur thousands of years after the projected benefits from nuclear-fission power have been obtained, the problem of present and future hazard from mill tailings calls for increased regulatory consideration.Now at Resources for the Future, Washington, D.C. 20036  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号