首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
    
Scholars have long stressed the need to bridge the gap between science and action and seek the most efficient use of knowledge for decision making. Many contributors have attempted to consider and understand the sociopolitical forces involved in knowledge generation and exchange. We argue, however, that a model is still needed to adequately conceptualize and frame the knowledge networks in which these processes are embedded. We devised a model for knowledge mapping as a prerequisite for knowledge management in the context of conservation. Using great ape conservation to frame our approach, we propose that knowledge mapping should be based on 2 key principles. First, each conservation network results from the conglomeration of subnetworks of expertise producing and using knowledge. Second, beyond the research-management gradient, other dimensions, such as the scale of operation, geographic location, and organizational characteristics, must also be considered. Assessing both knowledge production and trajectory across different dimensions of the network opens new space for investigating and reducing the gap between science and action.  相似文献   

2.
    
The protection and sustainable management of habitat trees is an integral part of modern forest nature conservation concepts such as retention forestry. Bats, cavity-nesting birds, arboreal marsupials, and many different saproxylic species depend on habitat trees and their great variety of microhabitats and old-growth characteristics. With a focus on insights from temperate forests, we traced the development of habitat-tree protection over 200 years. The idea was first conceptualized by foresters and natural scientists in the early 19th century. At that time, utilitarian conservation aimed to protect cavity trees that provided roosts and nesting holes for insectivorous bats and birds. By the second half of the 19th century, habitat-tree protection was well known to foresters and was occasionally implemented. Knowledge of the protection of large old trees, a special kind of habitat tree, for sociocultural and aesthetic reasons developed similarly. But, many foresters of that time and in the following decades fundamentally rejected protection of habitat trees for economic reasons. Beginning in the 1970s, forest conservation and integrative forest management became increasingly important issues worldwide. Since then, the protection of habitat trees has been implemented on a large scale. Long-term views on the development of conservation concepts are important to inform the implementation of conservation today. In particular, historical analyses of conservation concepts allow the testing of long-term conservation outcomes and make it possible to study the resilience of conservation approaches to changing social or ecological conditions. We encourage all conservation ecologists to assess the practical and conceptual impact of the initial ideas that led to modern conservation concepts in terms of long-term biodiversity conservation.  相似文献   

3.
    
Adaptive capacity (AC)—the ability of a species to cope with or accommodate climate change—is a critical determinant of species vulnerability. Using information on species’ AC in conservation planning is key to ensuring successful outcomes. We identified connections between a list of species’ attributes (e.g., traits, population metrics, and behaviors) that were recently proposed for assessing species’ AC and management actions that may enhance AC for species at risk of extinction. Management actions were identified based on evidence from the literature, a review of actions used in other climate adaptation guidance, and our collective experience in diverse fields of global-change ecology and climate adaptation. Selected management actions support the general AC pathways of persist in place or shift in space, in response to contemporary climate change. Some actions, such as genetic manipulations, can be used to directly alter the ability of species to cope with climate change, whereas other actions can indirectly enhance AC by addressing ecological or anthropogenic constraints on the expression of a species’ innate abilities to adapt. Ours is the first synthesis of potential management actions directly linked to AC. Focusing on AC attributes helps improve understanding of how and why aspects of climate are affecting organisms, as well as the mechanisms by which management interventions affect a species’ AC and climate change vulnerability. Adaptive-capacity-informed climate adaptation is needed to build connections among the causes of vulnerability, AC, and proposed management actions that can facilitate AC and reduce vulnerability in support of evolving conservation paradigms.  相似文献   

4.
Sustaining wildlife populations, which provide both ecosystem services and disservices, represents a worldwide conservation challenge. The ecosystem services and Ostrom's social–ecological systems frameworks have been adopted across natural and social sciences to characterize benefits from nature. Despite their generalizability, individually they do not include explicit tools for addressing the sustainable management of many wildlife populations. For instance, Ostrom's framework does not specifically address competing perspectives on wildlife, whereas the ecosystem services framework provides a limited representation of the social and governance context wherein such competing perspectives are embedded. We developed a unified social–ecological framework of ecosystem disservices and services (SEEDS) that advances both frameworks by explicitly acknowledging the importance of competing wildlife perspectives embedded in the social and governance contexts. The SEEDS framework emulates the hierarchical structure of Ostrom's social–ecological systems, but adds subsystems reflecting heterogeneous stakeholder views and experiences of wildlife-based services and disservices. To facilitate operationalizing SEEDS and further broader analyses across human–wildlife systems, we devised a list of variables to describe SEEDS subsystems, such as types and level of services and disservices, cost and benefit sharing, and social participation of stakeholders. Steps to implement SEEDS involve engaging local communities and stakeholders to define the subsystems, analyze interactions and outcomes, and identify leverage points and actions to remedy unwanted outcomes. These steps connect SEEDS with other existing approaches in social–ecological research and can guide analyses across systems or within individual systems to provide new insights and management options for sustainable human–wildlife coexistence.  相似文献   

5.
Both academics and practitioners consider a lack of knowledge about evolutionary theory to be a general barrier to effectively managing genetic diversity. However, it is challenging to judge practitioners’ level of understanding and how this influences their management decisions. Knowledge built through experience may be difficult for practitioners to articulate, but could nonetheless result in appropriate management strategies. To date, researchers have assessed only the explicit (formal) knowledge practitioners have of evolutionary concepts. To explore practitioners’ understanding of evolutionary concepts, it is necessary to consider how they might apply explicit and implicit knowledge to their management decisions. Using an online survey, we asked Australian practitioners to respond to 2 common management scenarios in which there is strong evidence that managing genetic diversity can improve outcomes: managing small, isolated populations and sourcing seeds for restoration projects. In describing their approach to these scenarios, practitioners demonstrated a stronger understanding of the effective management of genetic diversity than the definitions of the relevant concepts. However, their management of genetic diversity within small populations was closer to best practice than for restoration projects. Moreover, the risks practitioners described in implementing best practice management were more likely to affect their approach to restoration than translocation projects. These findings provide evidence that strategies to build the capacity of practitioners to manage genetic diversity should focus on realistic management scenarios. Given that practitioners recognize the importance of adapting their practices and the strong evidence for the benefits of actively managing genetic diversity, there is hope that better engagement by evolutionary biologists with practitioners could facilitate significant shifts toward evolutionarily enlightened management.  相似文献   

6.
    
When deciding how to conserve biodiversity, practitioners navigate diverse missions, sometimes conflicting approaches, and uncertain trade-offs. These choices are based not only on evidence, funders’ priorities, stakeholders’ interests, and policies, but also on practitioners’ personal experiences, backgrounds, and values. Calls for greater reflexivity—an individual or group's ability to examine themselves in relation to their actions and interactions with others—have appeared in the conservation science literature. But what role does reflexivity play in conservation practice? We explored how self-reflection can shape how individuals and groups conserve nature. To provide examples of reflexivity in conservation practice, we conducted a year-long series of workshop discussions and online exchanges. During these, we examined cases from the peer-reviewed and gray literature, our own experiences, and conversations with 10 experts. Reflexivity among practitioners spanned individual and collective levels and informal and formal settings. Reflexivity also encompassed diverse themes, including practitioners’ values, emotional struggles, social identities, training, cultural backgrounds, and experiences of success and failure. Reflexive processes also have limitations, dangers, and costs. Informal and institutionalized reflexivity requires allocation of limited time and resources, can be hard to put into practice, and alone cannot solve conservation challenges. Yet, when intentionally undertaken, reflexive processes might be integrated into adaptive management cycles at multiple points, helping conservation practitioners better reach their goals. Reflexivity could also play a more transformative role in conservation by motivating practitioners to reevaluate their goals and methods entirely. Reflexivity might help the conservation movement imagine and thus work toward a better world for wildlife, people, and the conservation sector itself.  相似文献   

7.
    
Hybridization poses a major challenge for species conservation because it threatens both genetic integrity and adaptive potential. Yet, hybridization can occasionally offer unprecedented opportunity for species recovery if the genome of an extinct taxon is present among living hybrids such that selective breeding could recapture it. We explored the design elements for establishing a captive-breeding program for Galapagos tortoises (Chelonoidis spp.) built around individuals with admixed ancestry involving an extinct species. The target individuals were hybrids between the extinct species from Floreana Island, C. niger, and an extant species, C. becki, which were recently found in the endemic range of C. becki, from Wolf Volcano on Isabela Island. We combined genotypic data from 35 tortoises with high ancestry from C. niger with forward-in-time simulations to explore captive breeding strategies that maximized overall genetic diversity and ancestry from C. niger while accommodating resource constraints, species biology, and the urgency to return tortoises to Floreana Island for facilitating ecosystem restoration. Overall genetic diversity was maximized when in the simulation tortoises were organized in relatively small breeding groups. Substantial amounts of the C. niger genome were captured despite limited resources available for selectively breeding tortoises in captivity. Genetic diversity was maximized when captive-bred offspring were released to the wild rather than being used as additional breeders. Our results provide genetic-based and practical guidance on the inclusion of hybrids with genomic representation from extinct taxa into species restoration programs and informs the ongoing debate on the value of hybrids in biodiversity conservation.  相似文献   

8.
    
The European Union Biodiversity Strategy 2030 (EUBDS) aims to regain biodiversity through enhanced forest conservation and protection, which may lead to increased timber harvest in non-EU countries. We aimed to identify the potential leakage of biodiversity risks as induced by the EUBDS. We created an indicator framework that allows one to quantify vulnerability of forest biodiversity. The framework is based on 26 biodiversity indicators for which indicator values were publicly available. We weighted single indicator values with countrywise modeled data on changed timber production under EUBDS implementation. Nearly 80% of the indicators pointed to higher vulnerability in the affected non-EU countries. Roundwood production was transferred to countries with, on average, lower governance quality (p = 0.0001), political awareness (p = 0.548), forest coverage (p = 0.034), and biomass (p = 0.272) and with less sustainable forest management (p = 0.044 and p = 0.028). These countries had more natural habitats (p = 0.039) and intact forest landscapes (p = 0.0001) but higher risk of species extinction (p = 0.006) and less protected area (p = 0.0001) than the EU countries. Only a few indicators pointed to lower vulnerability and biodiversity risks outside the EU. Safeguards are needed to ensure that implementation of EUBDS does not cause harm to ecosystems elsewhere. The EU regulation on deforestation-free supply chains might have limited effects because the sustainable management of existing and even expanding forests is not well considered. Sustained roundwood production in the EU is needed to avoid placing more pressure on more vulnerable ecosystems elsewhere. Decreasing species and habitat indicator values nevertheless call for global conservation and protection schemes. The EUBDS helped pave the way to the Kunming–Montreal Biodiversity Framework. Yet, lower values for the indicators mean governance and biodiversity engagement in non-EU countries suggest that this global framework might not sufficiently prevent leakage of risks to biodiversity. Effective land-use planning is necessary to balance conservation schemes with roundwood production.  相似文献   

9.
    
Marine protected areas (MPAs) are a primary tool for the stewardship, conservation, and restoration of marine ecosystems, yet 69% of global MPAs are only partially protected (i.e., are open to some form of fishing). Although fully protected areas have well-documented outcomes, including increased fish diversity and biomass, the effectiveness of partially protected areas is contested. Partially protected areas may provide benefits in some contexts and may be warranted for social reasons, yet social outcomes often depend on MPAs achieving their ecological goals to distinguish them from open areas and justify the cost of protection. We assessed the social perceptions and ecological effectiveness of 18 partially protected areas and 19 fully protected areas compared with 19 open areas along 7000 km of coast of southern Australia. We used mixed methods, gathering data via semistructured interviews, site surveys, and Reef Life (underwater visual census) surveys. We analyzed qualitative data in accordance with grounded theory and quantitative data with multivariate and univariate linear mixed-effects models. We found no social or ecological benefits for partially protected areas relative to open areas in our study. Partially protected areas had no more fish, invertebrates, or algae than open areas; were poorly understood by coastal users; were not more attractive than open areas; and were not perceived to have better marine life than open areas. These findings provide an important counterpoint to some large-scale meta-analyses that conclude partially protected areas can be ecologically effective but that draw this conclusion based on narrower measures. We argue that partially protected areas act as red herrings in marine conservation because they create an illusion of protection and consume scarce conservation resources yet provide little or no social or ecological gain over open areas. Fully protected areas, by contrast, have more fish species and biomass and are well understood, supported, and valued by the public. They are perceived to have better marine life and be improving over time in keeping with actual ecological results. Conservation outcomes can be improved by upgrading partially protected areas to higher levels of protection including conversion to fully protected areas.  相似文献   

10.
    
The Great Barrier Reef is an iconic ecosystem, known globally for its rich marine biodiversity that includes many thousands of tropical breeding seabirds. Despite indications of localized declines in some seabird species from as early as the mid-1990s, trends in seabird populations across the reef have never been quantified. With a long history of human impact and ongoing environmental change, seabirds are likely sentinels in this important ecosystem. Using 4 decades of monitoring data, we estimated site-specific trends for 9 seabird species from 32 islands and cays across the reef. Trends varied markedly among species and sites, but probable declines occurred at 45% of the 86 species-by-site combinations analyzed compared with increases at 14%. For 5 species, we combined site-specific trends into a multisite trend in scaled abundance, which revealed probable declines of Common Noddy (Anous stolidus), Sooty Tern (Onychoprion fuscatus), and Masked Booby (Sula dactylatra), but no long-term changes in the 2 most widely distributed species, Greater Crested Tern (Thalasseus bergii) and Brown Booby (Sula leucogaster). For Brown Booby, long-term stability largely resulted from increases at a single large colony on East Fairfax Island that offset declines at most other sites. Although growth of the Brown Booby population on East Fairfax points to the likely success of habitat restoration on the island, it also highlights a general vulnerability wherein large numbers of some species are concentrated at a small number of key sites. Identifying drivers of variation in population change across species and sites while ensuring long-term protection of key sites will be essential to securing the future of seabirds on the reef.  相似文献   

11.
Conflict between people and carnivores can lead to the widespread killing of predators in retaliation for livestock loss and is a major threat to predator populations. In Kenya, a large, rural, pastoralist population comes into regular conflict with predators, which persist across southern Kenya. We explored the social and psychological backdrop to livestock management practices in this area in a process designed to be easy to use and suitable for use across large areas for the study of conflict and transboundary implementation of wildlife conflict reduction measures, focusing on community involvement and needs. We carried out fully structured interviews of livestock managers with a survey tool that examined how social and psychological factors may influence livestock management behavior. We compared survey responses on 3 sites across the study area, resulting in 723 usable responses. Efficacy of individuals’ livestock management varied between and within communities. This variation was partially explained by normative and control beliefs regarding livestock management. Individual livestock managers’ self-reported management issues were often an accurate reflection of their practical management difficulties. Psychological norms, control beliefs, and attitudes differed among sites, and these differences partially explained patterns associated with conflict (i.e., variation in livestock management behavior). Thus, we conclude that a one-size-fits-all approach to improving livestock management and reducing human–predator conflict is not suitable.  相似文献   

12.
    
Bats frequently inhabit caves and other subterranean habitats and play a critical role in subterranean food webs. With escalating threats to subterranean ecosystems, identifying the most effective measures to protect subterranean-roosting bats is critical. We conducted a meta-analysis to evaluate the effectiveness of conservation and management interventions for subterranean-roosting bats. We used network analyses to determine to what extent interventions for bats overlap those used for other subterranean taxa. We conducted our analyses with data extracted from 345 papers recommending a total of 910 conservation interventions. Gating of roost entrances was applied to preserve bat populations in 21 studies, but its effectiveness was unclear. Habitat restoration and disturbance reduction positively affected bat populations and bat behavior, respectively, in ≤4 studies. Decontamination was assessed in 2 studies and positively affected bat populations, particularly in studies focused on reducing fungal spores associated with white-nose syndrome in North America. Monitoring of bat populations as an effective conservation strategy was unclear and infrequently tested. Only 4% of bat studies simultaneously considered other subterranean organisms. However, effective interventions for bat conservation had similarities with all other organisms. If other subterranean organisms are considered when applying interventions to conserve bats, they might also benefit.  相似文献   

13.
    
Spatial management is a valuable strategy to advance regional goals for nature conservation, economic development, and human health. One challenge of spatial management is navigating the prioritization of multiple features. This challenge becomes more pronounced in dynamic management scenarios, in which boundaries are flexible in space and time in response to changing biological, environmental, or socioeconomic conditions. To implement dynamic management, decision-support tools are needed to guide spatial prioritization as feature distributions shift under changing conditions. Marxan is a widely applied decision-support tool designed for static management scenarios, but its utility in dynamic management has not been evaluated. EcoCast is a new decision-support tool developed explicitly for the dynamic management of multiple features, but it lacks some of Marxan's functionality. We used a hindcast analysis to compare the capacity of these 2 tools to prioritize 4 marine species in a dynamic management scenario for fisheries sustainability. We successfully configured Marxan to operate dynamically on a daily time scale to resemble EcoCast. The relationship between EcoCast solutions and the underlying species distributions was more linear and less noisy, whereas Marxan solutions had more contrast between waters that were good and poor to fish. Neither decision-support tool clearly outperformed the other; the appropriateness of each depends on management purpose, resource-manager preference, and technological capacity of tool developers. Article impact statement: Marxan can function as a decision-support tool for dynamic management scenarios in which boundaries are flexible in space and time.  相似文献   

14.
    
Monitoring is critical to assess management effectiveness, but broadscale systematic assessments of monitoring to evaluate and improve recovery efforts are lacking. We compiled 1808 time series from 71 threatened and near-threatened terrestrial and volant mammal species and subspecies in Australia (48% of all threatened mammal taxa) to compare relative trends of populations subject to different management strategies. We adapted the Living Planet Index to develop the Threatened Species Index for Australian Mammals and track aggregate trends for all sampled threatened mammal populations and for small (<35 g), medium (35–5500 g), and large mammals (>5500 g) from 2000 to 2017. Unmanaged populations (42 taxa) declined by 63% on average; unmanaged small mammals exhibited the greatest declines (96%). Populations of 17 taxa in havens (islands and fenced areas that excluded or eliminated introduced red foxes [Vulpes vulpes] and domestic cats [Felis catus]) increased by 680%. Outside havens, populations undergoing sustained predator baiting initially declined by 75% but subsequently increased to 47% of their abundance in 2000. At sites where predators were not excluded or baited but other actions (e.g., fire management, introduced herbivore control) occurred, populations of small and medium mammals declined faster, but large mammals declined more slowly, than unmanaged populations. Only 13% of taxa had data for both unmanaged and managed populations; index comparisons for this subset showed that taxa with populations increasing inside havens declined outside havens but taxa with populations subject to predator baiting outside havens declined more slowly than populations with no management and then increased, whereas unmanaged populations continued to decline. More comprehensive and improved monitoring (particularly encompassing poorly represented management actions and taxonomic groups like bats and small mammals) is required to understand whether and where management has worked. Improved implementation of management for threats other than predation is critical to recover Australia's threatened mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号