首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conservation efforts often focus on umbrella species whose distributions overlap with many other flora and fauna. However, because biodiversity is affected by different threats that are spatially variable, focusing only on the geographic range overlap of species may not be sufficient in allocating the necessary actions needed to efficiently abate threats. We developed a problem-based method for prioritizing conservation actions for umbrella species that maximizes the total number of flora and fauna benefiting from management while considering threats, actions, and costs. We tested our new method by assessing the performance of the Australian federal government's umbrella prioritization list, which identifies 73 umbrella species as priorities for conservation attention. Our results show that the federal government priority list benefits only 6% of all Australia's threatened terrestrial species. This could be increased to benefit nearly half (or 46%) of all threatened terrestrial species for the same budget of AU$550 million/year if more suitable umbrella species were chosen. This results in a 7-fold increase in management efficiency. We believe nations around the world can markedly improve the selection of prioritized umbrella species for conservation action with this transparent, quantitative, and objective prioritization approach.  相似文献   

2.
Over 1 million species around the world are at risk of extinction, and conservation organizations have to decide where to invest their limited resources. Cost-effectiveness can be increased by leveraging funding opportunities and increasing collaborative partnerships to achieve shared conservation goals. We devised a structured decision-making framework to prioritize species’ conservation programs based on a cost–benefit analysis that takes collaborative opportunities into account in an examination of national and global conservation return on investment. Conservation benefit is determined by modifying the novel International Union for the Conservation of Nature Green Status for Species to provide an efficient, high-level measure that is comparable among species, even with limited information and time constraints. We applied this prioritization approach to the Wilder Institute/Calgary Zoo, Canada, a nonprofit organization seeking to increase the number of species it assists with conservation translocations. We sought to identify and prioritize additional species’ programs for which conservation translocation expertise and actions could make the most impact. Estimating the likelihood of cost-sharing potential enabled total program cost to be distinguished from costs specific to the organization. Comparing a benefit-to-cost ratio on different geographic scales allowed decision makers to weigh alternative options for investing in new species’ programs in a transparent and effective manner. Our innovative analysis aligns with general conservation planning frameworks and can be adapted for any organization.  相似文献   

3.
Incentivized debt conversion is a financing mechanism that can assist countries with a heavy debt burden to bolster their long-term domestic investment in nature conservation. The Nature Conservancy, an international conservation-based nongovernmental organization, is adapting debt conversions to support marine conservation efforts by small island developing states and coastal countries. Prioritizing debt conversion opportunities according to their potential return on investment can increase the impact and effectiveness of this finance mechanism. We developed guidance on how to do so with a decision-support approach that relies on a novel threat-based adaptation of cost-effectiveness analysis. We constructed scenarios by varying parameters of the approach, including enabling conditions, expected benefits, and threat classifications. Incorporating both abatable and unabatable threats affected priorities across planning scenarios. Similarly, differences in scenario construction resulted in unique solution sets for top priorities. We show how environmental organizations, private entities, and investment banks can adopt structured prioritization frameworks for making decisions about conservation finance investments, such as debt conversions. Our guidance can accommodate a suite of social, ecological, and economic considerations, making the approach broadly applicable to other conservation finance mechanisms or investment strategies that seek to establish a transparent process for return-on-investment decision-making.  相似文献   

4.
Biodiversity and human well-being strategies are only as good as the set of ideas people think about. We evaluated value-focused thinking (VFT), a framework that emphasizes creating objectives and strategies that are responsive to the objectives. We performed a proof-of-concept study of VFT with 6 conservation planning teams at a global conservation organization. We developed a package of materials related to VFT, including meeting–session agendas, a virtual facilitation template, facilitator's guide, and evaluation questionnaires. We used these materials to test whether VFT applied in a group setting resulted in high-quality conservation strategies and participant satisfaction and whether our materials were scalable, meaning that someone newly trained in VFT could facilitate planning meetings that resulted in high-quality strategies and participant satisfaction, as compared with an experienced VFT facilitator. Net response indicated positive compelling, feasible, creative, and representative ratings for the conservation strategies per team. Participants indicated satisfaction overall, although satisfaction was greater for objectives than for strategies. Among the participants with previous conservation planning experience, all were at least as satisfied with their VFT strategies compared with previously developed strategies, and none were less satisfied (p = 0.001). Changes in participant satisfaction were not related to facilitator type (experienced or inexperienced with VFT) (p > 0.10). Some participants had a preconceived sense of shared understanding of important values and interests before participating in the study, which VFT strengthened. Our results highlight the advantages of structuring the development and evaluation of conservation planning frameworks around VFT.  相似文献   

5.
Effective conservation policies require comprehensive knowledge of biodiversity. However, knowledge shortfalls still remain, hindering possibilities to improve decision making and built such policies. During the last 2 decades, conservationists have made great efforts to allocate resources as efficiently as possible but have rarely considered the idea that if research investments are also strategically allocated, it would likely fill knowledge gaps while simultaneously improving conservation actions. Therefore, prioritizing areas where both conservation and research actions could be conducted becomes a critical endeavor that can further maximize return on investment. We used Zonation, a conservation planning tool and geographical distributions of amphibians, birds, mammals, and reptiles to suggest and compare priority areas for conservation and research of terrestrial vertebrates worldwide. We also evaluated the degree of human disturbance in both types of priority areas by describing the value of the human footprint index within such areas. The spatial concordance between priority conservation and research areas was low: 0.36% of the world's land area. In these areas, we found it would be possible to protect almost half of the currently threatened species and to gather information on nearly 42% of data-deficient (DD) species. We also found that 6199 protected areas worldwide are located in such places, although only 35% of them have strict conservation purposes. Areas of consensus between conservation and research areas represent an opportunity for simultaneously conserving and acquiring knowledge of threatened and DD species of vertebrates. Although the picture is not the most encouraging, joint conservation and research efforts are possible and should be fostered to save vertebrate species from our own ignorance and extinction.  相似文献   

6.
Conservation outcomes are uncertain. Agencies making decisions about what threat mitigation actions to take to save which species frequently face the dilemma of whether to invest in actions with high probability of success and guaranteed benefits or to choose projects with a greater risk of failure that might provide higher benefits if they succeed. The answer to this dilemma lies in the decision maker's aversion to risk—their unwillingness to accept uncertain outcomes. Little guidance exists on how risk preferences affect conservation investment priorities. Using a prioritization approach based on cost effectiveness, we compared 2 approaches: a conservative probability threshold approach that excludes investment in projects with a risk of management failure greater than a fixed level, and a variance‐discounting heuristic used in economics that explicitly accounts for risk tolerance and the probabilities of management success and failure. We applied both approaches to prioritizing projects for 700 of New Zealand's threatened species across 8303 management actions. Both decision makers’ risk tolerance and our choice of approach to dealing with risk preferences drove the prioritization solution (i.e., the species selected for management). Use of a probability threshold minimized uncertainty, but more expensive projects were selected than with variance discounting, which maximized expected benefits by selecting the management of species with higher extinction risk and higher conservation value. Explicitly incorporating risk preferences within the decision making process reduced the number of species expected to be safe from extinction because lower risk tolerance resulted in more species being excluded from management, but the approach allowed decision makers to choose a level of acceptable risk that fit with their ability to accommodate failure. We argue for transparency in risk tolerance and recommend that decision makers accept risk in an adaptive management framework to maximize benefits and avoid potential extinctions due to inefficient allocation of limited resources. El Efecto de la Aversión de Riesgo sobre la Priorización de Proyectos de Conservación  相似文献   

7.
Marine plastic pollution has emerged as one of the most pressing environmental challenges of our time. Although there has been a surge in global investment for implementing interventions to mitigate plastic pollution, there has been little attention given to the cost of these interventions. We developed a decision support framework to identify the economic, social, and ecological costs and benefits of plastic pollution interventions for different sectors and stakeholders. We calculated net cost as a function of six cost and benefit categories with the following equation: cost of implementing an intervention (direct, indirect, and nonmonetary costs) minus recovered costs and benefits (monetary and nonmonetary) produced by the interventions. We applied our framework to two quantitative case studies (a solid waste management plan and a trash interceptor) and four comparative case studies, evaluating the costs of beach cleanups and waste-to-energy plants in various contexts, to identify factors that influence the costs of plastic pollution interventions. The socioeconomic context of implementation, the spatial scale of implementation, and the time scale of evaluation all influence costs and the distribution of costs across stakeholders. Our framework provides an approach to estimate and compare the costs of a range of interventions across sociopolitical and economic contexts.  相似文献   

8.
Although evidence-based approaches have become commonplace for determining the success of conservation measures for the management of threatened taxa, there are no standard metrics for assessing progress in research or management. We developed 5 metrics to meet this need for threatened taxa and to quantify the need for further action and effective alleviation of threats. These metrics (research need, research achievement, management need, management achievement, and percent threat reduction) can be aggregated to examine trends for an individual taxon or for threats across multiple taxa. We tested the utility of these metrics by applying them to Australian threatened birds, which appears to be the first time that progress in research and management of threats has been assessed for all threatened taxa in a faunal group at a continental scale. Some research has been conducted on nearly three-quarters of known threats to taxa, and there is a clear understanding of how to alleviate nearly half of the threats with the highest impact. Some management has been attempted on nearly half the threats. Management outcomes ranged from successful trials to complete mitigation of the threat, including for one-third of high-impact threats. Progress in both research and management tended to be greater for taxa that were monitored or occurred on oceanic islands. Predation by cats had the highest potential threat score. However, there has been some success reducing the impact of cat predation, so climate change (particularly drought), now poses the greatest threat to Australian threatened birds. Our results demonstrate the potential for the proposed metrics to encapsulate the major trends in research and management of both threats and threatened taxa and provide a basis for international comparisons of evidence-based conservation science.  相似文献   

9.
Invasive alien species are one of the primary threats to native biodiversity on islands worldwide. Consequently, eradicating invasive species from islands has become a mainstream conservation practice. Deciding which islands have the highest priority for eradication is of strategic importance to allocate limited resources to achieve maximum conservation benefit. Previous island prioritizations focused either on a narrow set of native species or on a small geographic area. We devised a prioritization approach that incorporates all threatened native terrestrial vertebrates and all invasive terrestrial vertebrates occurring on 11 U.K. overseas territories, which comprise over 2000 islands ranging from the sub‐Antarctic to the tropics. Our approach includes eradication feasibility and distinguishes between the potential and realistic conservation value of an eradication, which reflects the benefit that would accrue following eradication of either all invasive species or only those species for which eradication techniques currently exist. We identified the top 25 priority islands for invasive species eradication that together would benefit extant populations of 155 native species including 45 globally threatened species. The 5 most valuable islands included the 2 World Heritage islands Gough (South Atlantic) and Henderson (South Pacific) that feature unique seabird colonies, and Anegada, Little Cayman, and Guana Island in the Caribbean that feature a unique reptile fauna. This prioritization can be rapidly repeated if new information or techniques become available, and the approach could be replicated elsewhere in the world. Priorización de Islas para la Erradicación de Vertebrados Invasores en los Territorios Exteriores del Reino Unido  相似文献   

10.
Managed breeding programs are an important tool in marsupial conservation efforts but may be costly and have adverse genetic effects in unavoidably small captive colonies. Biobanking and assisted reproductive technologies (ARTs) could help overcome these challenges, but further demonstration of their potential is required to improve uptake. We used genetic and economic models to examine whether supplementing hypothetical captive populations of dibblers (Parantechinus apicalis) and numbats (Myrmecobius fasciatus) with biobanked founder sperm through ARTs could reduce inbreeding, lower required colony sizes, and reduce program costs. We also asked practitioners of the black-footed ferret (Mustela nigripes) captive recovery program to complete a questionnaire to examine the resources and model species research pathways required to develop an optimized biobanking protocol in the black-footed ferret. We used data from this questionnaire to devise similar costed research pathways for Australian marsupials. With biobanking and assisted reproduction, inbreeding was reduced on average by between 80% and 98%, colony sizes were on average 99% smaller, and program costs were 69- to 83-fold lower. Integrating biobanking made long-standing captive genetic retention targets possible in marsupials (90% source population heterozygosity for a minimum of 100 years) within realistic cost frameworks. Lessons from the use of biobanking technology that contributed to the recovery of the black-footed ferret include the importance of adequate research funding (US$4.2 million), extensive partnerships that provide access to facilities and equipment, colony animals, appropriate research model species, and professional and technical staff required to address knowledge gaps to deliver an optimized biobanking protocol. Applied research investment of A$133 million across marsupial research pathways could deliver biobanking protocols for 15 of Australia's most at-risk marsupial species and 7 model species. The technical expertise and ex situ facilities exist to emulate the success of the black-footed ferret recovery program in threatened marsupials using these research pathways. All that is needed now for significant and cost-effective conservation gains is greater investment by policy makers in marsupial ARTs.  相似文献   

11.
In recent decades, there has been an increasing emphasis on proactive efforts to conserve species being considered for listing under the U.S. Endangered Species Act (ESA) before they are listed (i.e., preemptive conservation). These efforts, which depend on voluntary actions by public and private land managers across the species’ range, aim to conserve species while avoiding regulatory costs associated with ESA listing. We collected data for a set of social, economic, environmental, and institutional factors that we hypothesized would influence voluntary decisions to promote or inhibit preemptive conservation of species under consideration for ESA listing. We used logistic regression to estimate the association of these factors with preemptive conservation outcomes based on data for a set of species that entered the ESA listing process and were either officially listed (n = 314) or preemptively conserved (n = 73) from 1996 to 2018. Factors significantly associated with precluded listing due to preemptive conservation included high baseline conservation status, low proportion of private land across the species’ range, small total range size, exposure to specific types of threats, and species’ range extending over several states. These results highlight strategies that can help improve conservation outcomes, such as allocating resources for imperiled species earlier in the listing process, addressing specific threats, and expanding incentives and coordination mechanisms for conservation on private lands.  相似文献   

12.
Conservation science involves the collection and analysis of data. These scientific practices emerge from values that shape who and what is counted. Currently, conservation data are filtered through a value system that considers native life the only appropriate subject of conservation concern. We examined how trends in species richness, distribution, and threats change when all wildlife count by adding so-called non-native and feral populations to the International Union for Conservation of Nature Red List and local species richness assessments. We focused on vertebrate populations with founding members taken into and out of Australia by humans (i.e., migrants). We identified 87 immigrant and 47 emigrant vertebrate species. Formal conservation accounts underestimated global ranges by an average of 30% for immigrants and 7% for emigrants; immigrations surpassed extinctions in Australia by 52 species; migrants were disproportionately threatened (33% of immigrants and 29% of emigrants were threatened or decreasing in their native ranges); and incorporating migrant populations into risk assessments reduced global threat statuses for 15 of 18 species. Australian policies defined most immigrants as pests (76%), and conservation was the most commonly stated motivation for targeting these species in killing programs (37% of immigrants). Inclusive biodiversity data open space for dialogue on the ethical and empirical assumptions underlying conservation science.  相似文献   

13.
Conserving biodiversity and combating ecological hazards require cost-effective allocation of limited resources among potential management projects. Project priorities, however, can change over time as underlying social-ecological systems progress, novel priorities emerge, and management capabilities evolve. Thus, reallocation of ongoing investments in response to shifting priorities could improve management outcomes and address urgent demands, especially when additional funding is not available immediately. Resource reallocation, however, could incur transaction costs, require additional monitoring and reassessment, and be constrained by ongoing project commitments. Such complexities may prevent managers from considering potentially beneficial reallocation strategies, reducing long-term effectiveness. We propose an iterative project prioritization approach, based on marginal return-on-investment estimation and portfolio optimization, that guides resource reallocation among ongoing and new projects. Using simulation experiments in 2 case studies, we explored how this approach can improve efficacy under varying reallocation constraints, frequencies, costs, and rates of project portfolio change. Periodic budget reallocation could enhance the management of stochastically emerging invasive weeds in Australia and thus reduce the overall risk by up to 50% compared with a static budget. Reallocation frequency and the rate of new weed incursion synergistically increased the conservation gains achieved by allowing unconstrained reallocation. Conversely, budget reallocation would not improve the International Union for Conservation of Nature conservation status of threatened Australian birds due to slow rates of transition among conservation states; extinction risk could increase if portfolio reassessment is costly. Although other project prioritization studies may recommend periodic reassessment and reallocation, our findings revealed conditions when reallocation is valuable and demonstrated a structured approach that can help conservation agencies schedule and implement iterative budget-allocation decisions cost-effectively.  相似文献   

14.
Landscape-scale conservation that considers metapopulation dynamics will be essential for preventing declines of species facing multiple threats to their survival. Toward this end, we developed a novel approach that combines occurrence records, spatial–environmental data, and genetic information to model habitat, connectivity, and patterns of genetic structure and link spatial attributes to underlying ecological mechanisms. Using the threatened northern quoll (Dasyurus hallucatus) as a case study, we applied this approach to address the need for conservation decision-making tools that promote resilient metapopulations of this threatened species in the Pilbara, Western Australia, a multiuse landscape that is a hotspot for biodiversity and mining. Habitat and connectivity were predicted by different landscape characteristics. Whereas habitat suitability was overwhelmingly driven by terrain ruggedness, dispersal was facilitated by proximity to watercourses. Although there is limited evidence for major physical barriers in the Pilbara, areas with high silt and clay content (i.e., alluvial and hardpan plains) showed high resistance to dispersal. Climate subtlety shaped distributions and patterns of genetic turnover, suggesting the potential for local adaptation. By understanding these spatial–environmental associations and linking them to life-history and metapopulation dynamics, we highlight opportunities to provide targeted species management. To support this, we have created habitat, connectivity, and genetic uniqueness maps for conservation decision-making in the region. These tools have the potential to provide a more holistic approach to conservation in multiuse landscapes globally.  相似文献   

15.
Conservation decision tools based on cost‐effectiveness analysis are used to assess threat management strategies for improving species persistence. These approaches rank alternative strategies by their benefit to cost ratio but may fail to identify the optimal sets of strategies to implement under limited budgets because they do not account for redundancies. We devised a multiobjective optimization approach in which the complementarity principle is applied to identify the sets of threat management strategies that protect the most species for any budget. We used our approach to prioritize threat management strategies for 53 species of conservation concern in the Pilbara, Australia. We followed a structured elicitation approach to collect information on the benefits and costs of implementing 17 different conservation strategies during a 3‐day workshop with 49 stakeholders and experts in the biodiversity, conservation, and management of the Pilbara. We compared the performance of our complementarity priority threat management approach with a current cost‐effectiveness ranking approach. A complementary set of 3 strategies: domestic herbivore management, fire management and research, and sanctuaries provided all species with >50% chance of persistence for $4.7 million/year over 20 years. Achieving the same result cost almost twice as much ($9.71 million/year) when strategies were selected by their cost‐effectiveness ranks alone. Our results show that complementarity of management benefits has the potential to double the impact of priority threat management approaches.  相似文献   

16.
Decisions need to be made about which biodiversity management actions are undertaken to mitigate threats and about where these actions are implemented. However, management actions can interact; that is, the cost, benefit, and feasibility of one action can change when another action is undertaken. There is little guidance on how to explicitly and efficiently prioritize management for multiple threats, including deciding where to act. Integrated management could focus on one management action to abate a dominant threat or on a strategy comprising multiple actions to abate multiple threats. Furthermore management could be undertaken at sites that are in close proximity to reduce costs. We used cost‐effectiveness analysis to prioritize investments in fire management, controlling invasive predators, and reducing grazing pressure in a bio‐diverse region of southeastern Queensland, Australia. We compared outcomes of 5 management approaches based on different assumptions about interactions and quantified how investment needed, benefits expected, and the locations prioritized for implementation differed when interactions were taken into account. Managing for interactions altered decisions about where to invest and in which actions to invest and had the potential to deliver increased investment efficiency. Differences in high priority locations and actions were greatest between the approaches when we made different assumptions about how management actions deliver benefits through threat abatement: either all threats must be managed to conserve species or only one management action may be required. Threatened species management that does not consider interactions between actions may result in misplaced investments or misguided expectations of the effort required to mitigate threats to species.  相似文献   

17.
Mitigation translocation is a subgroup of conservation translocation, categorized by a crisis-responsive time frame and the immediate goal of relocating individuals threatened with death. However, the relative successes of conservation translocations with longer time frames and broader metapopulation- and ecosystem-level considerations have been used to justify the continued implementation of mitigation translocations without adequate post hoc monitoring to confirm their effectiveness as a conservation tool. Mitigation translocations now outnumber other conservation translocations, and understanding the effectiveness of mitigation translocations is critical given limited global conservation funding especially if the mitigation translocations undermine biodiversity conservation by failing to save individuals. We assessed the effectiveness of mitigation translocations by conducting a quantitative review of the global literature. A total of 59 mitigation translocations were reviewed for their adherence to the adaptive scientific approach expected of other conservation translocations and for the testing of management options to continue improving techniques for the future. We found that mitigation translocations have not achieved their potential as an effective applied science. Most translocations focused predominantly on population establishment- and persistence-level questions, as is often seen in translocations more broadly, and less on metapopulation and ecosystem outcomes. Questions regarding the long-term impacts to the recipient ecosystem (12% of articles) and the carrying capacity of translocation sites (24% of articles) were addressed least often, despite these factors being more likely to influence ultimate success. Less than half (47%) of studies included comparison of different management techniques to facilitate practitioners selecting the most effective management actions for the future. To align mitigation translocations with the relative success of other conservation translocations, it is critical that future mitigation translocations conform to an established experimental approach to improve their effectiveness. Effective mitigation translocations will require significantly greater investment of time, expertise, and resources in the future.  相似文献   

18.
Ko koe ki tēnā, ko ahau ki tēnai kīwai o te kete (you at that, and I at this handle of the basket). This Māori (New Zealanders of indigenous descent) saying conveys the principle of cooperation—we achieve more through working together, rather than separately. Despite decades of calls to rectify cultural imbalance in conservation, threatened species management still relies overwhelmingly on ideas from Western science and on top-down implementation. Values-based approaches to decision making can be used to integrate indigenous peoples’ values into species conservation in a more meaningful way. We used such a values-based method, structured decision making, to develop comanagement of pekapeka (Mystacina tuberculata) (short-tailed bat) and tara iti (Sternula nereis davisae) (Fairy Tern) between Māori and Pākehā (New Zealanders of European descent). We implemented this framework in a series of workshops in which facilitated discussions were used to gather expert knowledge to predict outcomes and make management recommendations. For both species, stakeholders clearly stated their values as fundamental objectives from the start, which allowed alternative strategies to be devised that naturally addressed their diverse values, including mātauranga Māori (Māori knowledge and perspectives). On this shared basis, all partners willingly engaged in the process, and decisions were largely agreed to by all. Most expectations of conflicts between values of Western science and Māori culture were unfounded. Where required, positive compromises were made by jointly developing alternative strategies. The values-based process successfully taha wairua taha tangata (brought both worlds together to achieve the objective) through codeveloped recovery strategies. This approach challenges the traditional model of scientists first preparing management plans focused on biological objectives, then consulting indigenous groups for approval. We recommend values-based approaches, such as structured decision making, as powerful methods for development of comanagement conservation plans between different peoples.  相似文献   

19.
Seabirds are the most threatened group of marine animals; 29% of species are at some risk of extinction. Significant threats to seabirds occur on islands where they breed, but in many cases, effective island conservation can mitigate these threats. To guide island‐based seabird conservation actions, we identified all islands with extant or extirpated populations of the 98 globally threatened seabird species, as recognized on the International Union for Conservation of Nature Red List, and quantified the presence of threatening invasive species, protected areas, and human populations. We matched these results with island attributes to highlight feasible island conservation opportunities. We identified 1362 threatened breeding seabird populations on 968 islands. On 803 (83%) of these islands, we identified threatening invasive species (20%), incomplete protected area coverage (23%), or both (40%). Most islands with threatened seabirds are amenable to island‐wide conservation action because they are small (57% were <1 km2), uninhabited (74%), and occur in high‐ or middle‐income countries (96%). Collectively these attributes make islands with threatened seabirds a rare opportunity for effective conservation at scale. La Biogeografía de Aves Marinas Amenazadas Globalmente y las Oportunidades de Conservación en Islas  相似文献   

20.
The loss of forest is a leading cause of species extinction, and reforestation is 1 of 2 established interventions for reversing this loss. However, the role of reforestation for biodiversity conservation remains debated, and lacking is an assessment of the potential contribution that reforestation could make to biodiversity conservation globally. We conducted a spatial analysis of overlap between 1,550 forest-obligate threatened species’ ranges and land that could be reforested after accounting for socioeconomic and ecological constraints. Reforestation on at least 43% (∼369 million ha) of reforestable area was predicted to potentially benefit threatened vertebrates. This is approximately 15% of the total area where threatened vertebrates occur. The greatest opportunities for conserving threatened vertebrate species are in the tropics, particularly Brazil and Indonesia. Although reforestation is not a substitute for forest conservation, and most of the area containing threatened vertebrates remains forested, our results highlight the need for global conservation strategies to recognize the potentially significant contribution that reforestation could make to biodiversity conservation. If implemented, reforestation of ∼369 million ha would also contribute substantially to climate-change mitigation, offering a way to achieve multiple sustainability commitments at once. Countries must now work to overcome key barriers (e.g., unclear revenue streams, high transaction costs) to investment in reforestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号