首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Knowing how much biodiversity is captured by protected areas (PAs) is important to meeting country commitments to international conservation agreements, such as the Convention on Biological Diversity, and analyzing gaps in species coverage by PAs contributes greatly to improved locating of new PAs and conservation of species. Regardless of their importance, global gap analyses have been conducted only for a few taxonomic groups (e.g., mangroves, corals, amphibians, birds, mammals). We conducted the first global gap analysis for a complete specious plant group, the highly threatened Cactaceae. Using geographic distribution data of 1438 cactus species, we assessed how well the current PA network represents them. We also systematically identified priority areas for conservation of cactus species that met and failed to meet conservation targets accounting for their conservation status. There were 261 species with no coverage by PAs (gap species). A greater percentage of cacti species (18%) lacked protection than mammals (9.7%) and birds (5.6%), and also a greater percentage of threatened cacti species (32%) were outside protected areas than amphibians (26.5%), birds (19.9%), or mammals (16%). The top 17% of the landscape that best captured covered species represented on average 52.9% of species ranges. The priority areas for gap species and the unprotected portion of the ranges of species that only partially met their conservation target (i.e., partial gap) captured on average 75.2% of their ranges, of which 100 were threatened gap species. These findings and knowledge of the threats affecting species provide information that can be used to improve planning for cacti conservation and highlight the importance of assessing the representation of major groups, such as plants, in PAs to determining the performance of the current PA network.  相似文献   

2.
Conservation efforts often focus on umbrella species whose distributions overlap with many other flora and fauna. However, because biodiversity is affected by different threats that are spatially variable, focusing only on the geographic range overlap of species may not be sufficient in allocating the necessary actions needed to efficiently abate threats. We developed a problem-based method for prioritizing conservation actions for umbrella species that maximizes the total number of flora and fauna benefiting from management while considering threats, actions, and costs. We tested our new method by assessing the performance of the Australian federal government's umbrella prioritization list, which identifies 73 umbrella species as priorities for conservation attention. Our results show that the federal government priority list benefits only 6% of all Australia's threatened terrestrial species. This could be increased to benefit nearly half (or 46%) of all threatened terrestrial species for the same budget of AU$550 million/year if more suitable umbrella species were chosen. This results in a 7-fold increase in management efficiency. We believe nations around the world can markedly improve the selection of prioritized umbrella species for conservation action with this transparent, quantitative, and objective prioritization approach.  相似文献   

3.
Although evidence-based approaches have become commonplace for determining the success of conservation measures for the management of threatened taxa, there are no standard metrics for assessing progress in research or management. We developed 5 metrics to meet this need for threatened taxa and to quantify the need for further action and effective alleviation of threats. These metrics (research need, research achievement, management need, management achievement, and percent threat reduction) can be aggregated to examine trends for an individual taxon or for threats across multiple taxa. We tested the utility of these metrics by applying them to Australian threatened birds, which appears to be the first time that progress in research and management of threats has been assessed for all threatened taxa in a faunal group at a continental scale. Some research has been conducted on nearly three-quarters of known threats to taxa, and there is a clear understanding of how to alleviate nearly half of the threats with the highest impact. Some management has been attempted on nearly half the threats. Management outcomes ranged from successful trials to complete mitigation of the threat, including for one-third of high-impact threats. Progress in both research and management tended to be greater for taxa that were monitored or occurred on oceanic islands. Predation by cats had the highest potential threat score. However, there has been some success reducing the impact of cat predation, so climate change (particularly drought), now poses the greatest threat to Australian threatened birds. Our results demonstrate the potential for the proposed metrics to encapsulate the major trends in research and management of both threats and threatened taxa and provide a basis for international comparisons of evidence-based conservation science.  相似文献   

4.
Many questions relevant to conservation decision-making are characterized by extreme uncertainty due to lack of empirical data and complexity of the underlying ecologic processes, leading to a rapid increase in the use of structured protocols to elicit expert knowledge. Published ecologic applications often employ a modified Delphi method, where experts provide judgments anonymously and mathematical aggregation techniques are used to combine judgments. The Sheffield elicitation framework (SHELF) differs in its behavioral approach to synthesizing individual judgments into a fully specified probability distribution for an unknown quantity. We used the SHELF protocol remotely to assess extinction risk of three subterranean aquatic species that are being considered for listing under the U.S. Endangered Species Act. We provided experts an empirical threat assessment for each known locality over a video conference and recorded judgments on the probability of population persistence over four generations with online submission forms and R-shiny apps available through the SHELF package. Despite large uncertainty for all populations, there were key differences between species’ risk of extirpation based on spatial variation in dominant threats, local land use and management practices, and species’ microhabitat. The resulting probability distributions provided decision makers with a full picture of uncertainty that was consistent with the probabilistic nature of risk assessments. Discussion among experts during SHELF's behavioral aggregation stage clearly documented dominant threats (e.g., development, timber harvest, animal agriculture, and cave visitation) and their interactions with local cave geology and species’ habitat. Our virtual implementation of the SHELF protocol demonstrated the flexibility of the approach for conservation applications operating on budgets and time lines that can limit in-person meetings of geographically dispersed experts.  相似文献   

5.
Birds have been comprehensively assessed on the International Union for Conservation of Nature (IUCN) Red List more times than any other taxonomic group. However, to date, generation lengths have not been systematically estimated to scale population trends when undertaking assessments, as required by the criteria of the IUCN Red List. We compiled information from major databases of published life-history and trait data for all birds and imputed missing life-history data as a function of species traits with generalized linear mixed models. Generation lengths were derived for all species, based on our modeled values of age at first breeding, maximum longevity, and annual adult survival. The resulting generation lengths varied from 1.42 to 27.87 years (median 2.99). Most species (61%) had generation lengths <3.33 years, meaning that the period of 3 generations—over which population declines are assessed under criterion A—was <10 years, which is the value used for IUCN Red List assessments of species with short generation times. For these species, our trait-informed estimates of generation length suggested that 10 years is a robust precautionary value for threat assessment. In other cases, however, for whole families, genera, or individual species, generation length had a substantial impact on their estimated extinction risk, resulting in higher extinction risk in long-lived species than in short-lived species. Although our approach effectively addressed data gaps, generation lengths for some species may have been underestimated due to a paucity of life-history data. Overall, our results will strengthen future extinction-risk assessments and augment key databases of avian life-history and trait data.  相似文献   

6.
We devised a practical method for integrating information on 2 marine invasive species using 3 different approaches: standardized ecological monitoring, online-reporting databases, and surveys of anglers and crabbers. Focusing on 2 recently introduced species with different characteristics, the Asian shore crab (Hemigrapsus sanguineus) and Chinese mitten crab (Eriocheir sinensis), in the Hudson-Raritan watershed of New York and New Jersey, we used sensitivity analyses to explore the relative contribution of each information source to knowledge of species abundance and distribution. All 3 information sources contributed something unique to understanding abundance and distribution of the introduced crabs. Online and survey data on Asian shore crabs significantly affected predictions of abundance, whereas monitoring data did not. When survey data were omitted, abundance estimates were unchanged over time, but when they were included, the model predicted an increased abundance in 2012. All 3 data sets for the Asian shore crab significantly affected estimates of species coverage; surveys had the biggest influence, increasing range size by 4097.25 km2. For the catadromous Chinese mitten crab, ecological monitoring data collected in freshwater shortly after the original sighting significantly shaped model estimates for abundance and documented the establishment phase of the mitten crab in an area outside the spatial scope of the surveyed resource users. However, the survey data significantly enlarged mitten crab range-size estimates by 6498.01 km2. By demonstrating that data integration produced an image of the invasion process that would not have emerged had we used any 1 method individually, model results provide evidence for the advantages of an interdisciplinary approach.  相似文献   

7.
Global biodiversity indices are used to measure environmental change and progress toward conservation goals, yet few indices have been evaluated comprehensively for their capacity to detect trends of interest, such as declines in threatened species or ecosystem function. Using a structured approach based on decision science, we qualitatively evaluated 9 indices commonly used to track biodiversity at global and regional scales against 5 criteria relating to objectives, design, behavior, incorporation of uncertainty, and constraints (e.g., costs and data availability). Evaluation was based on reference literature for indices available at the time of assessment. We identified 4 key gaps in indices assessed: pathways to achieving goals (means objectives) were not always clear or relevant to desired outcomes (fundamental objectives); index testing and understanding of expected behavior was often lacking; uncertainty was seldom acknowledged or accounted for; and costs of implementation were seldom considered. These gaps may render indices inadequate in certain decision-making contexts and are problematic for indices linked with biodiversity targets and sustainability goals. Ensuring that index objectives are clear and their design is underpinned by a model of relevant processes are crucial in addressing the gaps identified by our assessment. Uptake and productive use of indices will be improved if index performance is tested rigorously and assumptions and uncertainties are clearly communicated to end users. This will increase index accuracy and value in tracking biodiversity change and supporting national and global policy decisions, such as the post-2020 global biodiversity framework of the Convention on Biological Diversity.  相似文献   

8.
As large carnivores recover throughout Europe, their distribution needs to be studied to determine their conservation status and assess the potential for human-carnivore conflicts. However, efficient monitoring of many large carnivore species is challenging due to their rarity, elusive behavior, and large home ranges. Their monitoring can include opportunistic sightings from citizens in addition to designed surveys. Two types of detection errors may occur in such monitoring schemes: false negatives and false positives. False-negative detections can be accounted for in species distribution models (SDMs) that deal with imperfect detection. False-positive detections, due to species misidentification, have rarely been accounted for in SDMs. Generally, researchers use ad hoc data-filtering methods to discard ambiguous observations prior to analysis. These practices may discard valuable ecological information on the distribution of a species. We investigated the costs and benefits of including data types that may include false positives rather than discarding them for SDMs of large carnivores. We used a dynamic occupancy model that simultaneously accounts for false negatives and positives to jointly analyze data that included both unambiguous detections and ambiguous detections. We used simulations to compare the performances of our model with a model fitted on unambiguous data only. We tested the 2 models in 4 scenarios in which parameters that control false-positive detections and true detections varied. We applied our model to data from the monitoring of the Eurasian lynx (Lynx lynx) in the European Alps. The addition of ambiguous detections increased the precision of parameter estimates. For the Eurasian lynx, incorporating ambiguous detections produced more precise estimates of the ecological parameters and revealed additional occupied sites in areas where the species is likely expanding. Overall, we found that ambiguous data should be considered when studying the distribution of large carnivores through the use of dynamic occupancy models that account for misidentification.  相似文献   

9.
Population viability analysis (PVA) is a powerful conservation tool, but it remains impractical for many species, particularly species with multiple, broadly distributed populations for which collecting suitable data can be challenging. A recently developed method of multiple-population viability analysis (MPVA), however, addresses many limitations of traditional PVA. We built on previous development of MPVA for Lahontan cutthroat trout (LCT) (Oncorhynchus clarkii henshawi), a species listed under the U.S. Endangered Species Act, that is distributed broadly across habitat fragments in the Great Basin (U.S.A.). We simulated potential management scenarios and assessed their effects on population sizes and extinction risks in 211 streams, where LCT exist or may be reintroduced. Conservation populations (those managed for recovery) tended to have lower extinction risks than nonconservation populations (mean = 19.8% vs. 52.7%), but not always. Active management or reprioritization may be warranted in some cases. Eliminating non-native trout had a strong positive effect on overall carrying capacities for LCT populations but often did not translate into lower extinction risks unless simulations also reduced associated stochasticity (to the mean for populations without non-native trout). Sixty fish or 5–10 fish/km was the minimum reintroduction number and density, respectively, that provided near-maximum reintroduction success. This modeling framework provided crucial insights and empirical justification for conservation planning and specific adaptive management actions for this threatened species. More broadly, MPVA is applicable to a wide range of species exhibiting geographic rarity and limited availability of abundance data and greatly extends the potential use of empirical PVA for conservation assessment and planning.  相似文献   

10.
Culturomics is emerging as an important field within science, as a way to measure attitudes and beliefs and their dynamics across time and space via quantitative analysis of digitized data from literature, news, film, social media, and more. Sentiment analysis is a culturomics tool that, within the last decade, has provided a means to quantify the polarity of attitudes expressed within various media. Conservation science is a crisis discipline; therefore, accurate and effective communication are paramount. We investigated how conservation scientists communicate their findings through scientific journal articles. We analyzed 15,001 abstracts from articles published from 1998 to 2017 in 6 conservation-focused journals selected based on indexing in scientific databases. Articles were categorized by year, focal taxa, and the conservation status of the focal species. We calculated mean sentiment score for each abstract (mean adjusted z score) based on 4 lexicons (Jockers-Rinker, National Research Council, Bing, and AFINN). We found a significant positive annual trend in the sentiment scores of articles. We also observed a significant trend toward increasing negativity along the spectrum of conservation status categories (i.e., from least concern to extinct). There were some clear differences in the sentiments with which research on different taxa was reported, however. For example, abstracts mentioning lobe finned fishes tended to have high sentiment scores, which could be related to the rediscovery of the coelacanth driving a positive narrative. Contrastingly, abstracts mentioning elasmobranchs had low scores, possibly reflecting the negative sentiment score associated with the word shark. Sentiment analysis has applications in science, especially as it pertains to conservation psychology, and we suggest a new science-based lexicon be developed specifically for the field of conservation.  相似文献   

11.
Population viability analysis (PVA) is useful in management of imperiled species. Applications range from research design, threat assessment, and development of management frameworks. Given the importance of PVAs, it is essential that they be rigorous and adhere to widely accepted guidelines; however, the quality of published PVAs is rarely assessed. We evaluated the quality of 160 PVAs of 144 species of birds and mammals published in peer-reviewed journals from 1990 to 2017. We hypothesized that PVA quality would be lower with generic programs than with custom-built programs; be higher for those developed for imperiled species; change over time; and be higher for those published in journals with high impact factors (IFs). Each included study was evaluated based on answers to an evaluation framework containing 32 questions reflecting whether and to what extent the PVA study adhered to published PVA guidelines or contained important PVA components. All measures of PVA quality were generally lower for studies based on generic programs. Conservation status of the species did not affect any measure of PVA quality, but PVAs published in high IF journals were of higher quality. Quality generally declined over time, suggesting the quantitative literacy of PVA practitioners has not increased over time or that PVAs developed by unskilled users are being published in peer-reviewed journals. Only 18.1% of studies were of high quality (score >75%), which is troubling because poor-quality PVAs could misinform conservation decisions. We call for increased scrutiny of PVAs by journal editors and reviewers. Our evaluation framework can be used for this purpose. Because poor-quality PVAs continue to be published, we recommend caution while using PVA results in conservation decision making without thoroughly assessing the PVA quality.  相似文献   

12.
13.
Herbarium specimens are increasingly recognized as an important resource for conservation science and virtual herbaria are making specimens freely available to a wider range of users than ever before. Few virtual herbaria are designed with conservation use as a primary driver. Exceptionally, Brazil's Reflora Virtual Herbarium (RVH) was created to increase knowledge and conservation of the Brazilian flora. The RVH is closely integrated with the Flora of Brazil 2020 platform on which Brazil's new national Flora is under construction. Both resources are accessible via the Reflora home page and thousands of users move seamlessly between these Reflora resources. To understand how the Reflora resources are currently used and their impact on conservation science, we conducted a literature review and an online survey. We searched for publications of studies in which Reflora resources were used and publications resulting from Brazilian researchers who were part of Reflora's research and mobility program. The survey contained multiple choice questions and questions that required a written response. We targeted Reflora webpage visitors with the survey to capture a wider range of Reflora users than the literature review. Reflora resources were used for a variety of conservation-relevant purposes. Half the 806 scientific publications in which Reflora was cited and 81% of the 1069 survey respondents accessing Reflora resources mentioned conservation-relevant research outputs. Most conservation-relevant uses of the Reflora resources in scientific publications were research rather than implementation focused. The survey of Reflora users showed conservation uses and impacts of virtual herbaria were more numerous and diverse than the uses captured in the literature review. Virtual herbaria are vital resources for conservation science, but they must document use and impacts more comprehensively to ensure sustainability.  相似文献   

14.
Red lists are a crucial tool for the management of threatened species and ecosystems. Among the information red lists provide, the threats affecting the listed species or ecosystem, such as pollution or hunting, are of special relevance. This information can be used to quantify the relative contribution of different threat factors to biodiversity loss by disaggregating the cumulative extinction risk across species into components that can be attributed to certain threats. We devised and compared 3 metrics that accomplish this and may be used as indicators. The first metric calculates the portion of the temporal change in red list index (RLI) values that is caused by each threat. The second metric attributes the deviation of an RLI value from its reference value to different threats. The third metric uses extinction probabilities that are inferred from red list categories to estimate the contribution of a threat to the expected loss of species or ecosystems within 50 years. We used data from Norwegian Red Lists to test and evaluate these metrics. The first metric captured only a minor portion of the biodiversity loss caused by threats because it ignores species whose red list category does not change. Management authorities will often be interested in the contribution of a given threat to the total deviation from the optimal state. This was measured by the remaining metrics. The second metric was best suited for comparisons across countries or taxonomic groups. The third metric conveyed the same information but uses numbers of species or ecosystem as its unit, which is likely more intuitive to lay people and may be preferred when communicating with stakeholders or the general public.  相似文献   

15.
Protecting structural features, such as tree-related microhabitats (TreMs), is a cost-effective tool crucial for biodiversity conservation applicable to large forested landscapes. Although the development of TreMs is influenced by tree diameter, species, and vitality, the relationships between tree age and TreM profile remain poorly understood. Using a tree-ring-based approach and a large data set of 8038 trees, we modeled the effects of tree age, diameter, and site characteristics on TreM richness and occurrence across some of the most intact primary temperate forests in Europe, including mixed beech and spruce forests. We observed an overall increase in TreM richness on old and large trees in both forest types. The occurrence of specific TreM groups was variably related to tree age and diameter, but some TreM groups (e.g., epiphytes) had a stronger positive relationship with tree species and elevation. Although many TreM groups were positively associated with tree age and diameter, only two TreM groups in spruce stands reacted exclusively to tree age (insect galleries and exposed sapwood) without responding to diameter. Thus, the retention of trees for conservation purposes based on tree diameter appears to be a generally feasible approach with a rather low risk of underrepresentation of TreMs. Because greater tree age and diameter positively affected TreM development, placing a greater emphasis on conserving large trees and allowing them to reach older ages, for example, through the establishment of conservation reserves, would better maintain the continuity of TreM resource and associated biodiversity. However, this approach may be difficult due to the widespread intensification of forest management and global climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号