首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents the results of indoor radon concentration survey in 201 homes and offices in Niska Banja (the Spa of Nis), a well-known health resort and a spa in the South-East of Serbia. Radon indoor concentrations were determined by active charcoal method, according to standard EPA procedure. The indoor radon concentrations were in the range of up to 200 Bq/m(3) (47%), from 200-600 Bq/m(3) (26%) and over 600 Bq/m(3) (27%). Three areas of extremely high average radon concentrations were found (1,340-4,340 Bq/m(3)), with a maximum above 13,000 Bq/m(3). The content of natural radionuclides ((226)Ra, (214)Pb, (214)Bi, (235)U, (228)Ac, (212)Pb, (212)Bi, (208)Tl, (40)K) and (137)Cs, as well as the content of total uranium, thorium and potassium in mud used in peloidotherapy in the Health Institute "Niska Banja" was determined, too. The activities of the radionuclides were determined on an HPGe detector, by standard gamma spectroscopy. The results indicated considerably high amounts of total uranium and thorium (0.021 g/kg mud and 0.003 g/kg mud, respectively), due to the karsts origin of the soil.  相似文献   

2.
The measurement campaigns have been done in the rural community of Niska Banja, a spa town located in southern Serbia, to evaluate population exposure to natural radioactivity. After a screening survey in 200 houses, annual radon and thoron concentrations were measured in 34 houses, and in 2004 a detailed investigation was carried out at six houses with elevated indoor radon concentrations. The paper presents the results of these detailed measurements. The complementary techniques were applied to determine radon and thoron concentrations in indoor air, in soil gas, radon exhalation from soil, soil permeability, and indoor and outdoor gamma doses. Soil and water samples were collected and analysed in the laboratory. Indoor radon and thoron concentrations were found to be more than 1kBqm(-3) and 200Bqm(-3), respectively. Extremely high concentrations of soil-gas radon (>2000kBqm(-3)) and radon exhalation rates (1.5mBqm(-2)s(-1)) were observed. These results will be utilised to set up the methodology for a more systematic investigation.  相似文献   

3.
Nationwide outdoor radon (222Rn) concentrations in Japan were measured to survey the environmental outdoor 222Rn level and to estimate the effective dose to the general public from 222Rn and its progeny. The 222Rn concentration was measured with a passive-type radon monitor. The 222Rn monitors were installed at about 700 points throughout Japan from 1997 to 1999. The annual mean 222Rn concentration in Japan was estimated from four quarters measurements of 47 prefectures in Japan. Nationwide outdoor mean 222Rn concentration was 6.1 Bq m(-3). This was about 40% of the indoor 222Rn concentration in Japan. The 222Rn concentration in Japan ranged from 3.3 Bq m(-3) in the Okinawa region to 9.8 Bq m(-3) in the Chugoku region, reflecting geological characteristics. Seasonal variation of outdoor 222Rn concentration was also found to be lowest in July to September, and highest in October to December. From the results of this 222Rn survey and previous indoor 222Rn survey program, the effective dose to the general public from 222Rn and its progeny was estimated to be 0.45 mSv y(-1).  相似文献   

4.
The aim of this work was to make a comparison of indoor radon concentrations in dwellings and in soil air in the area of two geological formations in the Suwa?ki region (Poland). The mean arithmetic airborne concentration was found to be the highest (301 Bq m (-3)) in the basements of buildings in the gravel and sand areas, whereas in the boulder clay areas it reached 587 Bq m (-3). Out of 54 measurements of radon concentrations performed at the ground floor, in eight cases concentrations were found to exceed 200 Bq m (-3) - permissible radon level in new-built houses in Poland and in three cases these values were even higher than 400 Bq m (-3). The highest radon levels were noted in houses with earthen basement floors and with direct entrance from the basement to rooms or kitchens. The mean arithmetic radon concentration in the soil air in the sandy and gravel formations was 39.7 kBq m (-3) and in clay formation it was 26.5 kBq m (-3). Higher radon levels were also found in the water obtained from household wells reaching 8367 Bq m (-3) as compared with tap water (2690 Bqm (-3)). The mean indoor concentration for the whole area under study was found to be 169.4 Bq m (-3), which is higher than the mean value for Poland (49.1 Bq m (-3)) by a factor of 3.5.  相似文献   

5.
The results of a survey of outdoor radon concentrations in Milan are reported. Measurements were performed hourly over a continuous four year period from January 1997 to December 2000. Radon concentration was obtained by two means: both direct measurement of radon; and measurement of its decay products. The average daily pattern of radon concentration featured a minimum in the late afternoon and a maximum in the early hours of the morning. A seasonal pattern with higher concentrations in winter than in summer (from around 15 Bq m(-3) in winter to around 5 Bq m(-3) in summer) was also observed. Similar average annual values of around 10 Bq m(-3) were obtained. The annual effective outdoor radon dose was found to be 0.12 mSv. The variation from minimum in the afternoon to maximum the following morning was found to be a good indicator of the height of the nocturnal mixing layer. The variation between maximum and minimum levels on the same day is an index of the maximum height of the mixing layer. Furthermore, our long term measurements of radon have permitted us to examine the dispersion characteristics of the atmosphere over Milan, and to establish the frequency of conditions unfavourable to the dispersion of atmospheric pollutants.  相似文献   

6.
Radon levels in atmospheric and aquatic systems in Cyprus have recently been measured using the radon monitor Alpha Guard. Indoor and outdoor radon levels were obtained in situ, whereas analysis of radon concentrations in water was performed using tap and ground water samples collected from several areas of the island. The average value for outdoor and indoor radon concentration is 11+/-10 and 7+/-6 Bq m(-3), respectively, and for tap and ground water 0.4 Bq l(-1) and 1.4 Bq l(-1), respectively. From these data the annual dose equivalent of airborne radon to the Cypriot population is about 0.19 mSv y(-1), which is quite low compared to the total dose equivalent of natural and man-made ionising radiation in Cyprus. Radon levels in aquatic systems are relatively low due to an exhaustive utilisation of ground water resources and also to the increased input of desalinated sea water in the water distribution network and eventually into the ground water reservoirs.  相似文献   

7.
Radon (Rn(222)) levels in an indoor atmosphere of a multi-storey building at Mumbai have been measured for one year covering all the four seasons. Monitoring was carried out using the time-integrated passive detector technique, using Kodak-115 type Solid State Nuclear Track Detector (SSNTD) films of 2.5x2.5 cm size. Measured indoor radon levels showed a decreasing trend with height with concentration ranging from 41 Bq m(-3) at ground floor level to 15 Bq m(-3) at 19th floor level. Using the dose conversion factors, the inhalation dose due to breathing of radon gas is estimated to be 1.03 mSv y(-1) at the ground floor to 0.38 mSv y(-1) at the 19th floor level. Measured indoor radon concentrations on each floor were compared with the computed values using a mathematical model. The agreement between measured values and calculated values of indoor concentrations at different floors was very good within the limitations of various field parameter values.  相似文献   

8.
High-resolution gamma spectrometry was used to determine the concentration of 40K, 238U and 232Th series in soil samples taken from areas surrounding the city of Aldama, in Chihuahua. Results of indoor air short-time sampling, with diffusion barrier charcoal detectors, revealed relatively high indoor radon levels, ranging from 29 to 422 Bq/m3; the radon concentrations detected exceeded 148 Bq/m3 in 76% of the homes tested. Additionally, liquid scintillation counting showed concentrations of radon in drinking water ranging from 4.3 to 42 kBq/m3. The high activity of 238U in soil found in some places may be a result of the uranium milling process performed 20 years ago in the area. High radon concentrations indoor and in water may be explained by assuming the presence of uranium-bearing rocks underneath of the city, similar to a felsic dike located near Aldama. The estimated annual effective dose of gamma radiation from the soil and radon inhalation was 3.83 mSv.  相似文献   

9.
In this work we present the results of a 2-year survey of indoor radon variations in four cities of Lahijan, Ardabil, Sar-Ein and Namin in North and Northwest Iran. We used both passive and active measurements by solid state nuclear track detectors (SSNTDs) with CR-39 polycarbonate and PRASSI Portable radon Gas Surveyor. A total of 1124 samplers in Lahijan, Ardabil, Sar-Ein and Namin were installed. Sampling frequency was seasonal and sampling locations were randomly chosen based on dwelling structures, floors, geological formations, elevation and temperature variation parameters. For quality assurance, 281 active measurements and double sampling were carried out. Based on our results and the results of previous surveys, Ardabil and Lahijan have the second and third highest radon concentration in Iran, respectively (Ramsar is first). The average radon concentration during the year in Lahijan, Ardabil, Sar-Ein and Namin were 163, 240, 160 and 144 Bq/m(3) with medians of 160, 168, 124 and 133 Bq/m(3), respectively. These concentrations give rise to annual effective doses of 3.43 mSv/y for Lahijan and 5.00 mSv/y for Ardabil. The maximum recorded concentration was 2386 Bq/m(3) during winter in Ardabil and the minimum concentration was 55 Bq/m(3) during spring in Lahijan. Relationships between radon concentration and building materials and room ventilation were also studied. The dosimetry calculations showed that these four cities could be categorized as average natural radiation zones. The correlation coefficients relating warm and cold season radon variation data were obtained.  相似文献   

10.
Specific activities of the natural radionuclides (238)U, (226)Ra, (232)Th and (40)K were measured by means of gamma-ray spectrometry in surface soil samples collected from the city of Ptolemais, which is located near lignite-fired power plants. The mean activity values for (238)U, (226)Ra, (232)Th and (40)K were found to be 42+/-11, 27+/-6, 36+/-5 and 496+/-56 Bq kg(-1), respectively. These values fall within the range of typical world and Greek values for soil. The indoor radon concentration levels, which were also measured in 66 dwellings by means of SSNTD, ranged from 12 to 129 Bq m(-3), with an average value of 36+/-2 Bq m(-3). This value is close to world and Greek average values for indoor radon concentrations. The total effective dose due to outdoor external irradiation of terrestrial origin and to indoor internal irradiation from the short-lived decay products of (222)Rn was estimated to be 1.2 mSv y(-1) for adults, which is lower than the global effective dose due to natural sources of 2.4 mSv y(-1).  相似文献   

11.
Measurements of indoor radon concentrations were performed in 28 low-rise houses and 30 apartments in Patras area from December 1996 to November 1997, using nuclear track detectors. The investigation was focused on the effects of season and floor number, as well as on the existence of a basement in low-rise houses on indoor radon levels. It was found that the differences in mean radon concentrations between adjacent seasons, in a number of 61 selected sampling sites distributed in 28 houses, were statistically significant. As expected, a maximum was found in winter and a minimum in summer. The differences in mean radon concentration on different floors of the same houses were also statistically significant and followed a linear decrease from underground to 2nd floor. In addition, indoor radon concentrations in the ground floor were found to be influenced by the existence or not of a basement. The average annual radon concentration was found to be 41 Bq m(-3) for the houses, 28 Bq m(-3) for the apartments and 38 Bq m(-3) for all the dwellings. These values lead to an average effective dose equivalent of 1.1, 0.7 and 0.9 mSv y(-1), respectively. Residents living on the underground in low-rise houses, during winter, where the average effective dose equivalent is 2.1 mSv y(-1), attain the higher risk.  相似文献   

12.
The results of radon activity recorded in 70 dwellings of Nurpur area, Kangra district, Himachal Pradesh, India are reported. LR-115 Type 2 films in the bare mode were exposed for four seasons of three months each covering a period of one year for the measurement of indoor radon levels. The calibration constant of 0.020 tracks cm(-2) d(-1) per Bq m(-3) has been used to express radon activity in Bq m(-3). The annual average indoor radon concentrations in 17 different villages of the area are found to vary from 168+/-46 to 429+/-71. Most of the indoor radon values lie in the range of action levels (200-600 Bq m(-3)) recommended by International Commission on Radiological Protection.  相似文献   

13.
Radon ((222)Rn) concentration was measured at indoor workplaces in Japan to estimate effective dose to the public from (222)Rn and its progeny. Measurements were made from 2000 to 2003 at 705 sites in four categories of office, factory, school and hospital. Passive type Rn monitors equipped with two sheets of polycarbonate thin films for measuring radon concentrations were installed at observation sites and replaced every 3 months to observe seasonal variations in (222)Rn concentrations. The range of annual mean (222)Rn concentrations for all sites was 1.4-182 Bq m(-3), with the arithmetic mean and standard deviation were 20.8 and 19.5 Bq m(-3). Annual mean (222)Rn concentration observed at office, factory, school and hospital were 22.6, 10.1, 28.4 and 19.8 Bq m(-3), respectively. Seasonal variations in (222)Rn concentrations at offices, schools and hospitals were similar to those found in dwellings, and variations in factories were similar to those found in outdoor environments. (222)Rn concentration observed in every quarter period was found to decrease as follows: school>office>hospital>factory. The average effective dose to the public due to (222)Rn was estimated to be 0.41 mSv y(-1) weighted by the working population. Considering the (222)Rn exposure in indoor workplaces, effective dose to the general public is estimated to be in the range from approximately 0.42 to 0.52 mSv y(-1).  相似文献   

14.
This paper reports on radon concentrations in dwellings from fifty different locations of India. The incorporated data were obtained using the passive solid state nuclear track detector technique. The estimated geometric mean value for India is 67.1 Bq m(-3). Chuadanga in Bangladesh had the lowest observed indoor radon concentration of 27.3 Bq m(-3) and Una in the northern part of India had the highest concentration of 281.5 Bq m(-3). This paper discusses the national geometrical mean value in terms of the national geometric mean values of other countries and also in terms of the geological influence. The estimated indoor radon levels are compared with the indoor radon levels as recommended by the International Commission on Radiation Protection (ICRP). It was observed that there are several locations in India where dwellings have higher indoor radon levels than the ICRP recommended value and requires some sort of intervention from regulating authorities. The mean value for indoor radon level given in the report of UNSCEAR 2000 for India needs to be revised.  相似文献   

15.
Radon-222 in Brazil: an outline of indoor and outdoor measurements   总被引:3,自引:0,他引:3  
This study discusses the methodology for measuring and assessing the radon concentration in indoor and outdoor environments. A research study was developed to investigate the long-term behavior of the diurnal and seasonal fluctuations of radon (222)Rn EEC (Equilibrium-Equivalent Concentration) and the influence of temperature and other climatic aspects on this behavior. The study was performed by means of both integrated and instantaneous measurements of radon and its short-lived daughter products for a period of 1 year in an indoor environment in Rio de Janeiro city, Brazil (reference environment), with continuous measurement, using a radon monitor with an alpha spectrometry detector.For a single day, a variability of about 50% could be observed in the (222)Rn EEC values measured on a hourly basis, with a maximum occurring early in the morning and a minimum in the afternoon. For the long-term period, seasonality is responsible for a two order of magnitude variability, with a maximum of 50 Bq.m(-3) in winter (dry season) and a minimum of 0.5 Bq.m(-3) in the summer months (wet season), outdoors. A negative correlation with temperature was observed. The conclusions of this experiment led to a survey of radon gas concentration in dwellings in Rio de Janeiro city, Brazil, in urban area with nearly 7 million inhabitants, through integrated sampling methods, using a Solid State Nuclear Track Detectors Technique (SSNTD). The study was conducted in different geomorphological locations in town. The radon gas concentration in Rio de Janeiro dwellings ranged from 5 Bq.m(-3) to 200 Bq.m(-3). A good correlation between indoor radon gas concentration and location of dwellings was observed. The seashore areas presented the lowest levels of indoor radon concentration, whereas the highest levels were found close to the mountains.  相似文献   

16.
The concentrations of 222Rn (radon) and its progeny with surrounding environmental gamma-dose rates were measured simultaneously inside and outside of buildings at 10 locations around Taipei and Hualien in Taiwan. For summer radon in Taiwan, indoor concentrations were estimated to be about 20 Bq m(-3) with about 90 nSv h- of environmental gamma, and outdoors, about 10 Bq m(-3) with about 70 nSv h(-1). The equilibrium factors were calculated to be 0.2-0.3 indoors and 0.3-0.4 outdoors. Indoor radon concentration had a weak positive correlation with gamma-dose rate. Since there is a possibility that high radon concentrations exist indoors during the cool season in Taiwan because of extremely low ventilation rates in the dwellings, a winter survey in January through February will be needed for future estimation of the annual effective dose.  相似文献   

17.
The aim of the study was to compare radon concentrations in neighbouring hospital buildings which were constructed in different years during the period 1963-2000 and are located in areas with similar radon potential. The value of arithmetic mean (AM) radon concentration in soil gas amounted to 14,464 Bq m(-3). In a hospital built 40 years ago, the AM radon concentration in the cellar was 38.4+/-36.7 Bq m(-3) and on higher levels it was 17.1+/-10.3 Bq m(-3). In a hospital built 16 years ago, these values equaled 45.5+/-47.2 Bq m(-3) and 20.4+/-12.5 Bq m(-3), respectively. In the newest hospital, built three years ago, radon concentration (AM) in a cellar was 32.3+/-27.4 Bq m(-3) and the respective value on higher levels amounted to 20.4+/-12.6 Bq m(-3). When comparing radon concentrations in the cellars, no statistically significant differences were found. Similarly, no statistically significant differences were observed between radon concentrations measured on higher levels in investigated hospital buildings.  相似文献   

18.
Indoor radon survey and gamma activity measurements in soil samples were carried out in the Giresun province (Northeastern Turkey). The result of analysis of variance showed a relationship between indoor radon and radium content in soil (R(2)=0.54). It was found that indoor radon activity concentration ranged from 52 to 360 Bq m(-3) with an average value of 130 Bq m(-3). A model built by BEIR VI was used to predict the number of lung cancer deaths due to indoor radon exposure. It was found that indoor radon is responsible for 8% of all lung cancer deaths occurring in this province. (137)Cs activity concentration was measured 21 years after the Chernobyl accident. The results showed that (137)Cs activity concentration ranged from 41 to 1304 Bq kg(-1) with an average value of 307 Bq kg(-1). The indoor radon results and the geology of the studied area were discussed. Annual effective doses to the both radionuclides of natural origin and (137)Cs were estimated.  相似文献   

19.
In the Harghita volcanic range (Romania) there are many occurrences of dry CO(2) emanations, called mofettes. The emanating gas with high carbon dioxide content has a proved curative effect. The gas also contains important quantities of radon. Since the mofettes are used in curative purposes in several illnesses, in most of the cases without medical supervising, has been proposed to determine the radon activity concentration in some of the most frequented mofettes from Romania. The seasonal variations have also been monitored and were calculated the effective doses received by the patients during a cure. The radon activity concentrations' levels above the mofettes indoor air range between 548 and 10 717Bq/m(3) while within the gas pools' values between 3210 and 32 781Bq/m(3) have been measured. The effective dose received by the patients during a cure is between 0.0086 and 0.16mSv. No major seasonal variations of the radon activity concentrations levels have been pointed out so far in the studied mofettes.  相似文献   

20.
In this work, we present the values of radon concentration, measured by continuous monitoring during a complete annual cycle in the Polychromes Hall of Altamira Cave in order to undertake more precise calculations of annual effective dose for guides and visitors in tourist caves. The (222)Rn levels monitored inside the cave ranges from 186 Bq m(-3) to 7120 Bq m(-3), with an annual average of 3562 Bq m(-3). In order to more accurately estimate effective dose we use three scenarios with different equilibrium factors (F=0.5, 0.7 and 1.0) together with different dose conversion factors proposed in the literature. Neither effective dose exceeds international recommendations. Moreover, with an automatic radon monitoring system the time remaining to reach the maximum annual dose recommended could be automatically updated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号