首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concentrations of trace elements (Hg, Cd, Pb, Zn, Cu, Fe, and Se) in different organs and tissues (liver, kidney, muscle tissue, spleen, heart, lung, and fat tissue) of loggerhead turtles Caretta caretta from eastern Mediterranean Sea were determined. The highest levels of mercury and cadmium were found in liver (Hg: 0.43 microg g(-1) wet weight; Cd: 3.36 microg g(-1) wet weight) and kidney (Hg: 0.16 microg g(-1) wet weight; Cd: 8.35 microg g(-1) wet weight). For lead the overall concentrations were low and often below the limit of detection. Copper and selenium tended to be higher in liver than in other tissues and organs, while for zinc the concentrations were quite homogenous in the different organs and tissues, except fat tissue (64.7 microg g(-1) wet weight) which showed a higher accumulation of this element. For iron the greatest concentrations were observed in liver (409 microg g(-1) wet weight) and spleen (221 microg g(-1) wet weight).  相似文献   

2.
Dental amalgam in fillings exposes workers to mercury. The exposure to mercury was investigated among 1871 dental health care workers. The aim of the study was to evaluate the risk of mercury exposure among dental compared to nondental health care workers and to determine other risk factors for mercury exposure. Respondents answered questionnaires to obtain demographic, personal, professional, and workplace information and were examined for their own amalgam fillings. Chronic mercury exposure was assessed through urinary mercury levels. In total, 1409 dental and 462 nondental health care workers participated in the study. Median urine mercury levels for dental and nondental health care workers were 2.75 μg/L (interquartile range [IQR] = 3.0175) and 2.66 μg/L (IQR = 3.04) respectively. For mercury exposure, there were no significant risk factor found among the workers involved within the dental care. The Mann–Whitney test showed that urine mercury levels were significantly different between respondents who eat seafood more than 5 times per week compared to those who eat it less frequently or not at all (p = 0.003). The urinary mercury levels indicated significant difference between dental workers in their practice using squeeze cloths (Mann–Whitney test, p = 0.03). Multiple logistic regression showed that only the usage of cosmetic products that might contain mercury was found to be significantly associated with the urinary mercury levels (odds ratio [OR] = 15.237; CI: 3.612–64.276). Therefore, mean urinary mercury levels of health care workers were low. Exposure to dental amalgam is not associated with high mercury exposure. However, usage of cosmetic products containing mercury and high seafood consumption may lead to the increase of exposure to mercury.

Implications: Exposure to the high levels of mercury from dental amalgam can lead to serious health effects among the dental health care workers. Nationwide chronic mercury exposure among dental personnel was assessed through urinary mercury levels. Findings suggest low urinary mercury levels of these health care workers. Exposure to dental amalgam is not associated with high mercury exposure. However, the usage of cosmetic products containing mercury and high seafood consumption may lead to the increase of exposure to mercury.  相似文献   

3.
Mercury levels were determined in the tissues and organs (lung, liver, kidney, skin, muscle, bone) of five toothed-whales stranded along the Corsican coast between November 1993 and February 1996. The species taken into consideration were the bottlenose dolphin Tursiops truncatus, the common dolphin Delphinus delphis, the striped dolphin Stenella coeruleoalba, the pilot whale Globicephala melas and the Risso's dolphin Grampus griseus. The variation in mercury levels between the different tissues and organs (lung, liver, kidney, skin, muscle, bone) of the cetacean species are discussed as regards storage, biotransformation and elimination. In all cases, the liver appears to be the preferential organ for mercury accumulation (with concentrations as high as 4250 microg Hg/g dw and 3298 microg Hg/g in the livers of Tursiops truncatus and Grampus griseus, respectively). The kidney and lung are the next organs in terms of mercury uptake followed by the muscle, bone and skin. The stomach contents of Grampus griseus and D. delphis were determined and consisted of cephalopods for Grampus griseus, and of sardines Sardina pilchardus and mackerels Trachurus sp. for D. delphis. Cephalopods had higher mercury concentrations (25.4 microg Hg/g dw) than fish (ca 1 microg Hg/g). These contents represent only one meal and mercury levels found in livers may integrate mercury uptake having occurred during the whole life span of animals.  相似文献   

4.
The carpophores of Parasol Mushroom and underlying soil substrate collected from several unpolluted and spatially distant sites across Poland were examined to know content and bioconcentration potential of mercury by this species. The total mercury content of the caps of Parasol Mushroom for the particular sites ranged from 1.1 +/- 1.0 to 8.4 +/- 7.4 microg/g dry matter (total range from 0.05 to 22 microg/g dm), while in the stalks were from 0.53 +/- 0.27 to 6.8 +/- 7.1 microg/g dm (total range from 0.078 to 20 microg/g dm). A top soil layer (0-10 cm) showed baseline mercury concentration from 0.022 +/- 0.011 to 0.36 +/- 0.16 microg/g dm (total range from 0.010 to 0.54 microg/g dm). Parasol Mushroom is an effective mercury accumulator in the carpophores and bioconcentration factor (BCF) values of this element in the caps and depending on the sampling site ranged from 16 +/- 6 to 220 +/- 110 (total range from 0.52 to 470), while for the stalks were from 7.6 +/- 2.6 to 130 +/- 96 (total range from 0.52 to 340). It seems reasonable to state that tolerance (maximum allowable concentration) of the total mercury in a single cap of Parasol Mushroom at unpolluted areas should not exceed 25 microg/g dm. A value greater then 25 mu g/g dm will imply an elevated content due to site pollution problems. Nevertheless, knowledge on highly toxic methylmercury content and its fraction in the total mercury content of Parasol Mushroom is lacking.  相似文献   

5.
Mercury (Hg) and cadmium (Cd) in common cormorants (Phalacrocorax carbo) collected in Lake Biwa, Japan and Tokyo, Japan, were investigated to elucidate the biological behaviors of these elements, and to assess exposure to these pollutants of wild, fish-eating birds. Hg and Cd concentrations were highest in the liver and kidneys, respectively. The lowest levels of both elements were observed in chicks. Hg concentrations in all tissues except brain increased significantly with growth from chicks to juveniles (p<0.05, U-test). Cd concentrations in the kidneys and liver also increased significantly during growth from juvenile to adult (p<0.005, U-test). When comparing hepatic Hg and Cd in adult birds between 10 samples from Lake Biwa and nine samples from Tokyo, the Cd concentrations in the Lake Biwa samples (1.4+/-0.37 microg/g dry wt) (mean+/-SD) were significantly higher than those from Tokyo (0.32+/-0.16 microg/g dry wt) (p<0.005, U-test), while no statistically significant difference was found in the Hg concentrations. Possible causes of these differences were discussed in relation to their prey.  相似文献   

6.
Tissues and organs from Stenella coeruleoalba stranded along the Apulian coasts (southern Italy) during the period April-July 1991 were analyzed for their mercury and selenium content. Analysis showed considerable variations in the mercury concentration in the examined organs and tissues. The highest concentrations of mercury were found in the liver (from 2.27 to 374.50 microg g(-1) wet wt.). After the liver, lung, kidney, muscle and brain were the most contaminated, while the lowest mercury contamination was found in the melon. As mercury, the liver also showed the highest selenium levels. Liver samples were also analyzed for their methyl mercury contents. The role of selenium in detoxification process of methyl mercury has been discussed. Mercury concentrations related to geographic variations and pollution of the marine environment have been examined. The possible implications between mercury accumulation and dolphin death have also been discussed.  相似文献   

7.
Polycyclic aromatic hydrocarbons (PAHs) are considered to act additively when exposed as congener mixtures. Additive internal concentrations at the site of toxic action is the basis for recent efforts to establish a sum PAH guideline for sediment-associated PAH toxicity. This study determined the toxicity of several PAH congeners on a body residue basis in Diporeia spp. These values were compared to the previously established LR(50) value for a PAH mixture based on the molar sum of PAH congeners and demonstrated similar LR(50) values for individual PAH. These results support the contention that the PAH act at the same molar concentration whether present as individual compounds or in mixture. Aqueous exposures were conducted for 28 d, and the water was exchanged daily to maintain the exposure concentration. The concentration in the exposures declined by an average of 22% between water exchanges across all compounds, and ranged from 11% to 32%. The toxicokinetics were determined using both time-weighted-average (TWA) and time-variable water concentrations and were not statistically different between the two source functions. Toxicity was determined for both mortality and immobility (failure to swim on prodding) and on both a TWA water concentration and a body residue basis. The LC(50) values ranged from 1757 microg l(-1) for naphthalene after 10 d exposure to 79.1 microg l(-1) for pyrene after 28 d exposure, and the EC(50) ranged from 1587 microg l(-1) for naphthalene after 10 d exposure to 38.2 microg l(-1) for pyrene after 28 d exposure. The LR(50) values for all congeners at all lengths of exposure were essentially constant and averaged 7.5+/-2.6 micromol g(-1), while the ER(50) for immobility averaged 2.6+/-0.6 micromol g(-1). The bioconcentration factor declined with increasing exposure concentration and was driven primarily by a lower uptake rate with increasing dose, while the elimination remained essentially constant for each compound.  相似文献   

8.
During the period 1978-1989, samples of liver, kidney and subcutaneous fat from 24 polar bears, Ursus maritimus, from Svalbard were analysed for mercury, cadmium, lead, copper, zinc, selenium, arsenic, HCB, DDE, PCBs (as Aroclor 1260 or Phenoclor DP6). In a selected number of liver (seven) and fat (three) samples, the composition of individual PCB congeners was studied by comparison with 23 individual PCB congeners (IUPAC nos 28, 52, 74, 101, 99, 110, 149, 118, 114, 105, 153, 141, 138, 187, 128, 183, 156, 157, 180, 170, 194, 206 and 209). In the seven liver samples, the concentrations of o,p'- and p,p'-isomers of DDT, TDE, DDE, alpha-, beta- and gamma-HCH, oxychlordane, heptachlor, heptachlorepoxide, aldrin and dieldrin were also determined. The hepatic concentrations of mercury, cadmium and lead in animals of all ages were 0.4-6.0, <0.1-1.2, and <0.5-1.6 microg g(-1), respectively. This indicates a moderate exposure. Concentrations of mercury and selenium were correlated (r=0.80). The levels of copper and zinc represented normal physiological concentrations. The concentrations of HCB, DDE and PCBs in fat were <0.05-1.5, <0.1-3.4 and 2.9-90 microg g(-1), respectively. The corresponding results for liver were <0.01-0.11, <0.1-0.5 and 0.1-78 microg g(-1), respectively. Six PCB congeners, PCB-99, -153, -138, -180, -170, and, -194 accounted for about 99 and 87% of the total PCB content (sum of the 12 congeners, nos. 28, 99, 153, 138, 128 + 187, 156, 157, 180, 170, 194, 206 and 209) in liver and fat, respectively. PCB-153 represented 37+/-3 30+/-16% of the sum PCB (sum of 12 congeners) in liver and fat, respectively. The range of the hepatic concentration of oxychlordane was 5-19 microg g(-1). Quantifiable concentrations of heptachlor, heptachlorepoxide, beta-HCH and dieldrin were also found in all the liver samples analysed. Low concentrations of p,p'- and o,p'-DDT were found in two of seven liver and two of two fat samples. Comparisons are made with investigations from Canada and Greenland. Possible effects of PCBs, especially on reproduction, cannot be excluded. Ringed seal, Foca hispida, and to some extent bearded seal, Erignathus barbatus, are the main food of the polar bear. It is therefore likely that the exposure to environmental pollutants occurs via the consumption of these two species.  相似文献   

9.
The toxicity, accumulation, and elimination of diazinon were investigated for the european eel, Anguilla anguilla. The 24, 48, 72 and 96-h median lethal concentrations (LC50) were 0.16, 0.11, 0.09 and 0.08 mg/L, respectively. Fish exposed to sublethal concentration (0.042 mg/L) accumulated diazinon in liver and muscle tissues. Bioconcentration factors (BCF) of diazinon were 1850 in liver, and 775 in muscle over the 96-h exposure period. Upon removal from diazinon containing water the contaminated fish rapidly eliminated diazinon. The excretion rate constants of this insecticide were 0.108 h-1 for liver and 0.016 h-1 for muscle. Diazinon half-lives were 16.6 and 33.2 hours for liver and muscle, respectively.  相似文献   

10.
Freshwater fish Cyprinus carpio was selected for the study of bioaccumulation of organochlorinated pesticides in tissues like gills, muscle, intestine, kidney, and liver in a continuous fed system. The pesticides used were Aldrin, Dieldrin, BHC, and DDT. The bioaccumulation of Dieldrin was maximum of 85.0 microg g(-1) wet weight in liver tissue while minimum of 7.30 microg g(-1) wet weight for DDT at 30 days exposure time. Bioconcentration factor (BCF) has followed the same trend in liver tissue for Dieldrin and DDT. The rate of bioaccumulation was found to be maximum of 4.3879 microg g(-1) wet weight in liver tissue and minimum of 0.0021 microg g(-1) wet weight in gill tissue for 30 days exposure. As evidenced by the increasing values of BCF, pesticide uptake also showed increased trend with the increase in exposure time. A high correlation coefficient ranging between 0.7247 and 0.9616 between the pesticide concentration and exposure time was observed. Based on actual BCF values, log Kow were calculated and the values are well within the reported values of 6.5 indicating efficient relationship between BCF and log Kow because beyond the 6.5 the bioconcentration levels off.  相似文献   

11.
Total mercury (T-Hg) and selenium (Se) concentrations in liver, kidney and muscle from a pod of killer whales including five mature females and three calves stranded in the northern area of Japan were analyzed. In the mature female, contamination level of T-Hg in the liver sample (62.2+/-21.9 microg/wet g) was markedly higher than that in kidney sample and muscle sample. The molar ratio of T-Hg to Se in the liver sample was approximately 1, and those in the kidney and muscle samples were markedly lower than 1. These results suggest that the formation of HgSe compound increases the hepatic accumulation of mercury (Hg). In contrast, contamination level of T-Hg in the calf organs was much lower than that in the mature female organs. These results suggest that the transfer of Hg from the mother to the fetus via placenta and/or to calf via milk is trace.  相似文献   

12.
Experiments were carried out to investigate the accumulation and elimination of cadmium (Cd) in tissues (gill, intestine, kidney, liver and muscle) of juvenile olive flounder, Paralichthys olivaceus, exposed to sub-chronic concentrations (0, 10, 50, 100 microg l(-1)) of Cd. Cd exposure resulted in an increased Cd accumulation in tissues of flounder with exposure periods and concentration, and Cd accumulation in gill and liver increased linearly with the exposure time. At 20 days of Cd exposure, the order of Cd accumulation in organs was gill > intestine > liver > kidney > muscle and after 30 days of exposure, those were intestine > gill > liver > kidney > muscle. An inverse relationship was observed between the accumulation factor (AF) and the exposure level, but AF showed an increase with exposure time. During the depuration periods, Cd concentration in the gill, intestine and liver decreased immediately following the end of the exposure periods. No significant difference was found Cd in concentration in the kidney and muscle during depuration periods. The order of Cd elimination rate in organs were decreased intestine > liver > gill during depuration periods.  相似文献   

13.
Specific accumulation of mercury and selenium in seabirds   总被引:1,自引:0,他引:1  
Total mercury (T-Hg), methyl mercury (MeHg) and selenium (Se) concentrations were determined to elucidate the relationship between Hg and Se levels in the liver of 10 seabird species. Highest concentrations of T-Hg (mean 267 microg/g dry wt), MeHg (mean 25.5 microg/g dry wt) and Se (mean 113 microg/g dry wt) were in the liver of black-footed albatross (Diomedea nigripes). An equivalent molar ratio of 1:1 between T-Hg and Se was found in the liver of individuals which contain over 100 microg Hg/g. However, such a relationship was unclear in other individuals which had relatively low Hg levels. This suggests that Se plays a role in Hg detoxification for those individuals with high Hg. In seabird tissues, Hg and Se levels should be a most important factor determining the relationship between Hg and Se, and fluctuation of Hg burden through molting and the species-specific demethylation capacity would also influence their relationships.  相似文献   

14.
This study aimed to evaluate (1) the capacity of the green alga Pseudokirchneriella subcapitata and the waterflea Daphnia magna to regulate copper when exposed to environmentally realistic copper concentrations and (2) the influence of multi-generation acclimation to these copper concentrations on copper bioaccumulation and homeostasis. Based on bioconcentration factors, active copper regulation was observed in algae up to 5 microg Cu L(-1) and in daphnids up to 35 mug Cu L(-1). Constant body copper concentrations (13+/-4 microg Cu g DW(-1)) were observed in algae exposed to 1 through 5 microg Cu L(-1) and in daphnids exposed to 1 through 12 microg Cu L(-1). At higher exposure concentrations, there was an increase in internal body copper concentration, while no increase was observed in bioconcentration factors, suggesting the presence of a storage mechanism. At copper concentrations of 100 microg Cu L(-1) (P. subcapitata) and 150 microg Cu L(-1) (D. magna), the significant increases observed in body copper concentrations and in bioconcentration factors may be related to a failure of this regulation mechanism. For both organisms, internal body copper concentrations lower than 13 microg Cu g DW(-1) may result in copper deficiency. For P. subcapitata acclimated to 0.5 and 100 microg Cu L(-1), body copper concentrations ranged (mean+/-standard deviation) between 5+/-2 microg Cu g DW(-1) and 1300+/-197 microg Cu g DW(-1), respectively. For D. magna, this value ranged between 9+/-2 microg Cu g DW(-1) and 175+/-17 microg Cu g DW(-1) for daphnids acclimated to 0.5 and 150 microg Cu L(-1). Multi-generation acclimation to copper concentrations >or =12 microg Cu L(-1) resulted in a decrease (up to 40%) in body copper concentrations for both organisms compared to the body copper concentration of the first generation. It can be concluded that there is an indication that P. subcapitata and D. magna can regulate their whole body copper concentration to maintain copper homeostasis within their optimal copper range and acclimation enhances these mechanisms.  相似文献   

15.
Darwin National Reserve is a protected natural area on the north-west shore of the Rybinsk Reservoir, 350 km north of Moscow. In June 1989, six lakes in the Reserve and the reservoir were surveyed to assess lake acidity and the mercury content of perch, Perca fluviatilis. Five were seepage lakes with no permanent inlets or outlets and one was a drainage lake with both an inlet and an outlet. The seepage lakes were acidic (mean pH 4.6-4.8) and varied in colour from 20 to 200 Hazen units. The drainage lake and reservoir were alkaline (mean pH 8.0-8.1) and colour spanned a similar range. The mean mercury content of perch dorsal epaxial muscle ranged from 0.5 to 1.1 microg g(-1) wet weight in the five acidic lakes and from 0.1 to 0.2 microg g(-1) in the alkaline lakes. Fish mercury content was negatively correlated with lake pH (r=-0.93, P=0.002) if all waters were considered together, and positively correlated with apparent colour (r=0.91, P=0.03) in the seepage lakes.  相似文献   

16.
The suitability of metallothioneins (MT) in fish as biomarker of exposure to mercury has been questioned. Therefore, this study aimed at investigating the relationship between external levels of exposure, mercury accumulation and MT content, assessing species and tissue specificities. Two ecologically different fish species - Dicentrarchus labrax and Liza aurata - were surveyed in an estuary historically affected by mercury discharges. Total mercury (T-Hg) and MT content were determined in gills, blood, liver, kidney, muscle and brain. All tissues reflected differences in T-Hg accumulation in both species, although D. labrax accumulated higher levels. Regarding MT, D. labrax revealed a depletion in brain MT content and an incapacity to induce MT synthesis in all the other tissues, whereas L. aurata showed the ability to increase MT in liver and muscle. Tissue-specificities were exhibited in the MT inducing potential and in the susceptibility to MT decrease. L. aurata results presented muscle as the most responsive tissue. None of the investigated tissues displayed significant correlations between T-Hg and MT levels. Overall, the applicability of MT content in fish tissues as biomarker of exposure to mercury was uncertain, reporting limitations in reflecting the metal exposure levels and the subsequent accumulation extent.  相似文献   

17.
Radionuclides (210Pb, 210Po, 230Th, and 232Th) and chemical Th and U were measured in water, sediments, and fish tissues (bone, muscle, and gut contents of laketrout, Salvelinus namaycush, whitefish, Coregonus clupeaformis and Prosopium cylindraceum) from four lakes in a watershed affected by U mining and milling operations at Elliot Lake, Ontario, and from control lakes in an adjacent, non-industrialized, watershed. Radionuclide concentration ratios between tissue levels and sediment and water levels were calculated. Annual radionuclide intakes and resulting doses were estimated for humans consuming fish from the watershed. Bone 210Pb levels were higher (186 mBq g(-1) dry wt in laketrout and 230 mBq g(-1) dry wt in one lake whitefish) than in muscle (< 50 mBq g(-1) dry wt in all cases), and generally higher in fish from study lakes than from controls, but no consistent differences were observed among fish species. Similarly, 210Po levels were higher in bone (208 +/- 33 mBq g(-1), in laketrout) than muscle (maximum 26 +/- 4 mBq g(-1), in laketrout), and in study lake populations compared to controls. Laketrout 210Po bone concentrations were higher than previously reported in Canada. Levels of 230Th, 232Th, and Th were below detection limits (20 mBq g(-1), 0.05 microg g(-1)) in body tissues in all fish species. Bone levels of U (14.6 +/- 3.0 microg g(-1), in lake whitefish) were higher than in muscle (most < 0.05 microg g(-1), except 0.12 +/- 0.04 and 0.08 +/- 0.03 microg g(-1) in lake whitefish) in fish from waters affected by industrial activity. In control lakes, bone and muscle levels were lower and not significantly different from each other. Muscle levels did not vary consistently with location. Concentration of 210Pb and U was seen from water and 'gut' material (taken as a surrogate for diet) to bone in laketrout and whitefish, and of U from water to muscle in whitefish, but in no case from sediments to tissues. Human intakes of 210Pb, 210Po, 230Th, 232Th, and U from consuming one meal of fish (375 g) per week could, in aggregate, represent an annual effective dose < 15% of the public dose limit (5 mSv). Monitoring biota living near the decommissioned Elliot Lake U operations, especially of 210Pb levels in fish muscle, with further assessment of human doses attributable to local fish and other animals in the diet, should continue. Because radionuclide effects on fish health (and on other non-human organisms) are of increasing concern, neoplasms, malformations, and reproductive anomalies in local fish deserve examination.  相似文献   

18.
Biomonitoring of airborne mercury with perennial ryegrass cultures   总被引:1,自引:0,他引:1  
A biomonitoring network with grass cultures was established near a chlor-alkali plant and the mercury concentration in the cultures were compared with the average atmospheric total gaseous mercury (TGM). Biomonitoring techniques based on different exposure periods were carried out. When comparing the mercury concentration in the grass cultures, both the average atmospheric TGM concentration during exposure and the exposure time determined to a large extent the accumulation rate of TGM. The maximum tolerable level of mercury in grass (approximately equal to 110 microg kg(-1) DM) corresponds with an average TGM concentration of 11 ng m(-3) for 28 days exposure. The background concentrations in grass were on an average 15 microg kg(-1) DM and the effect detection limit (EDL) was 30 microg kg(-1) DM. This value corresponds with an average TGM concentration of 3.2 and 4.2 ng m(-3) for 28 and 14 days exposure, respectively, which is in turn the biological detection limit (BDL) of ambient TGM. Exposures for 7 days were less appropriate for biomonitoring.  相似文献   

19.
High total soil fluoride (10 000 microg g(-1)) in the metalliferous fluorspar tailings was reflected by elevated concentrations in standing live vegetation (300-1000 microg g(-1)); plant roots (c. 6000 microg g(-1)); plant litter (c. 4000 microg g(-1)); total body concentrations of invertebrates (400-4000 microg g(-1)) and the small mammals Microtus agrestis (120-360 microg g(-1)) and Sorex araneus (140-250 microg g(-1)). Seasonal changes in the standing live vegetation and the availability of soil fluoride to plants are discussed. Seasonal changes in total body concentrations of the small mammals were related to the age structure of the populations as well as dietary levels. In the small mammals, the concentration ratios were < 0.5 at the tailings dam and > 1.1 at the control site, indicating that both species were able to regulate fluoride accumulation at the higher levels of intake. Soft tissue concentrations were, as expected, very low compared to the hard tissues but, still, were generally significantly higher at the tailings dam compared to the control site. Evidence of dental fluorosis was found in Microtus agrestis, but not Sorex araneus.  相似文献   

20.
This study used an experimental model of a constructed wetland to evaluate the risk of mercury methylation when the soil is amended with sulfate. The model was planted with Schoenoplectus californicus and designed to reduce copper, mercury, and metal-related toxicity in a wastestream. The sediments of the model were varied during construction to provide a control and two levels of sulfate treatment, thus allowing characterization of sulfate's effect on mercury methylation and bioaccumulation in periphyton and two species of fish--eastern mosquitofish (Gambusia holbrooki) and lake chubsucker (Erimyzon sucetta). After one year in the experimental model, mean dry-weight normalized total mercury concentrations in mosquitofish from the non-sulfate treated controls (374+/-77 ng/g) and the reference location (233+/-17 ng/g) were significantly lower than those from the low and high sulfate treatments (520+/-73 and 613+/-80 ng/g, respectively). For lake chubsucker, mean total mercury concentration in fish from the high sulfate treatment (276+/-63 ng/g) was significantly elevated over that observed in the control (109+/-47 ng/g), the low sulfate treatment (122+/-42 ng/g), and the reference population (41+/-2 ng/g). Mercury in periphyton was mostly inorganic as methylmercury ranged from 6.6 ng/g (dry weight) in the control to 9.8 ng/g in the high sulfate treatment, while total mercury concentrations ranged from 1147 ng/g in the control to a high of 1297 ng/g in the low sulfate treatment. Fish methylmercury bioaccumulation factors from sediment ranged from 52 to 390 and from 495 to 3059 for water. These results suggest that sulfate treatments add a factor of risk due to elevated production of methylmercury in sediment and porewater which biomagnified into small fish, and may potentially increase through the food web.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号