首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 299 毫秒
1.
产电微生物是驱动微生物燃料电池(Microbial fuel cell,MFC)运行的关键.采用分离培养-MFC产电实验的方法,从以污水处理厂活性污泥为接种物的MFC阳极生物膜中分离到一株产电微生物,命名为Z6.菌株Z6的16S rDNA序列与已知菌株Klebsiell aoxytoca An16-2具有100%的同源性,结合该菌生理和形态特征将其初步鉴定为克雷伯氏菌属.菌株Z6接种MFC的产电结果表明,以柠檬酸钠为底物时MFC的最大体积功率密度达到14.35W·m-3,内阻为400Ω,显示出较强的电化学活性.通过循环伏安分析和外源AQDS添加实验结果推测,菌株Z6很可能通过分泌电子传递中间体传递电子.  相似文献   

2.
丁为俊  于立亮  陈杰  成少安 《环境科学》2017,38(5):1911-1917
阳极材料是影响微生物燃料电池实用化的关键因素之一.本文以碳刷、碳布或石墨毡阳极和泡沫镍空气阴极制成紧凑式6 L单室双空气阴极微生物燃料电池(MFC),研究不同阳极材料对电池启动过程和运行以乙酸钠为基质的人工废水和实际屠宰废水的产电性能和废水处理效果的影响,比较了单位阳极成本的产电效益.结果表明:阳极材料对紧凑式MFC的启动过程没有明显影响;在产电性能方面,碳刷阳极MFC在人工废水和屠宰废水中的输出功率密度最高,分别为(56.3±1.8)W·m~(-3)和(19.5±0.8)W·m~(-3),其次为碳布阳极MFC,分别为(46.0±1.7)W·m~(-3)和(16.9±0.6)W·m~(-3),最差的是石墨毡阳极MFC,分别为(40.8±1.5)W·m~(-3)和(11.9±0.5)W·m~(-3);在废水处理效果方面,不同阳极MFC在运行人工废水或屠宰废水时COD去除率没有明显差别,均在90%左右.碳刷阳极MFC所产生的经济效益最高,在运行乙酸钠和屠宰废水时分别为(3.44±0.08)m W·元-1和(0.97±0.05)m W·元-1,分别比碳布MFC和石墨毡MFC高18.6%、12.8%和38.7%、80%.本研究结果说明碳刷是微生物燃料电池实用化过程中最合适的阳极材料.  相似文献   

3.
方丽  刘志华  李小明  杨麒  郑峣  贾斌 《环境科学》2010,31(10):2518-2524
采用经微波预处理的剩余污泥上清液作为接种体,成功地启动了空气阴极单室无膜微生物燃料电池(MFC),同时考察了不同微波时间和功率下MFC最大输出功率密度以及外接电阻对MFC的影响.结果表明,MFC整个产电周期长达600h,在同一微波功率(900W)下,MFC最大输出功率密度随辐射时间的延长而增大,在300s时达到210.07mW·m-2;当微波时间(300s)相同时,随着微波功率的增大,MFC最大输出功率在720W处出现一个峰值随后下降.长时间和较高功率(900W)的微波处理能够有效地提高MFC的工作效率;在最佳微波处理条件(300s,720W)下,最大输出功率密度最高可达306.2mW·m-2;不同外接电阻(30、500、2000Ω)下,库仑效率依次为83.3%、79.0%、33.6%;通过扫描电镜观察到,当外接电阻较高(2000Ω)时,阳极表面附着的微生物以球菌为主,外接电阻较低(30Ω)时,形态较为复杂,主要是丝状菌、球菌和杆菌,表明外接电阻会对MFC库仑效率和阳极表面微生物的富集产生影响.  相似文献   

4.
填料型微生物燃料电池产电特性的研究   总被引:6,自引:0,他引:6  
将石墨和碳毡作为阳极填料组装成填料型微生物燃料电池,其启动期在1 d左右,低于平板型微生物燃料电池的启动期.碳毡作为填料时,微生物燃料电池的最大产电功率密度为1 502 mW/m2(37.6 W/m3),优于石墨作为填料的MFC.将碳毡与碳纸烧结一体以提高填料型微生物燃料电池阳极的导电性,与平板型微生物燃料电池相比,其面积内阻从0.071 Ω穖2下降到0.051 Ω穖2,最大电流密度从3 000 mA上升到8 000 mA,最大产电功率密度从1 100 mW/m2(27.5 W/m3)上升到2426 mW/m2(60.7W/m3),阳极电势平均下降100 mV.循环流量影响填料型微生物燃料电池的产电能力,当流量低于1 mL/min时,其产电功率密度随流速降低而下降.填料型微生物燃料电池在外电阻为600 Ω下长期稳定运行30 d以上,其库仑效率约为10.6%.  相似文献   

5.
梅卓  张哲  王鑫 《环境科学》2015,36(11):4311-4318
阳极-隔膜-阴极的"三合一"膜电极结构能够最大程度减小阴阳极间距,提高微生物燃料电池(microbial fuel cell,MFC)的输出功率.为进一步提高MFC性能,本研究使用非贵金属材料构建了辊压"三合一"膜电极系统,其欧姆内阻降低至3~5Ω.以乙酸钠为底物,MFC的最高功率密度达到446 m W·m-2.向阳极内添加固体小球(如聚苯乙烯球和玻璃微球)可在辊压过程中增加阳极表面和内部的大孔,强化电解液向阴极的传递从而使MFC的功率密度提升10%.添加阳离子交换树脂能够进一步强化阳极内部的质子传递,提高阴极电位,从而将功率密度提升至543 m W·m-2.此外,阳极内添加阳离子交换树脂还可提高电池运行的稳定性和库仑效率.  相似文献   

6.
采用以假单胞菌Pseudomonas sp.C27为阳极优势菌属的微生物燃料电池(MFC)为研究对象,重点考察了进水中的硝酸盐浓度对于MFC系统产电及污染物去除的影响.实验结果表明,硝酸盐对于MFC的库仑效率(CE)影响较大,当硝酸盐浓度为250 mg·L~(-1)时,其电压下降段库仑效率仅为0.17%,而阳极未加入硝酸盐时,库仑效率为9.3%.当阳极初始硝酸盐浓度由0 mg·L~(-1)增加到250 mg·L~(-1)时,系统的传荷内阻由16.3Ω下降至11.2Ω,输出电压经短暂的电压下降后迅速回升至稳定,其稳定阶段输出电压与未受抑制阶段基本持平,最大输出功率可达到120 m W·m~(-2)左右.当硝酸盐浓度大于300 mg·L~(-1)时,硝酸盐对阳极微生物产电活性造成不可逆的抑制作用,系统产电能力大幅度下降且无法恢复至未受抑制阶段.可见,阳极生物反硝化过程对阳极生物产电具有电子竞争作用,过高的硝酸盐浓度会造成阳极生物膜产电性能降低甚至完全丧失.  相似文献   

7.
反硝化脱硫微生物燃料电池的可行性研究   总被引:1,自引:1,他引:1  
微生物燃料电池(microbial fuel cell,MFC)可在去除废水中污染物的同时回收电能.以S2-和NO-3-N分别作为阳极电子供体和阴极电子受体,研究了反硝化脱硫MFC的同步阳极除硫与阴极脱氮,分析了阳极进水S2-浓度对MFC产电性能及污染物去除情况的影响,探究了MFC阳极石墨纤维丝上的硫沉积情况及其对内阻的影响.结果表明,反硝化脱硫MFC在32 d内实现稳定的阳极除硫与阴极脱氮.外阻为100Ω时,电压稳定在(176.0±6.9)m V,相应的S2-和NO-3-N去除负荷分别为(0.94±0.04)kg·m-3NC·d-1和(11.1±0.6)g·m-3NC·d-1.MFC的产电能力随着阳极进水S2-浓度的增加逐渐增强,SO_2-4的生成率和NO-3-N去除负荷受S2-浓度影响较小.在试验S2-浓度下S2-的去除较彻底,SO_2-4的生成率均超过65%.NO-3-N去除负荷维持在12 g·m-3NC·d-1左右,出水NO-2-N浓度均低于0.01 mg·L-1.反硝化过程较完全.在运行过程中,MFC阳极的石墨纤维丝上会沉积颗粒硫,降低电极的有效面积,使MFC的内阻升高.  相似文献   

8.
本文以单室空气阴极微生物燃料电池(Microbial Fuel Cell,MFC)处理含不同浓度硝酸根的模拟废水,研究了NO~-_3-N初始浓度和开闭路培养方式对单室MFC的启动、硝酸根去除性能和产电性能的影响.结果表明,随着NO~-_3-N初始浓度的提高,MFC的NO~-_3-N平均去除速率达到稳定值所需时间增加,NO~-_3-N平均去除速率提高.当NO~-_3-N初始浓度为200 mg·L~(-1)时,闭路组MFC的NO~-_3-N平均去除速率达到(3.52±0.28) kg·m~(-3)·d~(-1),高于相近条件下许多传统生物反应器的NO~-_3-N平均去除速率.硝酸根去除过程主要发生在MFC运行周期的前期.硝酸根对阳极生物膜中主要产电菌Geobacter的生物量没有影响.当基质充足时,所有闭路组MFC的最大功率密度相近(~27 W·m~(-3)).闭路组MFC比开路组MFC具有更高的NO~-_3-N去除速率,可能与其阳极生物膜具有电化学还原亚硝酸根能力和Thauera易在其阳极上富集有关.  相似文献   

9.
降解喹啉的微生物燃料电池的产电特性研究   总被引:6,自引:2,他引:4  
通过构建双极室微生物燃料电池(Microbial fuel cell,MFC),对喹啉的降解及MFC的产电性能进行了研究.试验结果表明,当喹啉初始浓度为500 mg·L-1,葡萄糖与喹啉浓度之比为1:1,3:5,1:5时,MFC的最大输出电压分别为558 mV、469 mV、328 mV,运行周期分别为56.4 h、70h、82.5 h;最大功率密度分别为173 mW·m-2、122 mW·m-2、60 mW·m-2(按阳极截面积计算)或者35 W·m-3、24 W·m-3、12 W·m-3(按阳极室有效容积计算).MFC可实现对喹啉的高效降解,但葡萄糖的浓度对喹啉的降解速率有较大影响.当葡萄糖浓度分别为500 mg.L-1、300mg·L-1和100 mg·L-1时,使500 mg·L-1喹啉完全降解的时间分别为6 h、24 h和72 h.MFC闭路条件下对喹啉的降解速率高于开路厌氧条件下的喹啉降解速率约10%.MFC对喹啉的降解与产电速率之间存在差距,喹啉被快速降解至较低浓度(<5rag·L-1)后,MFC的产电性能才达到最优.MFC以用喹啉和葡萄糖作为混合燃料时,可以在实现高效降解喹啉的同时可稳定地向外输出电能,这为杂环芳烃类难降解有机物的高效低耗处理提供了新的途径.  相似文献   

10.
厌氧流化床微生物燃料电池处理废水的产电特性   总被引:3,自引:0,他引:3  
在内径40mm、高600mm的液固厌氧流化床空气阴极单室微生物燃料电池(MFC)中,分别以污水和椰壳活性炭为液相和固相,采用间歇运行方式,考察了接种厌氧污泥条件下流化状态对电池产电性能的影响.实验结果表明,固定床条件下,电池启动迅速.初始电压为200mV,80h后电压急剧上升,100h后电池开路电压稳定在700~900mV之间.对比电压和功率密度随电流强度变化的曲线知,电池启动成功后,固定床状态下,电池最大输出功率密度随污水循环流速的增加而增大.床层颗粒由固定状态转变为流化状态后,电池最大输出功率密度由初始值120mW·m-3增加至220mW·m-3,说明流化床可以改善MFC阳极室内传质效果,加快反应速率,提高MFC产电性能.  相似文献   

11.
在环境污染治理领域,被誉为"生态型工程师"的蚯蚓在污水/污泥资源化处理与处置,以及土壤的生态修复中备受关注。蚯蚓通过掘洞、摄食、分泌黏液和排泄蚓粪等方式调控系统中微生物的数量、活性及群落结构,与微生物协同互作强化了生物系统中物质转化与能量流动关系。蚯蚓-微生物协同共生的相互依存关系是此类技术展现低耗高效和生态友好特点的关键。通过综述经人工强化的蚯蚓-微生物互作生态系统中,蚯蚓对微生物的量、活性、群落结构以及食物网的影响,探讨了该生态系统中物质转化和能量流动的特点,并展望了蚯蚓-微生物互作技术研究及应用的发展方向。  相似文献   

12.
土壤微生物是土壤生态系统的主要组成部分。而且不同的土壤具有不同的土壤微生物群落。影响土壤微生物多样性的因素很多,主要可以分为自然因素和人为因素。本文将从土壤微生物多样性的影响因素的两个方面阐述目前国内外土壤微生物多样性的研究现状。  相似文献   

13.
土壤中微生物及其环境效益的浅析   总被引:1,自引:0,他引:1  
关于土壤微生物活性,已经成为目前土壤方面研究的热点问题。有些学者曾经对微生物在土壤环境中的作用表示怀疑,他们过分强调物理化学作用在土壤形成和土壤环境效应中的作用,而忽视微生物的研究。随着土壤学研究的深入,关于土壤成因、土壤生产力和环境现象已经越来越复杂,单纯依靠物理和化学的知识已经无法解释某些复杂的实验现象,现在必须依靠微生物来解释某些现象。本文将对土壤微生物在土壤研究中的作用进行简述,同时分析土壤环境变化对微生物数量和活性的影响,并简述一些微生物研究的进展。  相似文献   

14.
三江平原小叶章湿地土壤微生物活性特征研究   总被引:8,自引:1,他引:8  
选取三江平原河滨湿地、沼泽湿地和草甸化湿地3种类型小叶章湿地0~20cm土壤,研究了不同类型湿地土壤总有机碳(TOC)、微生物生物量碳(MBC)、微生物生物量氮(MBN)、基础呼吸(BR)、呼吸势(PR)、微生物熵(Cmic/Corg)和代谢熵(qCO2)变化规律.结果表明,不同类型小叶章湿地土壤总有机碳、微生物生物量碳和基础呼吸分别为46.60~75.44g.kg-1、1106.86~2319.42mg.kg-1和5.72~10.10mg.kg-.1h-1.河滨湿地和沼泽湿地土壤总有机碳、微生物生物量碳、微生物生物量氮、基础呼吸、呼吸势和微生物熵均显著高于草甸化湿地(p0.01),而河滨湿地和沼泽湿地代谢熵明显低于草甸化湿地(p0.05).各土壤微生物活性指标在河滨湿地和沼泽湿地间均无明显差异.因而,相对于河滨湿地和沼泽湿地,草甸化湿地土壤微生物活性处于较低水平,土壤总有机碳和水分含量低是限制草甸化湿地土壤微生物活性的重要因素.  相似文献   

15.
土壤微生物是土壤生态系统的主要组成部分,而且不同的土壤具有不同的土壤微生物群落。影响土壤微生物多样性的因素很多,主要可以分为自然因素和人为因素。本文将从土壤微生物多样性的影响因素的两个方面阐述目前国内外土壤微生物多样性的研究现状。  相似文献   

16.
土壤生态系统微生物多样性技术研究进展   总被引:2,自引:0,他引:2  
土壤微生物多样性主要研究土壤环境中微生物种群的类别、丰度、分布、结构变化及微生物群落功能的多样性,是土壤生物多样性研究的主体部分。19世纪末,传统的微生物分离培养方法应用于土壤微生物多样性解析。至20世纪70年代,建立了以磷脂脂肪酸图谱分析法(PLFA)和BIOLOG微量分析法为代表的对土壤微生物群落多样性评价的生物化学方法。20世纪90年代后期,随着分子生物学技术的快速发展,建立了变性梯度凝胶电泳(DGGE)、末端限制性片段长度多样性(TRFLP)、克隆文库和高通量测序等土壤微生物多样性研究方法。本文综述了土壤微生物多样性研究技术的原理、进展,并对不同技术的优缺点及应用进行探讨,并对相关领域研究提出思考。  相似文献   

17.
以铜锌冶炼厂附近的水稻土为例 ,研究了重金属复合污染对土壤微生物群落的影响 .结果表明 ,有效铜、锌、镉、铅与微生物生物量碳、微生物生物量氮、微生物商、微生物生物量氮 全氮均呈显著负相关 .重金属污染均能降低细菌、真菌和放线菌的数量 .用BIOLOG生态盘研究了重金属污染对微生物群落结构的影响 ,发现重金属污染明显影响了微生物群落结构 ,反映在典型变量 1(CV1)与重金属元素含量呈极显著正相关 ,因此认为典型变量 1是反映重金属污染程度的有效指标 .经逐步回归分析发现 ,有效铜是影响典型变量 1最主要的因素 .  相似文献   

18.
采伐林窗对马尾松人工林土壤微生物生物量的初期影响   总被引:4,自引:1,他引:4  
为了解人为采伐活动形成的林窗对马尾松低效人工林土壤微生物生物量的影响,以39 a生的马尾松人工林7 种不同大小林窗(G1:100 m2、G2:225 m2、G3:400 m2、G4:625 m2、G5:900m2、G6:1 225 m2、G7:1 600 m2)以及林下为研究对象,分析了林窗中央和林窗边缘土壤微生物生物量碳(MBC)、微生物生物量氮(MBN)、微生物生物量磷(MBP)的季节变化。结果显示:①林窗大小显著影响了林窗内各位置土壤MBC和MBP,对MBN影响不显著;MBN与MBC变化趋势相同,均随林窗增大呈先升后降的单峰型变化,但MBN变化幅度较小,MBP仅在林窗中央具有单峰型变化。MBC、MBN和MBP分别在面积为400~900 m2、225~625 m2和625~900 m2的林窗较高。总体来看,中型林窗更有利于微生物生物量的增值。②季节变化对土壤MBC、MBN、MBP均有极显著影响,MBC为夏高春低,MBN夏高冬低;MBP的变化较复杂,秋季相对较高。③林窗中央与边缘间MBC、MBN、MBP差异不显著,但MBC、MBN显著高于林下。说明较之马尾松纯林,林窗内土壤微生物活性有较大提高。④土壤温度对MBC、MBN有显著影响,土壤含水量对MBN、MBP有显著影响,土壤温度和水分是林窗形成后影响土壤微生物生物量的重要环境因子。  相似文献   

19.
文章介绍了微生物法脱硫技术的工艺系统和技术特点,以及在宜兴协联热电厂的应用的情况,并作了经济运行分析。  相似文献   

20.
通过构建填料型微生物燃料电池(MFC),首次对以喹啉为燃料时的MFC阳极表面的微生物群落进行了分析.PCR-DGGE的试验结果表明,随着燃料的改变,微生物群落也发生改变.当以喹啉和葡萄糖的混合溶液稳定地作为燃料时,由于受到喹啉毒性的抑制,微生物多样性降低,优势菌也发生明显的改变.与葡萄糖共基质相比,以单一喹啉为燃料时的阳极微生物优势菌落发生明显改变.新增加一类菌,这类菌与Pseudomonas sp. DIC5RS 的同源性为100%,推测该菌在单一喹啉为MFC燃料时喹啉的降解过程中起到关键作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号