首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
O3、H2O2/O3及UV/O3在焦化废水深度处理中的应用   总被引:1,自引:1,他引:0  
采用O3、H2O2/O3和UV/O3等高级氧化技术(AOPs)对某焦化公司的生化出水进行深度处理,考察了O3与废水的接触时间、溶液pH、反应温度等因素对废水COD去除率的影响,确定出O3氧化反应的最佳工艺参数为:接触时间40 min,溶液pH 8.5,反应温度25℃,此条件下废水COD及UV254的去除率最高可达47.14%和73.47%;H2O2/O3及UV/O3两种组合工艺对焦化废水COD及UV254的去除率均有一定程度的提高,但H2O2/O3系统的运行效果取决于H2O2的投加量。研究结论表明,单纯采用COD作为评价指标,并不能准确反映出O3系列AOPs对焦化废水中有机污染物的降解作用。  相似文献   

2.
通过固定床实验系统研究烟气脱除零价汞的实验,首先研究了滤袋常用的聚苯硫醚(polyphenylene sulfide,PPS)以及活性炭纤维(activated carbon fiber,ACF)在不同温度、不同气体组分下负载V2O5-WO3/TiO2催化剂,对模拟燃煤烟气中零价汞(Hg0)的脱除效果。然后对比研究了活性炭纤维协同滤袋常用纤维负载催化剂后,对模拟燃煤烟气中Hg0的脱除性能。结果表明,在汞蒸气入口浓度为50 μg/m3,纯N2气氛下,当温度为25℃时,两者脱除率均能达到99%,当温度为200℃,负载催化剂的活性炭纤维脱除率在30%左右,PPS纤维仅为10%左右。在200℃情况下,模拟烟气的组分为N2+O2时,2种纤维的Hg0脱除率提高了10%~20%,当在混合气体中添加0.01‰后,负载催化剂的PPS纤维Hg0脱除率能达到80%,活性炭纤维Hg0脱除率能达到98%。当温度为200℃,模拟烟气的组分为N2+O2+HCl时,不同性能掺炭纤维负载催化剂后Hg0脱除率在69%~95%范围之间变化,其中PPS掺炭纤维对Hg0脱除效率最高达到95%,因此,负载V2O5-WO3/TiO2催化剂的PPS掺炭纤维能在高温烟气中保持较高的Hg0脱除率。  相似文献   

3.
采用溶胶-凝胶法制备了La2O3/ZnO/TiO2复合光催化剂,以紫外灯为光源,活性艳红K-2BP为模型降解物,研究了La2O3/ZnO/TiO2的光催化性能。结果表明:当锌和镧的掺杂量w(ZnO)=20%, w(La2O3)=0.5%, 煅烧温度为500℃时,La2O3/ZnO/TiO2复合光催化剂的光催化活性最高;当催化剂投加量4 g/L,通气量800 mL/min,初始pH值3.12时,La2O3/ZnO/TiO2对活性艳红K-2BP的降解效果最好。实验证明,La2O3/ZnO/TiO2对活性艳红K-2BP的降解遵从Langmuir-Hinshelwood动力学模型,测得其反应速率常数k=11.5 mg/(L·min);吸附常数K=2.88×10-2 L/mg。  相似文献   

4.
采用vis/H2O2/草酸铁法,对活性艳红染料废水进行处理。研究了H2O2、K2C2O4和Fe2(SO4)3·7H2O的投加量、pH值和光照时间等因素对染料废水处理效果的影响和最佳处理条件。结果表明,pH值2.5;30%H2O2的投加量0.1 mL;0.1 mol/L Fe2(SO4)3·7H2O的投加量1.0 mL;0.1 mol/L K2C2O4的投加量1.5 mL;光照时间40 min的最佳条件下,70 mg/L的活性艳红模拟染料废水脱色率可达99.82%。通过对vis/H2O2/草酸铁法和Fenton法、H2O2法、草酸铁法等方法进行对比实验,vis/H2O2/草酸铁法明显优于其他方法,是一项有研究价值和开发应用前景的污染治理新技术。  相似文献   

5.
西安是空气污染监控和防治有代表性的西部大型城市。研究了西安市及周边地区上空气溶胶光学厚度与PM10浓度的关系模型。利用2011—2012年MODIS卫星气溶胶光学厚度(AOD)遥感产品,通过数据匹配,利用地面气象观测站点的能见度数据和相对湿度数据对AOD产品进行垂直标高订正和湿度订正,2项订正显著提高了AOD和地面PM10浓度的相关性,相关系数从0.36提高到0.65,按季节分类统计和订正春至冬四季的相关系数分别为0.57、0.71、0.62和0.87,夏季和冬季的订正更为有效,可用性更高,这可能由于受到不同季节气溶胶来源和特征的影响。为研究中国西部大型城市,特别是西安市空气环境监测和区域联防联控提供了一种有效方法。  相似文献   

6.
以深圳市某垃圾焚烧厂飞灰为原料,采用高温管式电阻炉,研究了在0.6 L/min N2气氛下,CaCl2在不同添加量、处理温度及处理时间下对飞灰中重金属Pb、Cd、Zn和Cu挥发特性的影响,并对收集到的二次飞灰进行成分及物相分析。结果显示,X射线衍射仪和EDS分析表明,二次飞灰主要是由NaCl、KCl和部分SiCl4组成,Zn主要以K2ZnCl4形式挥发,而Pb则主要以氧化物PbO和Pb3SiO5的形式挥发。最终得到CaCl2热处理飞灰的最佳二次气化条件:以0.6 L/min N2为载气,添加14 wt%的CaCl2,在1 100℃高温下处理2.5 h。经CaCl2热处理后的剩余飞灰,其浸出毒性达到了《生活垃圾填埋场污染控制标准》要求。  相似文献   

7.
采用O3、UV/O3高级氧化法对水中六氯苯(HCB)的降解效果及机理进行了研究,并对结果进行了比较,结果表明,UV本身对HCB的去除率贡献不大,HCB可被O3、UV/O3快速降解,即UV<O3<UV/O3;O3、UV/O3作用时,提高体系的初始pH值不利于HCB的降解,在pH=3,HCB=0.2 mg/L,反应40 min时,HCB的去除可达50%左右,酸性条件下有利于降解反应的进行;无论是O3单独作用还是UV/O3联合作用,HCB的降解基本上满足准一级反应动力学规律,如果体系的pH值基本保持恒定,这种规律就更为明显。根据离子色谱(IC)、GC对六氯苯降解中间产物进行了测定,探讨了O3、UV/O3降解六氯苯的途径和机理。  相似文献   

8.
天然沸石负载La2O3-ZnO-TiO2光催化降解活性艳红K-2BP   总被引:1,自引:1,他引:0  
利用80目天然斜发沸石作载体制备La2O3(0.5%)-ZnO(20%)-TiO2/沸石复合光催化剂,以20 W紫外灯为光源,在自制的光催化反应器中降解活性艳红K-2BP,考察了光照时间、空气通入量、催化剂用量、溶液初始浓度、H2O2与Fe3+投加量等对活性艳红K-2BP光催化降解率的影响。结果表明,当溶液初始浓度为60 mg/L,催化剂投加量为12 g/L,通气量为1 200 mL/min,光照2.5 h,活性艳红K-2BP的降解率可达99.2%;H2O2和Fe3+投加量为4 mL/L和3 g/L时,光照1 h活性艳红K-2BP降解率分别为100%和97.2%。紫外可见吸收光谱显示,LZTZ光催化剂可有效降解印染废水。  相似文献   

9.
以钛酸四丁酯为原料,空心微珠为载体,采用溶胶凝胶法制备TiO2/beads光催化剂载体,然后浸渍法制备出H4SiW12O40/TiO2/beads表面负载修饰型复合光催化剂,并运用SEM、XRD、FT-IR和DRS对催化剂进行表征和分析。研究了H4SiW12O40/TiO2/beads对亚甲基蓝降解的光催化活性,考察了光强度、pH值、曝气量、底物浓度和催化剂用量等对催化效率的影响。实验结果表明,在中性条件下,H4SiW12O40/TiO2/beads催化剂的投加量为0.25 g/L,浓度为7.5 mg/L的亚甲基蓝溶液在250 W的紫外灯和600 W的可见光灯下光照60 min降解率分别可达到94.5%和55%。  相似文献   

10.
为综合利用黄磷尾气中的CO,通过计算平均活化能和测定XPS、TG/DTA和氮吸附特性的方法,研究了Cu2+和某金属离子Mn+改性碳脱除PH3和H2S的动力学和反应机理问题。结果表明:H2S在金属改性碳上反应时平均活化能为134.4 J/mol为-0.76级反应,PH3在金属改性碳上反应时平均活化能为1 247.6 J/mol为-0.8级反应;减小改性碳粒径增加流量可以显著提高其脱除PH3和H2S的速率;XPS、TG/DTA和孔径分布分析证明,改性碳净化H2S和PH3是一个催化吸附过程,H2S和PH3首先与氧在改性碳表面进行催化氧化反应,然后生成S和P2O5沉积吸附在改性碳表面。  相似文献   

11.
12.
In order to carry out efficient traffic and air quality management, validated models and PM emission estimates are needed. This paper compares current available emission factor estimates for PM10 and PM2.5 from emission databases and different emission models, and validates these against eight high quality street pollution measurements in Denmark, Sweden, Germany, Finland and Austria.The data sets show large variation of the PM concentration and emission factors with season and with location. Consistently at all roads the PM10 and PM2.5 emission factors are lower in the summer month than the rest of the year. For example, PM10 emission factors are in average 5–45% lower during the month 6–10 compared to the annual average.The range of observed total emission factors (including non-exhaust emissions) for the different sites during summer conditions are 80–130 mg km−1 for PM10, 30–60 mg km−1 for PM2.5 and 20–50 mg km−1 for the exhaust emissions.We present two different strategies regarding modelling of PM emissions: (1) For Nordic conditions with strong seasonal variations due to studded tyres and the use of sand/salt as anti-skid treatment a time varying emission model is needed. An empirical model accounting for these Nordic conditions was previously developed in Sweden. (2) For other roads with a less pronounced seasonal variation (e.g. in Denmark, Germany, Austria) methods using a constant emission factor maybe appropriate. Two models are presented here.Further, we apply the different emission models to data sets outside the original countries. For example, we apply the “Swedish” model for two streets without studded tyre usage and the “German” model for Nordic data sets. The “Swedish” empirical model performs best for streets with studded tyre use, but was not able to improve the correlation versus measurements in comparison to using constant emission factors for the Danish side. The “German” method performed well for the streets without clear seasonal variation and reproduces the summer conditions for streets with pronounced seasonal variation. However, the seasonal variation of PM emission factors can be important even for countries not using studded tyres, e.g. in areas with cold weather and snow events using sand and de-icing materials. Here a constant emission factor probably will under-estimate the 90-percentiles and therefore a time varying emission model need to be used or developed for such areas.All emission factor models consistently indicate that a large part (about 50–85% depending on the location) of the total PM10 emissions originates from non-exhaust emissions. This implies that reduction measures for the exhaust part of the vehicle emissions will only have a limited effect on ambient PM10 levels.  相似文献   

13.
Hourly average concentrations of PM10 and PM2.5 have been measured simultaneously at a site within Birmingham U.K. between October 1994 and October 1995. Comparison of PM10 and NOx data with two other sites in the same city shows comparable summer and winter mean concentrations and highly significant inter-site correlations for both hourly and daily mean data. Over a four-month period samples were also collected for chemical analysis of sulphate, nitrate, chloride, ammonium and elemental and organic carbon. Analysis of the data indicates a marked difference between summer and winter periods. In the winter months PM2.5 comprises about 80% of PM10 and is strongly correlated with NOx indicating the importance of road traffic as a source. In the summer months, coarse particles (PM10−PM2.5) account for almost 50% of PM10 and the influence of resuspended surface dusts and soils and of secondary particulate matter is evident. The chemical analysis data are also consistent with three sources dominating the PM10 composition: vehicle exhaust emissions, secondary ammonium salts and resuspended surface dusts. Coarse particles from resuspension showed a positive dependence on windspeed, whilst elemental carbon derived from road traffic exhibited a negative dependence.  相似文献   

14.
The Detroit Exposure and Aerosol Research Study (DEARS) provided data to compare outdoor residential coarse particulate matter (PM10–2.5) concentrations in six different areas of Detroit with data from a central monitoring site. Daily and seasonal influences on the spatial distribution of PM10–2.5 during Summer 2006 and Winter 2007 were investigated using data collected with the newly developed coarse particle exposure monitor (CPEM). These data allowed the representativeness of the community monitoring site to be assessed for the greater Detroit metro area. Multiple CPEMs collocated with a dichotomous sampler determined the precision and accuracy of the CPEM PM10–2.5 and PM2.5 data.CPEM PM2.5 concentrations agreed well with the dichotomous sampler data. The slope was 0.97 and the R2 was 0.91. CPEM concentrations had an average 23% negative bias and R2 of 0.81. The directional nature of the CPEM sampling efficiency due to bluff body effects probably caused the negative CPEM concentration bias.PM10–2.5 was observed to vary spatially and temporally across Detroit, reflecting the seasonal impact of local sources. Summer PM10–2.5 was 5 μg m?3 higher in the two industrial areas near downtown than the average concentrations in other areas of Detroit. An area impacted by vehicular traffic had concentrations 8 μg m?3 higher than the average concentrations in other parts of Detroit in the winter due to the suspected suspension of road salt. PM10–2.5 Pearson Correlation Coefficients between monitoring locations varied from 0.03 to 0.76. All summer PM10–2.5 correlations were greater than 0.28 and statistically significant (p-value < 0.05). Winter PM10–2.5 correlations greater than 0.33 were statistically significant (p-value < 0.05). The PM10–2.5 correlations found to be insignificant were associated with the area impacted by mobile sources during the winter. The suspected suspension of road salt from the Southfield Freeway, combined with a very stable atmosphere, caused concentrations to be greater in this area compared to other areas of Detroit. These findings indicated that PM10–2.5, although correlated in some instances, varies sufficiently across a complex urban airshed that that a central monitoring site may not adequately represent the population's exposure to PM10–2.5.  相似文献   

15.
During the winters of 2006/2007 and 2007/2008, PM2.5 source apportionment programs were carried out within five western Montana valley communities. Filter samples were analyzed for mass and chemical composition. Information was utilized in a Chemical Mass Balance (CMB) computer model to apportion the sources of PM2.5. Results showed that wood smoke (likely residential woodstoves) was the major source of PM2.5 in each of the communities, contributing from 56% to 77% of the measured wintertime PM2.5. Results of 14C analyses showed that between 44% and 76% of the measured PM2.5 came from a new carbon (wood smoke) source, confirming the results of the CMB modeling. In summary, the CMB model results, coupled with the 14C results, support that wood smoke is the major contributor to the overall PM2.5 mass in these rural, northern Rocky Mountain airsheds throughout the winter months.  相似文献   

16.
The Canadian Acid Aerosol Measurement Program (CAAMP) was established in 1992 to gain a better understanding of the atmospheric behaviour of fine particle strong acidity (“acid aerosols”) and to facilitate an assessment of the potential health risks associated with acid aerosols and particles in general. During 1992. 1993 and 1994, annular denuder and filter measurements were taken at four sites in Ontario, two in Quebec, three in the Atlantic Provinces and one in the greater Vancouver area. Mean fine particle sulphate concentrations (SO42−) were highest in southern Ontario (annual average ranged from 40–70 nmol m−3), lowest at a site in the Vancouver area (average = 16 nmol m−3) and second lowest in rural Nova Scotia. However, mean fine particle strong acid concentrations (H+) were geographically different. The highest mean concentrations were at the east coast sites (annual average of up to 30 nmol m−3). Acidities were lower in areas where the fine particle acidity experienced greater neutralization from reaction with ammonia. This included the major urban centres (i.e. Toronto and Montréal) and areas with greater amounts of agricultural activity, as in rural southern Ontario. On average, ambient concentrations of fine and coarse particle mass were larger in the urban areas and also in areas where SO42− levels were higher. All the particle components were episodic. However, compared to SO42− and fine particles (PM2.5 or PM2.1, depending upon inlet design), episodes of H+ tended to be less frequent and of shorter duration, particularly in Ontario. Saint John, New Brunswick, had the highest mean annual H+ concentration, which was 30 nmol m−3. H+ episodes (24 h concentration > 100 nmol m−3) were also the most frequent at this location. The high levels in Saint John were partially due to local sulphur dioxide sources and heterogeneous chemistry occurring in fog, which, on average, led to a 50% enhancement in sulphate, relative to upwind conditions.There was a substantial amount of intersite correlation in the day to day variations in H+, SO42− , PM2.5 and PM10 (fine + coarse particles) concentrations, which is due to the influence of synoptic-scale meteorology and the relatively long atmospheric lifetime of fine particles. Sulphate was the most regionally homogenous species. Pearson correlation coefficients comparing SO42− between sites ranged from 0.6 to 0.9, depending on site separation and lag time. In many cases, particle episodes were observed to move across the entire eastern portion of Canada with about a two-day lag between the SO42− levels in southern Ontario and in southern Nova Scotia.  相似文献   

17.
Between November 1995 and October 1996, particulate matter concentrations (PM10 and PM2.5) were measured in 25 study areas in six Central and Eastern European countries: Bulgaria, Czech Republic, Hungary, Poland, Romania and Slovak Republic. To assess annual mean concentration levels, 24-h averaged concentrations were measured every sixth day on a fixed urban background site using Harvard impactors with a 2.5 and 10 μm cut-point. The concentration of the coarse fraction of PM10 (PM10−2.5) was calculated as the difference between the PM10 and the PM2.5 concentration. Spatial variation within study areas was assessed by additional sampling on one or two urban background sites within each study area for two periods of 1 month. QA/QC procedures were implemented to ensure comparability of results between study areas. A two to threefold concentration range was found between study areas, ranging from an annual mean of 41 to 98 μg m−3 for PM10, from 29 to 68 μg m−3 for PM2.5 and from 12 to 40 μg m−3 for PM10−2.5. The lowest concentrations were found in the Slovak Republic, the highest concentrations in Bulgaria and Poland. The variation in PM10 and PM2.5 concentrations between study areas was about 4 times greater than the spatial variation within study areas suggesting that measurements at a single sampling site sufficiently characterise the exposure of the population in the study areas. PM10 concentrations increased considerably during the heating season, ranging from an average increase of 18 μg m−3 in the Slovak Republic to 45 μg m−3 in Poland. The increase of PM10 was mainly driven by increases in PM2.5; PM10−2.5 concentrations changed only marginally or even decreased. Overall, the results indicate high levels of particulate air pollution in Central and Eastern Europe with large changes between seasons, likely caused by local heating.  相似文献   

18.
Long-term study of air pollution plays a decisive role in formulating and refining pollution control strategies. In this study, two 12-month measurements of PM2.5 mass and speciation were conducted in 00/01 and 04/05 to determine long-term trend and spatial variations of PM2.5 mass and chemical composition in Hong Kong. This study covered three sites with different land-use characteristics, namely roadside, urban, and rural environments. The highest annual average PM2.5 concentration was observed at the roadside site (58.0±2.0 μg m−3 (average±2σ) in 00/01 and 53.0±2.7 μg m−3 in 04/05), followed by the urban site (33.9±2.5 μg m−3 in 00/01 and 39.0±2.0 μg m−3 in 04/05), and the rural site (23.7±1.9 μg m−3 in 00/01 and 28.4±2.4 μg m−3 in 04/05). The lowest PM2.5 level measured at the rural site was still higher than the United States’ annual average National Ambient Air Quality Standard of 15 μg m−3. As expected, seasonal variations of PM2.5 mass concentration at the three sites were similar: higher in autumn/winter and lower in summer. Comparing PM2.5 data in 04/05 with those collected in 00/01, a reduction in PM2.5 mass concentration at the roadside (8.7%) but an increase at the urban (15%) and rural (20%) sites were observed. The reduction of PM2.5 at the roadside was attributed to the decrease of carbonaceous aerosols (organic carbon and elemental carbon) (>30%), indicating the effective control of motor vehicle emissions over the period. On the other hand, the sulfate concentration at the three sites was consistent regardless of different land-use characteristics in both studies. The lack of spatial variation of sulfate concentrations in PM2.5 implied its origin of regional contribution. Moreover, over 36% growth in sulfate concentration was found from 00/01 to 04/05, suggesting a significant increase in regional sulfate pollution over the years. More quantitative techniques such as receptor models and chemical transport models are required to assess the temporal variations of source contributions to ambient PM2.5 mass and chemical speciation in Hong Kong.  相似文献   

19.
冬季沈阳市典型源排放PM_(10)浓度分布模拟分析   总被引:2,自引:0,他引:2  
选取沈阳市7个典型的大气污染源2006年12月~2007年2月的PM10排放浓度资料,利用CALPUFF对PM10浓度月平均分布做模拟分析。模拟结果分析表明:冬季月平均PM10浓度分布的范围与风场、地形有直接的关系。地势平坦、风速大时,污染物扩散范围大,污染物浓度小;地势不平、风速小时,污染物扩散范围小,污染物浓度大。1月份是沈阳市冬季月平均大气污染最严重的月份,污染物分布主要集中在市区的北部、东部和南部地区,东部地区大气污染最为严重。  相似文献   

20.
Personal measurements of exposure to particulate air pollution (PM10, PM2.5, PM1) were simultaneously made during walking and in-car journeys on two suburban routes in Northampton, UK, during the winter of 1999/2000. Comparisons were made between concentrations found in each transport mode by particle fraction, between different particle fractions by transport mode, and between transport microenvironments and a fixed-site monitor located within the study area. High levels of correlation were seen between walking and in-car concentrations for each of the particle fractions (PM10: r2=0.82; PM2.5: r2=0.98; PM1: r2=0.99). On an average, PM10 concentrations were 16% higher inside the car than for the walker, but there were no difference in average PM2.5 and PM1 concentrations between the two modes. High PM2.5:PM10 ratios (0.6–0.73) were found to be associated with elevated sulphate levels. The PM2.5:PM10 and PM1:PM2.5 ratios were shown to be similar between walking and in-car concentrations. Concentrations of PM10 were found to be more closely related between transport mode than either mode was with concentrations recorded at the fixed-site (roadside) monitor. The fixed-site monitor was shown to be a poor marker for PM10 concentrations recorded during walking and in-car on a route over 1 km away.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号