首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Numerous studies have examined how predator diets influence prey responses to predation risk, but the role predator diet plays in modulating prey responses remains equivocal. We reviewed 405 predator–prey studies in 109 published articles that investigated changes in prey responses when predators consumed different prey items. In 54 % of reviewed studies, prey responses were influenced by predator diet. The value of responding based on a predator’s recent diet increased when predators specialized more strongly on particular prey species, which may create patterns in diet cue use among prey depending upon whether they are preyed upon by generalist or specialist predators. Further, prey can alleviate costs or accrue greater benefits using diet cues as secondary sources of information to fine tune responses to predators and to learn novel risk cues from exotic predators or alarm cues from sympatric prey species. However, the ability to draw broad conclusions regarding use of predator diet cues by prey was limited by a lack of research identifying molecular structures of the chemicals that mediate these interactions. Conclusions are also limited by a narrow research focus. Seventy percent of reviewed studies were performed in freshwater systems, with a limited range of model predator–prey systems, and 98 % of reviewed studies were performed in laboratory settings. Besides identifying the molecules prey use to detect predators, future studies should strive to manipulate different aspects of prey responses to predator diet across a broader range of predator–prey species, particularly in marine and terrestrial systems, and to expand studies into the field.  相似文献   

2.
Interspecific interactions are often difficult to elucidate, particularly with large vertebrates at large spatial scales. Here, we describe a methodology for estimating interspecific interactions by combining stable isotopes with bioenergetics. We illustrate this approach by modeling the population dynamics and species interactions of a suite of vertebrates on Santa Cruz Island, California, USA: two endemic carnivores (the island fox and island spotted skunk), an exotic herbivore (the feral pig), and their shared predator, the Golden Eagle. Sensitivity analyses suggest that our parameter estimates are robust, and natural history observations suggest that our overall approach captures the species interactions in this vertebrate community. Nonetheless, several factors provide challenges to using isotopes to infer species interactions. Knowledge regarding species-specific isotopic fractionation and diet breadth is often lacking, necessitating detailed laboratory studies and natural history information. However, when coupled with other approaches, including bioenergetics, mechanistic models, and natural history, stable isotopes can be powerful tools in illuminating interspecific interactions and community dynamics.  相似文献   

3.
Fatty acid (FA) and fatty alcohol (FAlc) compositions of both total lipid and neutral lipid fractions were studied for five myctophid species sampled in Kerguelen waters. Both qualitative and quantitative FA signature analyses were then performed to investigate their diet over longer time scales than the conventional stomach content analysis. Regarding their lipid class, FA and FAlc compositions, the five species could be discriminated into two groups: wax-ester-rich species (Electrona antarctica, Krefftichthys anderssoni) characterised by large amounts of monounsaturated FAs (>73% of total FAs) and triacylglycerol-rich species (Electrona carlsbergi, Gymnoscopelus nicholsi, Protomyctophum bolini) with major amounts of saturated and monounsaturated FAs (>29 and >46% of total FAs, respectively). Qualitative and quantitative FA analyses showed that K. anderssoni mainly preyed upon copepods, E. antarctica upon copepods and more euphausiids and P. bolini and E. carlsbergi mainly upon euphausiids with some copepods, while G. nicholsi had a more diverse diet. This study shows the usefulness of quantitative statistical analysis to determine the diet of Antarctic and sub-Antarctic predators and stresses the need of increasing the lipid and FA analyses of more zooplanktonic and micro-nektonic marine species.  相似文献   

4.
The analysis of habitat selection in radio-tagged animals is approached by comparing the portions of use against the portions of availability observed for each habitat type. Since data are linearly dependent with singular variance-covariance matrices, standard multivariate statistical tests cannot be applied. To bypass the problem, compositional data analysis is customarily performed via log-ratio transform of sample observations. The procedure is criticized in this paper, emphasizing the several drawbacks which may arise from the use of compositional analysis. An alternative nonparametric solution is proposed in the framework of multiple testing. The habitat use is assessed separately for each habitat type by means of the sign test performed on the original observations. The resulting p values are combined in an overall test statistic whose significance is determined permuting sample observations. The theoretical findings of the paper are checked by simulation studies. Applications to case studies previously considered in literature are discussed.  相似文献   

5.
According to the threat-sensitive predator avoidance hypothesis, selection favors prey that accurately assess the degree of threat posed by a predator and adjust their anti-predator response to match the level of risk. Many species of animals rely on chemical cues to estimate predation risk; however, the information content conveyed in these chemical signatures is not well understood. We tested the threat-sensitive predator avoidance hypothesis by determining the specificity of the information conveyed to prey in the chemical signature of their predator. We found that fathead minnows (Pimephales promelas) could determine the degree of threat posed by northern pike (Esox lucius) based on the concentration of chemical cues used. The proportion of minnows that exhibited an anti-predator response when exposed to a predator cue increased as the concentration of the pike cue used increased. More surprisingly, the prey could also distinguish large pike from small pike based on their odor alone. The minnows responded more intensely to cues of small pike than to cues of large pike. In this predator–prey system small pike likely represent a greater threat than large pike.Communicated by A. Mathis  相似文献   

6.
Abstract: Predation pressure on vulnerable bird species has made predator control an important issue for international nature conservation. Predator removal by culling or translocation is controversial, expensive, and time‐consuming, and results are often temporary. Thus, it is important to assess its effectiveness from all available evidence. We used explicit systematic review methodology to determine the impact of predator removal on four measurable responses in birds: breeding performance (hatching success and fledging success) and population size (breeding and postbreeding). We used meta‐analysis to summarize results from 83 predator removal studies from six continents. We also investigated whether characteristics of the prey, predator species, location, and study methodology explained heterogeneity in effect sizes. Removing predators increased hatching success, fledging success, and breeding populations. Removing all predator species achieved a significantly larger increase in breeding population than removing only a subset. Postbreeding population size was not improved on islands, or overall, but did increase on mainlands. Heterogeneity in effect sizes for the four population parameters was not explained by whether predators were native or introduced; prey were declining, migratory, or game species; or by the study methodology. Effect sizes for fledging success were smaller for ground‐nesting birds than those that nest elsewhere, but the difference was not significant. We conclude that current evidence indicates that predator removal is an effective strategy for the conservation of vulnerable bird populations. Nevertheless, the ethical and practical problems associated with predator removal may lead managers to favor alternative, nonlethal solutions. Research is needed to provide and synthesize data to determine whether these are effective management practices for future policies on bird conservation.  相似文献   

7.
The threat-sensitivity hypothesis predicts that prey individuals will increase antipredator behaviors as apparent predator risk increases. An implicit assumption of the threat-sensitivity hypothesis is that predator risk is additive. In other words, all characteristics of a predator that indicate risk should contribute in an additive way to determine the degree of risk-sensitive behavior. We tested this assumption in the laboratory by presenting live predators (green sunfish, Lepomis cyanellus) to groups of western mosquitofish (Gambusia affinis). We examined effects of predator diet, hunger level, and size on predator avoidance and inspection behavior of mosquitofish. Both predator diet and predator hunger level were significant and additive determinants of distance maintained from a predator, resulting in a graded response to combinations of these predator cues. In contrast, whereas predator diet was the most important determinant of general avoidance distances, predator hunger level was more important in determining mosquitofish vertical distribution and inspection behavior. Thus, the relationship between predator cue and the antipredator behavior that it elicits is dependent on which cues and behaviors are examined. Our data suggest that during risky behaviors, such as predator inspection, mosquitofish rely mainly on visual cues (behavior differences between hungry and satiated predators), whereas general avoidance behavior is determined by additive responses from visual and chemical cues.  相似文献   

8.
Acoustic territorial displays are common among birds but comparatively rare among mammals. An exceptionally vocal mammal well-known for its elaborate territorial displays is the polygynous greater sac-winged bat, Saccopteryx bilineata. Male S. bilineata are often philopatric and establish small territories in their birth colony in which females can roost during the day. During territorial defense, males produce complex territorial songs that are learned through vocal imitation. Territorial songs are mainly produced at dawn and dusk. We studied social influences on male vocal activity and the occurrence of vocal signatures in territorial songs of 27 male S. bilineata from 12 different-sized colonies in Panama. Males produced significantly more territorial songs when they had more territorial neighbors or when they had females roosting in their territories, indicating that male vocal activity rises with increasing male–male competition. Territorial songs are multisyllabic vocalizations with low-frequency buzz syllables being most prominent. We found statistical evidence for a pronounced individual signature encoded in the buzz syllables of territorial songs that could facilitate individual recognition among rival neighbors. Additionally, we found a vocal group signature in territorial songs, suggesting that young males may learn territorial songs from more than one tutor male. Resident male S. bilineata appear to cooperatively defend their colony against male intruders, making a group signature in territorial songs potentially advantageous.  相似文献   

9.
Navarrete SA  Manzur T 《Ecology》2008,89(7):2005-2018
Investigating how food supply regulates the behavior and population structure of predators remains a central focus of population and community ecology. These responses will determine the strength of bottom-up processes through the food web, which can potentially lead to coupled top-down regulation of local communities. However, characterizing the bottom-up effects of prey is difficult in the case of generalist predators and particularly with predators that have large dispersal scales, attributes that characterize most marine top predators. Here we use long-term data on mussel, barnacle, limpet, and other adult prey abundance and recruitment at sites spread over 970 km to investigate individual- and population-level responses of the keystone intertidal sunstar Heliaster helianthus on the coast of Chile. Our results show that this generalist predator responds to changes in the supply of an apparently preferred prey, the competitively dominant mussel Perumytilus purpuratus. Individual-level parameters (diet composition, per capita prey consumption, predator size) positively responded to increased mussel abundance and recruitment, whereas population-level parameters (density, biomass, size structure) did not respond to bottom-up prey variation among sites separated by a few kilometers. No other intertidal prey elicited positive individual predator responses in this species, even though a large number of other prey species was always included in the diet. Moreover, examining predator-prey correlations at approximately 80, 160, and 200 km did not change this pattern, suggesting that positive prey feedback could occur over even larger spatial scales or as a geographically unstructured process. Thus individual-level responses were not transferred to population changes over the range of spatial scales examined here, highlighting the need to examine community regulation processes over multiple spatial scales.  相似文献   

10.
Prey often adopt antipredator strategies to reduce the likelihood of predation. In the presence of predators, prey may use antipredator strategies that are effective against a single predator (specific) or that are effective against several predators (nonspecific). Most studies have been confined to single predator environments although prey are often faced with multiple predators. When more than one predator is present, specific antipredator behaviours can conflict and avoidance of one predator may increase vulnerability to another. To test how prey cope with this dilemma, I recorded the behaviours of lizards responding to the nonlethal cues of a bird and snake presented singly and simultaneously. Lizards use specific and conflicting antipredator tactics when confronted with each predator, as evidenced by refuge use. However, when both predators were present, lizards refuge use was the same as in the predator-free environment, indicating that they abandoned refuge use as a primary mechanism for predator avoidance. In the presence of both predators, they reduced their overall movement and time spent thermoregulating. This shift in behaviour may represent a compromise to minimize overall risk, following a change in predator exposure. This provides evidence of plasticity in lizard antipredator behaviour and shows that prey responses to two predators cannot be accurately predicted from what is observed when only one predator is present.Communicated by W. Cooper  相似文献   

11.
Laundré JW 《Ecology》2010,91(10):2995-3007
The predator-prey shell game predicts random movement of prey across the landscape, whereas the behavioral response race and landscape of fear models predict that there should be a negative relationship between the spatial distribution of a predator and its behaviorally active prey. Additionally, prey have imperfect information on the whereabouts of their predator, which the predator should incorporate in its patch use strategy. I used a one-predator-one-prey system, puma (Puma concolor)-mule deer (Odocoileus hemionus) to test the following predictions regarding predator-prey distribution and patch use by the predator. (1) Pumas will spend more time in high prey risk/low prey use habitat types, while deer will spend their time in low-risk habitats. Pumas should (2) select large forage patches more often, (3) remain in large patches longer, and (4) revisit individual large patches more often than individual smaller ones. I tested these predictions with an extensive telemetry data set collected over 16 years in a study area of patchy forested habitat. When active, pumas spent significantly less time in open areas of low intrinsic predation risk than did deer. Pumas used large patches more than expected, revisited individual large patches significantly more often than smaller ones, and stayed significantly longer in larger patches than in smaller ones. The results supported the prediction of a negative relationship in the spatial distribution of a predator and its prey and indicated that the predator is incorporating the prey's imperfect information about its presence. These results indicate a behavioral complexity on the landscape scale that can have far-reaching impacts on predator-prey interactions.  相似文献   

12.
Geographical gradients in the stability of cyclic populations of herbivores and their predators may relate to the degree of specialization of predators. However, such changes are usually associated with transition from specialist to generalist predator species, rather than from geographical variation in dietary breadth of specialist predators. Canada lynx (Lynx canadensis) and snowshoe hare (Lepus americanus) populations undergo cyclic fluctuations in northern parts of their range, but cycles are either greatly attenuated or lost altogether in the southern boreal forest where prey diversity is higher. We tested the influence of prey specialization on population cycles by measuring the stable carbon and nitrogen isotope ratios in lynx and their prey, estimating the contribution of hares to lynx diet across their range, and correlating this degree of specialization to the strength of their population cycles. Hares dominated the lynx diet across their range, but specialization on hares decreased in southern and western populations. The degree of specialization correlated with cyclic signal strength indicated by spectral analysis of lynx harvest data, but overall variability of lynx harvest (the standard deviation of natural-log-transformed harvest numbers) did not change significantly with dietary specialization. Thus, as alternative prey became more important in the lynx diet, the fluctuations became decoupled from a regular cycle but did not become less variable. Our results support the hypothesis that alternative prey decrease population cycle regularity but emphasize that such changes may be driven by dietary shifts among dominant specialist predators rather than exclusively through changes in the predator community.  相似文献   

13.
Amarasekare P 《Ecology》2008,89(10):2786-2797
The prevalence of intraguild predation (IGP) in productive environments has long puzzled ecologists. Theory predicts the exclusion of intraguild prey from such environments, but data consistently defy this expectation. This suggests that coexistence mechanisms at high resource productivity may differ from those at lower productivity. Here I present a mathematical model that investigates multiple coexistence mechanisms. I incorporate two biological features widely observed in IGP communities: intraspecific interference via cannibalism or superparasitism, and temporal refuges arising from differential sensitivities to abiotic variation. I develop predictions based on three aspects of the IG prey-IG predator interaction: mutual invasibility, transient dynamics, and long-term abundances. These predictions specify the conditions under which coexistence mechanisms reinforce vs. deter one another: when a competition-IGP trade-off allows coexistence at intermediate productivity a temporal refuge for the intraguild prey always allows coexistence at high productivity, but intraspecific interference does so only at a net fitness cost to the intraguild predator. Intraspecific interference that benefits the intraguild predator not only reduces tradeoff-mediated coexistence at intermediate productivity, but also undermines the refuge's coexistence-enhancing effect at high productivity. Different mechanism combinations yield characteristic signatures in time series data during transient dynamics. By judicious measurement of parameters and examining time series for critical signatures, one can elucidate the mechanisms that allow IGP to prevail in resource-rich environments.  相似文献   

14.
Under conditions of spatial and/or temporal variability in predation risk, prey organisms often rely on acquired predator recognition to balance the trade-offs between energy intake and risk avoidance. The question of ‘for how long’ should prey retain this learned information is poorly understood. Here, we test the hypothesis that the growth rate experienced by prey should influence the length of the ‘memory window’. In a series of laboratory experiments, we manipulated growth rate of juvenile rainbow trout and conditioned them to recognize a novel predator cue. We subsequently tested for learned recognition either 24 h or 8 days post-conditioning. Our results suggest that trout with high versus low growth rates did not differ in their response to learned predator cues when tested 24 h post-conditioning. However, trout on a high growth rate exhibited no response to the predator cues after 8 days (i.e. did not retain the recognition of the predator odour), whereas trout on a lower growth rate retained a strong recognition of the predator. Trout that differed in their growth rate only after conditioning did not differ in their patterns of retention, demonstrating growth rate after learning does not influence retention. Trout of different initial sizes fed a similar diet (percent body mass per day) showed no difference in retention of the predator cue. Together, these data suggest that growth rate at the time of conditioning determines the ‘memory window’ of trout. The implications for threat-sensitive predator avoidance models are described.  相似文献   

15.
The scan statistic is widely used in spatial cluster detection applications of inhomogeneous Poisson processes. However, real data may present substantial departure from the underlying Poisson process. One of the possible departures has to do with zero excess. Some studies point out that when applied to data with excess zeros, the spatial scan statistic may produce biased inferences. In this work, we develop a closed-form scan statistic for cluster detection of spatial zero-inflated count data. We apply our methodology to simulated and real data. Our simulations revealed that the Scan-Poisson statistic steadily deteriorates as the number of zeros increases, producing biased inferences. On the other hand, our proposed Scan-ZIP and Scan-ZIP+EM statistics are, most of the time, either superior or comparable to the Scan-Poisson statistic.  相似文献   

16.
Recent investigations have indicated that animals are able to use chemical cues of predators to assess the magnitude of predation risk. One possible source of such cues is predator diet. Chemical cues may also be important in the development of antipredator behaviour, especially in animals that possess chemical alarm substances. Tadpoles of the common toad (Bufo bufo) are unpalatable to most vertebrate predators and have an alarm substance. Tadpoles of the common frog (Rana temporaria) lack both these characters. We experimentally studied how predator diet, previous experience of predators and body size affect antipredator behaviour in these two tadpole species. Late-instar larvae of the dragonfly Aeshna juncea were used as predators. The dragonfly larvae were fed a diet exclusively of insects, R. temporaria tadpoles or B. bufo tadpoles. R. temporaria tadpoles modified their behaviour according to the perceived predation risk. Depending on predator diet, the tadpoles responded with weak antipredatory behaviour (triggered by insect-fed predators) or strong behaviour (triggered by tadpole-fed predators) with distinct spatial avoidance and lowered activity level. The behaviour of B. bufo in predator diet treatments was indistinguishable from that in the control treatment. This lack of antipredator behaviour is probably related to the effective post-encounter defenses and more intense competitive regime experienced by B. bufo. The behaviour of both tadpole species was dependent on body size, but this was not related to predator treatments. Our results also indicate that antipredator behaviour is largely innate in tadpoles of both species and is not modified by a brief exposure to predators. Received: 22 August 1996 / Accepted after revision: 31 January 1997  相似文献   

17.
Rudolf VH 《Ecology》2006,87(2):362-371
Nonlethal indirect interactions between predators often lead to nonadditive effects of predator number on prey survival and growth. Previous studies have focused on systems with at least two different predator species and one prey species. However, most predators undergo extreme ontological changes in phenotype such that interactions between different-sized cohorts of a predator and its prey could lead to nonadditive effects in systems with only two species. This may be important since different-sized individuals of the same species can differ more in their ecology than similar-sized individuals of different species. This study examined trait-mediated indirect effects in a two-species system including a cannibalistic predator with different-sized cohorts and its prey. I tested for these effects using larvae of two stream salamanders, Gyrinophilus porphyriticus (predator) and Eurycea cirrigera (prey), by altering the densities and combinations of predator size classes in experimental streams. Results showed that the presence of large individuals can significantly reduce the impact of density changes of smaller conspecifics on prey survival through nonlethal means. In the absence of large conspecifics, an increase in the relative frequency of small predators significantly increased predation rates, thereby reducing prey survival. However, with large conspecifics present, increasing the density of small predators did not decrease prey survival, resulting in a 14.3% lower prey mortality than predicted from the independent effects of both predator size classes. Small predators changed their microhabitat use in the presence of larger conspecifics. Prey individuals reduced activity in response to large predators but did not respond to small predators. Both predators reduced prey growth. These results demonstrate that the impact of a predator can be significantly altered by two different types of trait-mediated indirect effects in two-species systems: between different-sized cohorts and between different cohorts and prey. This study demonstrates that predictions based on simple numerical changes that assume independent effects of different size classes or ignore size structure can be strongly misleading. We need to account for the size structure within predator populations in order to predict how changes in predator abundance will affect predator-prey dynamics.  相似文献   

18.
Tropical forests are under pressure from both commercial and smallholder agriculture. Forest frontiers are seeing dynamic land use changes that frequently lead to land system regime shifts, posing challenges for the sustainability of entire local social-ecological systems. Monitoring highly dynamic land use change and detecting land system regime shifts is methodologically challenging due to trade-offs between spatial and temporal data resolution. We propose an innovative approach that combines analysis of very-high-resolution satellite imagery with participatory mapping based on workshops and field walks. Applying it in Laos, Myanmar, and Madagascar, we were able to collect annual land use information over several decades. Unlike conventional land use change mapping approaches, which assess only few points in time, our approach provides information at a temporal resolution that enables detection of gradual and abrupt land system regime shifts.  相似文献   

19.
The pore signature of calanoid copepods is of increasing interest in phylogenetic studies. Some recent studies have been restricted to the urosome on the assumption that most of the species components reside there. The present paper tests that assumption in eight species of the genus Pleuromamma by assessing the signatures of the cephalosome, metasome and urosome separately in each species. Most of the species-specific information is in the urosome, but a significant proportion also resides in the cephalosome and a lesser component in the metasome. Grouping of the species relative to their pore signatures conformed with that derived from conventional morphological characters in the genus Pleuromamma, as previously demonstrated in a very different calanoid genus, Eucalanus. Thus, the urosomal signature is confirmed as a convenient and quick tool for phylogenetic studies. Six of the species examined in the present study were collected in the northeastern Atlantic between 1973 and 1976. The remaining two were collected from the western Pacific Ocean and the western Indian Ocean in 1993 and 1976, respectively.  相似文献   

20.
《Ecological modelling》2007,200(1-2):1-19
Given the importance of knowledge of species distribution for conservation and climate change management, continuous and progressive evaluation of the statistical models predicting species distributions is necessary. Current models are evaluated in terms of ecological theory used, the data model accepted and the statistical methods applied. Focus is restricted to Generalised Linear Models (GLM) and Generalised Additive Models (GAM). Certain currently unused regression methods are reviewed for their possible application to species modelling.A review of recent papers suggests that ecological theory is rarely explicitly considered. Current theory and results support species responses to environmental variables to be unimodal and often skewed though process-based theory is often lacking. Many studies fail to test for unimodal or skewed responses and straight-line relationships are often fitted without justification.Data resolution (size of sampling unit) determines the nature of the environmental niche models that can be fitted. A synthesis of differing ecophysiological ideas and the use of biophysical processes models could improve the selection of predictor variables. A better conceptual framework is needed for selecting variables.Comparison of statistical methods is difficult. Predictive success is insufficient and a test of ecological realism is also needed. Evaluation of methods needs artificial data, as there is no knowledge about the true relationships between variables for field data. However, use of artificial data is limited by lack of comprehensive theory.Three potentially new methods are reviewed. Quantile regression (QR) has potential and a strong theoretical justification in Liebig's law of the minimum. Structural equation modelling (SEM) has an appealing conceptual framework for testing causality but has problems with curvilinear relationships. Geographically weighted regression (GWR) intended to examine spatial non-stationarity of ecological processes requires further evaluation before being used.Synthesis and applications: explicit theory needs to be incorporated into species response models used in conservation. For example, testing for unimodal skewed responses should be a routine procedure. Clear statements of the ecological theory used, the nature of the data model and sufficient details of the statistical method are needed for current models to be evaluated. New statistical methods need to be evaluated for compatibility with ecological theory before use in applied ecology. Some recent work with artificial data suggests the combination of ecological knowledge and statistical skill is more important than the precise statistical method used. The potential exists for a synthesis of current species modelling approaches based on their differing ecological insights not their methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号