首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To estimate species turnover rates on scales of several tens of km in deep-sea benthic animals, we analyzed spatial and inter-annual changes in species diversity and composition of cerviniids, a typical group of deep-sea harpacticoids, at stations in and around Sagami Bay, central Japan. Associations with environmental factors were also investigated. Generally, bathymetrical patterns in diversity of benthos are unimodal and peak at depths of 2,000–3,000 m. In Sagami Bay, cerviniid diversity did not follow this trend; both species richness and evenness were negatively correlated with water depth. Multivariate analyses [detrended correspondence analysis (DCA) and non-metric multi-dimensional scaling] suggested that temporal changes in species composition of cerviniids are smaller than spatial changes that occur on horizontal scales of several tens of km. Community structure does not change completely on these scales in the bathyal zone around Sagami Bay. DCA also showed that bathymetrical changes in species composition can be regulated by certain factors associated with water depth.  相似文献   

2.
The benthic microbial food web can be responsible for a large proportion of benthic carbon cycling yet there are few data on the trophic interactions between this food web and macrobenthos. A large-scale field experiment was conducted to investigate effects of eliminating the polychaete Arenicola marina on benthic microbes (prokaryotes, heterotrophic and autotrophic protists) and metazoan meiofauna in a marine intertidal flat of the North Sea, Germany. Over a period of 2 years, quantity and composition of micro- and meiobenthos from unmanipulated sites were compared to those from sites deplete of lugworms. These grazer treatments were cross-classified with different sediment characteristics (low- and mid-intertidal areas). Lugworm removal resulted in an initial increase in abundance of prokaryotes and nanoflagellates, which became less pronounced in the second year. Ciliates were not affected quantitatively, but in the absence of lugworms, diversity and the proportion of carnivorous forms increased. Meiobenthos (nematodes, ostracods and copepods) were affected only moderately. The observed changes are probably due to a combination of release from grazing/predation pressure, changes in the species composition of higher trophic levels (namely large polychaetes) and altered environmental conditions (such as depth of the oxygenated layer and sediment grain size). Spatial differences between sites of different tidal exposure/grain size appeared to be as large as temporal differences during the 2 years following the manipulation of the system. We conclude that in intertidal sediments, indirect effects due to habitat transformation are as important as direct biological interactions (grazing pressure and competition) for the dynamics of the benthic microbial food web.  相似文献   

3.
Depth-stratified samples, collected during a period where the water column was vertically mixed (March 2000) and a period of thermal stratification (September 2000), were analyzed in order to investigate the horizontal and vertical distribution patterns and composition of mesozooplankton, especially copepod species assemblages, in a pelagic (Ionian Sea) and a coastal area (Patraikos Gulf) of the eastern Mediterranean. Total mesozooplankton abundance and biomass were significantly lower in the highly oligotrophic offshore waters of the Ionian Sea when compared to the semi-enclosed Patraikos Gulf during both seasons. Small-sized copepods dominated the mesozooplankton community. An ‘offshore’ and a ‘coastal’ copepod assemblage were defined in the surface layer (0–50 m) only during March when differences in environmental conditions (i.e., temperature, salinity and fluorescence) were strong between the two areas. Copepod vertical community structure in offshore waters differed between sampling months. In March one assemblage (0–200 m) was mainly identified, while in September three distinct assemblages (0–50, 50–100 and 100–200 m) were observed, related to different vertical distribution patterns of the various copepod species. A pronounced seasonal change of the dominant copepods was evident in the surface layer, where strong differences in hydrological properties were observed from March to September. Below this layer, the copepod community was relatively stable showing decreasing seasonal differences with increasing depth.  相似文献   

4.
Spatial and temporal feeding patterns (determined from an index of gut fullness) are described for 10 typical species of calanoid copepods collected from the North Pacific central gyre (September 1968 to June 1977), an area where the zooplankton is food limited and there were a-priori reasons to suspect that feeding and competition for food were important in regulating zooplankton community structure. Over 100 samples from 11 cruises to the eastern part of the gyre were examined, and patterns of gut fullness were related to environmental variables and the copepod species structure. The copepods studied all tended to be omnivores and food generalists. Males had lower indices of gut fullness than females but both males and females of a species had similar spatial and temporal feeding patterns. Guts were usually fuller at night than during the day, even in nonmigrating species; however, within nighttime depth distributions, no depths were preferred for feeding. There were also differences between species in mean gut fullness, but different species tended to have similar spatial and temporal feeding patterns. There was considerable spatial variability, and locales could be identified in which most species had higher indices of gut fullness. The copepods were not necessarily more abundant in these locales, nor did these tend to be areas of above average chlorophyll concentration. These patterns were consistent with relatively nonselective feeding, and there was no evidence that these species separate their niches by feeding at differing places or times.  相似文献   

5.
A large-scale database concerning benthic copepods from the Arctic, Baltic Sea, North Sea, British Isles, Adriatic Sea and Crete was compiled to assess species richness, biodiversity, communities, ecological range size and biogeographical patterns. The Adriatic showed the highest evenness and the most species-rich communities. Assemblages from the North Sea, British Isles, Baltic and Crete had a lower evenness. The British Isles were characterised by impoverished communities. The ecological specificity of copepod species showed two diverging trends: higher specificity of species in more diverse assemblages was observed in the Adriatic, North Sea and Baltic. A uniformly high species specificity disregarding sample diversity was found on Crete and in the British Isles. Benthic copepod communities showed distinct patterns that clearly fit the predefined geographical regions. Communities were distinguishable and β-diversity was found to be high around Europe, indicating a high species turnover on the scale of this investigation. The British Isles and the North Sea were found to be faunistic links to the Baltic and the Arctic.  相似文献   

6.
E. J. H. Head 《Marine Biology》1992,112(4):593-600
Faecal pellets were collected in 1988 from copepods which had fed in situ or in laboratory experiments, using screened natural seawater as food, at two stations off the coast of Labrador and one in the Gulf of St. Lawrence. The chemical composition of the pellets and of particulate material in profiles and in laboratory food were measured in terms of particulate carbon, carbohydrate (soluble and insoluble), protein and lipid. Faecal pellet composition was somewhat similar in all experiments at the first two stations, where the compositions of particulate material in situ and copepod species assemblages were also similar. At the third station the compositions of faecal pellets and particulate material were slightly different from those at the other stations and the copepod species composition varied between sampling times. Faecal pellets at the first two stations had very low levels of soluble carbohydrate, while concentrations in the food were generally high, suggesting that it was efficiently metabolized by copepods, although it might have been absent because of sloppy feeding or release, after passage through the gut, in soluble form or from faecal pellets. Comparisons of POC: biogenic silica ratios in food and faecal pellets, calculated using data presented elsewhere (Head 1992; Mar. Biol. 112: 583–592), suggested that at these stations, where food concentrations were high (chlorophyll concentrations>8 gl-1), copepods may have been assimilating carbon rather inefficiently.  相似文献   

7.
The hypothesis was tested that predation-disturbance by epibenthic macrofauna affects the abundance of sediment-dwelling harpacticoid copepods. The copepods inhabited a subtidal seagrass (Zostera marina L.) bed in British Columbia, Canada. The response of the harpacticoid community was observed in controlled field experiments in which epibenthic predators-disturbers were excluded from portions of the seagrass bed. Controlled, exclusion-cage (0.8 m2 area, 7-mm mesh) experiments were conducted within the seagrass bed from late March/early April to mid-June in both 1986 and 1987. Sampling was conducted biweekly. Exclusion of large epibenthic predators-disturbers had little effect on sediment-dwelling harpacticoid copepod density. Total harpacticoid numbers and abundances of dominant species generally did not increase in the exclusion treatment relative to the control. Shifts in species composition of the harpacticoid community did not occur. The treatment control was adequate in simulating the exclusion cage structure. It appears that large epibenthic predators-disturbers have little impact on the abundance of harpacticoid copepod populations at this study site.  相似文献   

8.
Changes in amino acid composition (AAC) during ontogeny of some planktonic crustacean species commonly found in fresh and brackish coastal waters were compared. For these comparisons two calanoid copepods (Eurytemora velox and Calanipeda aquae-dulcis), two cyclopoid copepods (Diacyclops bicuspidatus odessanus and Acanthocyclops robustus) and two Daphnia (Daphnia pulicaria and Daphnia magna) species were selected. A discriminant analysis was performed to determine whether there were significant differences between the AAC of the different stages of each species. Results show gradual changes in AAC during ontogeny of the copepod species. Calanoids showed the greatest differences in AAC between stages, followed by cyclopoids. Gradual changes in AAC were due to the increase in some amino acids such as alanine, valine, glutamic acid, glycine, arginine, proline and tyrosine from nauplii to adults. The latter showed a remarkable increase in all copepod species. In contrast, Daphnia species showed a relatively constant AAC during development, with only minor changes being detected, and not related with ontogeny. Differences in the physico-chemical variables of the lagoons do not seem to be the cause of copepod ontogenic changes in AAC. Data suggest that AAC differences found between stages of copepod species could indicate a gradual change in diet during the life cycle of these copepods.  相似文献   

9.
K. Walters 《Marine Biology》1991,108(2):207-215
The emergence of meiobenthic copepods in subtidal sand and seagrass sites in Tampa Bay, Florida (USA), was investigated on nine dates from March 1983 to August 1984. Numbers of emerging copepods were dependent on habitat, date and diel sampling period. Greater numbers typically emerged in seagrass sites, and differences between habitats may be related to lower copepod abundances in sand sites. Both copepod abundance and behavior significantly affected numbers emerging among dates. An increase in emergent behavior alone resulted in consistently greater numbers emerging during postsunset periods. Over 30 species in 15 families were found to emerge. Total numbers of emerging copepods were affected by the sporadic presence and seasonal behavior of certain species. Numbers of the predominant speciesParadactylopodia brevicornis, Tisbe furcata, Parategastes sp.,Mesochra pygmea, Laophontid sp., andHarpacticus sp. emerging depended on differences in both species abundance and behavior. The emergent behavior ofParategastes sp.,Harpacticus sp., andT. furcata also was influenced by total copepod densities in the sediment. Juvenile copepods constituted only a small proportion of the total numbers emerging. The consistent postsunset entry of between 103 to 105 copepods m?2 into the water column in subtidal sand and seagrass habitats will contribute to the increased probability of copepod dispersal and reassortment of the benthic community, while providing a pathway for benthic-pelagic exchange.  相似文献   

10.
Habitat-forming organisms often determine the structural properties and food resources available to a wide diversity of associated mobile species. Sessile invertebrate assemblages on marine hard substrates support an abundant fauna of mobile invertebrates whose associations with traits of their host assemblages are poorly known. To assess how changes to habitat-forming species are likely to affect their associated mobile fauna, the relationships between abundance, diversity and composition of mobile invertebrates and the diversity, cover and composition of the sessile assemblages they use as habitat were quantified in Sydney Harbour, Australia (33°50′S, 151°16′E). Similar compositions of sessile species were more likely to share a similar composition of mobile species, but univariate measures of the habitat (percent cover, species and functional diversity, prevalence of non-indigenous species) did not predict variation in associated mobile assemblages. These results demonstrate that in this habitat it is difficult to predict the diversity of marine assemblages based on common surrogate measures of biodiversity.  相似文献   

11.
U. Lie  R. A. Evans 《Marine Biology》1973,21(2):122-126
Data on benthic infauna from 4 permanent stations in Puget Sound off Seattle, USA, collected during 1963–1964, 1967, and 1969, revealed considerable stability in numbers of species and specimens and in diversity within stations among sampling dates. The species composition of the faunal assemblages also remained rather constant during the period of investigation, but the relative dominance among the numerically important species varied somewhat. Biomass data did not differ significantly in 1964 and 1969, but the 1967 data were considerably lower at all stations.  相似文献   

12.
Food selection by copepods: discrimination on the basis of food quality   总被引:19,自引:0,他引:19  
The copepod Acartia tonsa displayed nearly two-fold higher ingestion rates on faster-growing cells of the diatom Thalassiosira weissflogii compared to ingestion rates on slower-growing cells of that species at the same cell concentration. Ingestion rates on slow-growing cells were also enhanced by the addition of cell-free aliquots of algal exudate to the experimental feeding chambers. In addition, the faster-growing algal cells were selectively ingested by the copepod when the two cell types were mixed together in different proportions, indicating that physiological differences between growing cells are a critical factor in the food detection/selection process of zooplankton. Consideration of cell carbon, nitrogen, and protein composition suggests that the copepods are maximizing nitrogenous ingestion (total protein and/or nitrogen). Selectivity for cells with higher protein content results in a higher daily protein ration, even if the selection process results in a decreased rate of ingestion in mixtures of cell types.  相似文献   

13.
Extreme climate events produce simultaneous changes to the mean and to the variance of climatic variables over ecological time scales. While several studies have investigated how ecological systems respond to changes in mean values of climate variables, the combined effects of mean and variance are poorly understood. We examined the response of low-shore assemblages of algae and invertebrates of rocky seashores in the northwest Mediterranean to factorial manipulations of mean intensity and temporal variance of aerial exposure, a type of disturbance whose intensity and temporal patterning of occurrence are predicted to change with changing climate conditions. Effects of variance were often in the opposite direction of those elicited by changes in the mean. Increasing aerial exposure at regular intervals had negative effects both on diversity of assemblages and on percent cover of filamentous and coarsely branched algae, but greater temporal variance drastically reduced these effects. The opposite was observed for the abundance of barnacles and encrusting coralline algae, where high temporal variance of aerial exposure either reversed a positive effect of mean intensity (barnacles) or caused a negative effect that did not occur under low temporal variance (encrusting algae). These results provide the first experimental evidence that changes in mean intensity and temporal variance of climatic variables affect natural assemblages of species interactively, suggesting that high temporal variance may mitigate the ecological impacts of ongoing and predicted climate changes.  相似文献   

14.
Vargas CA  Escribano R  Poulet S 《Ecology》2006,87(12):2992-2999
Recruitment success at the early life stages is a critical process for zooplankton demography. Copepods often dominate the zooplankton in marine coastal zones and are prey of the majority of fish larvae. Hypotheses interpreting variations of copepod recruitment are based on the concepts of "naupliar predation," "nutritional deficiency," and "toxic effect" of diatom diets. Contradictory laboratory and field studies have reached opposite conclusions on the effects of diatoms on copepod reproductive success, blurring our view of marine food-web energy flow from diatoms to higher consumers by means of copepods. Here we report estimates of copepod feeding selectivity and reproduction in response to seasonally changing phytoplankton characteristics measured in a highly productive coastal upwelling area off the coast of central Chile. The variable phytoplankton diversity and changing food quality had a strong and highly significant impact on the feeding selectivity, reproduction, and larval survival of three indigenous copepod species. Seasonal changes in copepod feeding behavior were related to the alternating protozoan-diatom diets, mostly based on dinoflagellates and ciliates during winter and autumn (low highly unsaturated fatty acids [HUFA]/polyunsaturated fatty acids [PUFA] availability), but switched to a diet of centric and chain-forming diatoms (high HUFA/PUFA availability) during the spring/summer upwelling period. Ingestion of diatom cells induced a positive effect on egg production. However, a negative relationship was found between egg hatching success, naupliar survival, and diatom ingestion. Depending on the phytoplankton species, diets had different effects on copepod reproduction and recruitment. In consequence, it seems that the classical marine food web model does not apply to some coastal upwelling systems.  相似文献   

15.
In-situ feeding habits of the copepods Temora turbinata and T. stylifera were investigated by scanning electron microscope examination of fecal pellets, the contents of which reflected copepod gut contents upon capture. Pellet contents were compared with assemblages of available phytoplankton in the water column at the times of zooplankton sampling. Samples were collected in continental shelf and slope waters of the Gulf of Mexico near the mouth of the Mississippi River. Both species ingested a wide size range and taxonomic array of phytoplankters, and to a lesser extent, other crustaceans. Fecal pellets contained primarily the remains of the phytoplankters that were most abundant in the water at times of collection. There was considerable overlap in the food items ingested by adult females of both copepod species, or two stages of T. turbinata copepodites. Thus, T. turbinata and T. stylifera are omnivores, but primarily opportunistic herbivores.  相似文献   

16.
The composition and abundance of bladedwelling meiofauna was determined over a 15 mo period (1983–1984) from a Thalassia testudinum Banks ex König meadow near Egmont Key, Florida, USA. Harpacticoid copepods, copepod nauplii, and nematodes were the most abundant meiofaunal taxa on T. testudinum blades. Temporal patterns in species composition and population life-history stages were determined for harpacticoid copepods, the numerically predominant taxon. Sixteen species or species complexes of harpacticoid copepods were identified. Harpacticus sp., the most abundant harpacticoid, comprised 47.8% of the total copepods collected, and was present throughout the study. Copepodites dominated the population structures of the blade-dwelling harpacticoid species on most collection dates. Ovigerous females and/or copepodites were always present, indicating continuous reproductive activity. Results suggest that epiphytic algae influence meiofaunal abundance on seagrass blades, as densities of most meiofaunal taxa at Egmont Key were positively associated with percent cover of epiphytic algae throughout the study. The majority of significant correlations between meiofaunal density and cover of epiphytic algae involved filamentous algae, although encrusting algae dominated the epiphytic community. It appears that resources provided by epiphytic algae to seagrass meiofauna (additional food, habitat, and/or shelter from predation) may be associated with algal morphology.  相似文献   

17.
The species composition of the benthic-slope fish fauna of the Middle Atlantic Bight is described from trawl catches taken from a depth of about 900 m in August, 1969. Two species associations and an intermediate area are apparent. The difference between the two associations is partially attributable to differences in species composition, but primarily to a difference in species dominance. The small number of samples precludes geographic and bathymetric delineation of these associations, as well as conclusions about their temporal stability. Diversity values appear to be relatively high for the benthic fishes of the upper slope, but comparison with values for temperate estuaries and coastal fishes indicates a narrow range for all of these habitats, and considerable overlap in values from the different environments. Environmental stability may be of less importance in determining the diversity of fish faunas than of benthic invertebrate faunas because of the mobility of fishes and ontogenetic changes in their habitat preference.  相似文献   

18.
Stomach contents of 729 fishes comprising 16 species were examined from the continental slope and rise off the Middle Atlantic States of the USA. Two main feeding modes among demersal deep-sea fishes were evident: those feeding primarily on pelagic food items, and those feeding on benthic invertebrates. Both pelagic and benthic predators were euryphagous. Most pelagic predators also fed on the epibenthos. These findings support Dayton and Hessler's (1972) suggestion that benthic predators should have a generalized diet which may be responsible for the high diversity found in the deep-sea infauna. The mesopelagic fauna is an important food source for some demersal fishes on the continental slope. Pelagic prey, which are also important to ecologically dominant demersal fishes on the lower slope and continental rise, may be nutritionally supported by suspended particulate organic matter in a nepheloid layer close to the bottom, and they may exist in much higher concentrations than in the bathypelagic zone above.Virginia Institute of Marine Science Contribution No. 835.  相似文献   

19.
Nematode assemblage composition, trophic structure and biodiversity were followed over an annual cycle in a Posidonia oceanica bed of the NW Mediterranean to test the response to temporally changing food availability (sediment organic matter, bacterial and microphytobenthic biomass). The sediment-water interface of the seagrass meadow was characterised by high particulate organic matter concentrations. Also, seagrass sediments had high organic matter content, chloropigment concentrations and bacterial biomass. All organic matter components (i.e. carbohydrates, proteins and lipids) changed temporally, with higher concentrations in winter and spring and lower concentrations in summer; however, overall, large amounts of organic compounds were potentially available for (seagrass) benthic consumers throughout the year. Nematode assemblage in the P. oceanica bed maintained a high genus number (88 genera), and a trophic structure tightly coupled with the composition of the potential food sources. In agreement with the relevance of microphytobenthos, epigrowth-feeder nematodes (2A) represented the dominant trophic guild. The biomass of predator nematodes (2B) was significantly correlated with the biomass of other nematodes. Non-selective deposit feeders (1B) displayed a close relationship with the concentration of proteins, carbohydrates and biopolymeric carbon (i.e. labile organic detritus). Conversely to what was expected, epigrowth feeders were not correlated with chloropigment concentrations, but showed a significant relationship with the number of dividing bacteria, possibly suggesting a trophic plasticity of the 2A feeding guild. The coupling between temporal changes in food sources and temporal variability of the nematode trophic structure was highlighted by a CANOCO analysis, which allowed us to identify and associate, at each sampling time, nematode genera and their feeding habits, with specific environmental variables and food indicators. Furthermore, species diversity (H') and evenness (J) calculated on nematodes identified to the genus level displayed evident temporal changes, also reflected by the index of trophic diversity (ITD). Both structural and functional diversity were coupled with high concentration and highly heterogeneous composition of the food sources (including organic detritus, microphytobenthic algae and bacteria) potentially available to nematodes. These data suggest that temporal changes in quantity and quality of food sources do not only influence nematode dynamics and trophic composition, but also influence nematode structural and functional diversity.  相似文献   

20.
Spatial patterns and temporal succession in soft-bottom macroinvertebrate assemblages are described for an area of the southern San Diego shelf which is influenced by both anthropogenic and natural events. The study transect covered 19 km along the 60 m-depth contour and spanned the terminus of the Point Loma wastewater outfall (32°40N; 117°17W). Ordination and classification analyses revealed that eight major benthic assemblages occurred in the study area from 1986–1990. These analyses further indicated that: (1) the impact of wastewater discharge on the benthos was asymmetric about the outfall, and (2) primary and secondary impact zones existed within the outfall footprint. The primary impact extended only 0.5 km south, but usually up to 1 km north, of the point of discharge, reflecting the prevailing northerly flow of currents along the San Diego coast. Stations within the primary impact zone usually supported similar faunal assemblages at any point in time. A lessened, or secondary, impact was apparent at stations 1 to 2 km south and 2 km north of the outfall. The two stations 9 km to the north appeared to be outside the outfall footprint. Assemblages in the three zones did not differ greatly in species composition, but did differ with respect to organismal density, relative abundances (dominance hierarchy) of component species, and temporal persistence. Biostimulation of the benthos, manifest as increased species richness and organismal abundance, was apparent in the primary impact zone from 1986–1988, although dominance was relatively low. Dominance increased at these sites during 1989 and 1990 due to large increases in populations of a few small species, such as the polychaete Myriochele sp. M and the ostracod Euphilomedes carcharodonta. Biomass was slightly elevated in the primary impact zone during 1986–1987; however, this trend was not sustained. Communities within the outfall footprint were much less persistent over time than those beyond it. The observed shifts in benthic assemblages within the outfall footprint corresponded to natural oceanographic cycles (i.e., the transition from El Niño to La Niña conditions) and anthropogenic changes (i.e., changes in wastewater output). These observations suggest that the Point Loma outfall has a localized effect on the stability of infaunal communities. Possible destabilization mechanisms are explored. Finally, comparisons with pre-discharge data taken during 1956–1957 revealed that about half of the species present prior to construction of the outfall were still common in 1990, after 27 yr of wastewater discharge, although large increases in species diversity and abundance seem to have occurred at all stations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号