首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Primary production in Dumbell Bay in the Arctic Ocean   总被引:1,自引:0,他引:1  
Photosynthesis, chlorophyll, inorganic nutrients, and related factors were measured throughout a productive season in a small coastal inlet of the Arctic Ocean. Significant production was confined to 5 m for a very limited time period beacause of both light and nutrient limitations. Maximum chlorophyll was 8.2 mg Chl a m-3 and maximum gross and net photosynthesis rates were 830 and 550 mg C m-2 d-1. Annual gross and net photosynthesis is estimated at about 12 and 9 g C m-2 respectively. The effect of light stimulation on assimilation is described, sources of coastal zone nutrient enrichment are considered, and discrepancies between gross and net photosynthesis are discussed with reference to the growth characteristics of the phytoplankton population.Bigelow Laboratory for Ocean Sciences. Contribution No. 76008  相似文献   

2.
S. Patel  B. Patel 《Marine Biology》1971,10(3):272-279
The effect of ionizing radiation on the iron-linked protein (haemoglobin) of the marine lamellibranchs Anadara granosa (Linn.) and Cardita antiquata (Lam.) from Bombay waters, India is discussed. Purified haemoglobin solutions were exposed to a 60Cobalt source delivering a dose of about 4,600 rad/min, at the sample irradiation point. Radiation damage or degradation was measured spectrophometrically by studying changes in the absorption spectra following irradiation in the presence and absence of oxygen. Exposure to ionizing radiation in general caused a decrease in absorption of both haemoglobins, irrespective of location, viz extra-versus intracellular, at Soret (412 m), (540 to 42 m) and (574 to 76 m) peaks, and an increase in absorption at 510 and 630 m. Upon exposure to a higher dose, O2Hb of C. antiquata showed an increase in absorption at the protein peak (280 m); exposure to a lower dose, however, resulted in decreased absorption. Furthermore, the changes following irradiation were dependent upon the initial state of the pigment. Oxyhaemoglobin, when exposed to radiation, oxidized to hemiglobin, and hemiglobin reduced to oxyhaemoglobin. The extracellular haemoglobin of high molecular weight (3x106) of the false cockle C. antiquata was found to be extremely radio-resistant, whereas intracellular haemoglobin of low molecular weight (74,000) of the arcid clam A. granosa was highly radiosensitive, since it could not be exposed to doses exceeding 18,000 r.  相似文献   

3.
The photosynthetic characteristics of prokaryotic phycoerythrin-rich populations of cyanobacteriaSynechococcus spp. and larger eukaryotic algae were compared at a neritic frontal station (Pl), in a warm-core eddy (P2), and at Wilkinson's Basin (P3) during a cruise in the Northwest Atlantic Ocean in the summer of 1984.Synechococcus spp. numerically dominated the 0.6 to 1 m fraction, and to a lesser extent the 1 to 5 m size fractions, at most depths at all stations. At P2 and P3, all three size categories of phytoplankton (0.6 to 1 m, 1 to 5 m, and >5 m) exhibited similar depth-dependent chages in both the timing and amplitude of diurnal periodicities of chlorophyllbased and cell-based photosynthetic capacity. Midday maxima in photosynthesis were observed in the upper watercolumn which damped-out in all size fractions sampled just below the thermocline. For all size fractions sampled near the bottom of the euphotic zone, the highest photosynthetic capacity was observed at dawn. At all depths, theSynechococcus spp.-dominated size fractions had lower assimilation rates than larger phytoplankton size fractions. This observation takes exception with the view that there is an inverse size-dependency in algal photosynthesis. Results also indicated that the size-specific contribution to potential primary production in surface waters did not vary appreciably over the day. However, estimates of the percent contribution ofSynechococcus spp. to total primary productivity in surface waters at the neritic front were significantly higher when derived from short-term incubator measurements of photosynthetic capacity rather than from dawn-to-duskin situ measurements of carbon fixation. The discrepancy was not due to photoinhibitory effects on photosynthesis, but appeared to reflect increased selective grazing pressure onSynechococcus spp. in dawn-to-dusk samples. Low-light photoadaptation was evident in analyses of the depth-dependency ofP-I parameters (photosynthetic capacity,P max; light-limited slope, alpha;P max alpha,I k ; light-intensity beyond which photoinhibition occurs,I b ) of the > 0.6 m communities at all three stations and was attributable to stratification of the water column. There was a decrease in assimilation rates andI k with depth that was associated with increases in light-limited rates of photosynthesis. No midday photoinhibition ofP max orI b was observed in any surface station. Marked photoinhibition was detected only in the chlorophyll maximum at the neritic front and below the surface mixed-layer at Wilkinson's Basin, where susceptibility to photoinhibition increased with the depth of the collected sample. The 0.6 to 1 m fraction always had lower light requirements for light-saturated photosynthesis than the > 5 m size fraction within the same sample. Saturation intensities for the 1 to 5 m and 0.6 to 1 m size fractions were more similar whenSynechococcus spp. abundances were high in the 1 to 5 m fraction. The > 5 m fraction appeared to be the prime contributor to photoinhibitory features displayed in mixed samples (> 0.6 m) taken from the chlorophyll maxima. InSynechococcus spp.-dominated 0.6 to 1 and 1 to 5 m size fractions, cellular chlorophylla content increased 50- to 100-fold with depth and could be related to increases in maximum daytime rates of cellularP max at the base of the euphotic zone. Furthermore, the 0.6 to 1 m and > 5 m fractions sampled at the chlorophyll maximum in the warm-core eddy had lower light requirements for photosynthesis than comparable surface samples from the same station. Results suggest that photoadaptation in natural populations ofSynechococcus spp. is accomplished primarily by changing photosynthetic unit number, occuring in conjuction with other accommodations in the efficiency of photosynthetic light reactions.  相似文献   

4.
Levels of Pb, Zn, Cu, Cr, Ni and Cd were determined in topsoil and vegetation in the vicinity of a factory manufacturing lead- batteries in Ibadan, Nigeria. The samples were collected along five transects in different directions, and varying distances up to 1000m from the factory. Soil lead levels were found to be elevated around the factory, with average levels of about 2000mgkg–1 close to the fence that declined gradually to about 50mgkg–1 some 750m away. Soil-lead level around a primary school located about 500m from the factory was as high as 1450mgkg–1. Lead levels were equally elevated in the vegetation, though average levels in vegetation were slightly lower than in the soil. Cadmium concentrations in soil and vegetation, though low, were more positively correlated with lead levels than any of the other metals are with lead.  相似文献   

5.
When measurements of in-vivo fluorescence are used to estimate photosynthesis in the field, the marked temporal and spatial variations in phytoplankton populations, and their nutrient and light histories, have produced varied results. Natural phytoplankton populations in large, flow-through mesocosms with different controlled nutrient and sewage sludge additions were sampled weekly from June to September 1984. Good correlations were observed between the increase in fluorescence upon the addition of DCMU (F) and both in-situ production and the parameters (Pm and ) of the photosynthesis-irradiance curve for these phytoplankton populations. Good correlations were also obtained between DCMU-enhanced fluorescence (FDCMU) and chlorophyll a concentrations. The relationship between F and in-situ 14C production was consistent among mesocosms even in the face of major shifts from diatom-dominated to dinoflagellate-dominated populations. On the other hand, the FDCMU:Chl a relationship was significantly different between mesocosms and related to species composition. It was concluded that F offers the possibility of rapidly and accurately indexing both in-situ production and the photosynthetic capacity of mixed phytoplankton populations.This study was supported by EPA cooperative agreement 810265-03 and NOAA grant NA-83-ABD-00008  相似文献   

6.
The hemolymph of the blue crab Callinectes sapidus was hyperosmotic during 20-10-20 S and 30-10-30 S diurnal cycles. The hemolymph became isosmotic at 26 S and hyposmotic at 28 S in the 10-30-10 S diurnal cycle. Hemolymph Na+ was hyperionic to seawater throughout all cycles. Hemolymph Cl- was hyperionic below 24 S and either isionic or hypoionic from 24 to 30 S. Hemolymph K+ concentrations were hyperionic below 26 S and either isionic or hypoionic from 26 to 30 S. Hemolymph Mg++ values were hypoionic over the experimental salinity range (10 to 30). Hemolymph ninhydrin-positive substances (NPS) levels were directly related to ambient salinity.  相似文献   

7.
Michaelis-Menten uptake kinetics were observed at all light intensities. With constant illumination, the Vmax and K1 in nitrate uptake over the natural light intensity range of 0 to 2000 E were 0.343 g-at NO3–N(g)-1 at protein-N h-1 and 26 E, respectively. Nitrate uptake was inhibited at higher light intensities. The Ks for nitrate uptake did not vary as a function of light intensity remaining relatively constant at 0.62 g-at NO3–N 1-1. With intermittent illumination, the Vmzx for light intensity in nitrate uptake over a light intensity range of 0 to 5000 E was 0.341 g-at NO3–N(g)-1-at protein-N h-1. No inhibition of nitrate uptake was observed at higher than natural light intensities. Chaetoceros curvisetus will probably never experience light inhibition of nitrate uptake under natural conditions.  相似文献   

8.
Summary Social influence on circadian activity rhythms was investigated in the nocturnal Australian marsupial Petaurus breviceps. The activity of two and two was recorded electroacoustically and observed by an IR television camera in LD 12:12 (101:10-1lx) and in LL (10-1lx) when housed isolated and in pairs (+). In LD-entrained animals the average duration of locomotion, orientation movements, grooming and total activity is influenced by social housing, and individually different activity patterns are harmonized. In constant illumination conditions, however, the members of a pair are not mutually synchronized and free-run with different circadian periodlengths. Therefore social influence on the LD-entrained activity rhythm in Petaurus should be interpreted as social masking rather than direct influence on the circadian system.  相似文献   

9.
Free amino acid (FAA) levels were measured from May through October 1991 in gill tissues of two groups of juvenile oysters (Crassostrea virginica Gmelin), one transferred from a low salinity field site (8) to a field site of high salinity (20) and high Perkinsus marinus (Mackin, Owen, and Collier) prevalence, the other kept at the low salinity field site. Within 24 h, glycine levels in the oysters transferred to high salinity increased 8-fold, taurine concentrations doubled and the total FAA pool rose from 150 mol g–1 dry wt to 400 mol g–1 dry wt. Taurine levels reached a plateau within 20 d after transfer to high salinity and remained at that level until P. marinus infections were detected 85 d after transfer. Taurine and glycine levels declined by 40% in the high salinity population as infection intensity increased between 70 and 105 d. Total FAA declined by approximately 33% over this period. The oysters kept at low salinity were not infected and continued to grow while the infected high salinity oysters showed no increase in shell length after Day 85. FAA levels in the low salinity group remained relatively constant throughout the experiment except for an initial rise triggered by an increase in ambient salinity from 8 to 12. The results suggest that salinity tolerance mechanisms in C. virginica may be impaired by P. marinus infection.  相似文献   

10.
Monthly variation in photosynthesis, dark respiration, chlorophyll a content and carbon: nitrogen (C:N) ratios in different lamina sections of adult plants of Ascoseira mirabilis Skottsberg from King George Island, Antarctica, was investigated between September 1993 and February 1994. Light saturated net photosynthesis (P max) showed maximum values in September (12 to 25 mol O2 g-1 fr wt h-1), and decreased towards the summer to values ranging between 2.0 and 5.0 mol O2 g-1. In the distal section, however, a second optimum occurred in December (25 mol O2 g-1 fr wt h-1). Dark respiration rates were also highest in October and November and decreased strongly in December to February (6.0 and 1.0 mol O2 g-1 fr wt h-1, respectively). Gross photosynthesis exhibited high values between September and December. Concomitant with the seasonal decrease of photosynthetic efficiency () from mean values of 1.2 mol O2 g-1 fr wt h-1 (mol photons cm-2 s-1)-1 in September to 0.3 mol O2 g-1 fr wt h-1 (mol photons cm-2 s-1)-1 in January, the initial light saturating point (I k) gradually increased from 19 to 60 mol photons m-2 s-1. Likewise C:N ratios were low in spring (12 to 13) and increased in summer (20). In general, the photosynthetic parameters P max, gross photosynthesis, and Chl a concentrations were significantly higher in the distal section of the thallus. In contrast, C:N ratios were lower in the distal section of the lamina. The results show that photosynthesis obviously strongly supports growth of the alga in late winter to spring, as it does in some morphologically related brown algae from temperate and polar regions. The question whether growth is additionally powered  相似文献   

11.
Energy budgets were determined for small pieces (nubbins) of the coralsPocillopora damicornis, Montipora verrucosa andPorites lobata living at a water depth of 3 m on the fringing reef of Coconut Island, Kaneohe, Hawaii. The budgets were determined for three different types of day: an ideal day with no cloud and an in situ daily integrated irradiance at 3 m of 14.385 E m–2 d–1; a normal day with sporadic cloud cover and daily irradiance of 11.915 E m–2 d–1; and an overcast day with daily irradiance of 6.128 E m–2 d–1. On the ideal day, the energy fixed in photosynthesis was more than that required for respiration and growth of both zooxanthellae and animal components of the association, and there was a predicted loss of between 19.3 and 32.4% of the energy fixed. On a normal day, the total photosynthetic energy fixation was lower and the excess was between 12.1 and 27.9% of the energy fixed. On the overcast day, however, in bothPocillopora damicornis andPorites lobata energy expenditure exceeded photosynthetic energy fixation and the budget was in deficit. Estimates of rate of mucus secretion on an overcast day were derived and, when incorporated into the energy budget, it was predicted that all three species would have a deficit budget, necessitating the catabolism of lipid reserves. From published values for lipid storage in these species it was calculated that the reserves would last from 28 d inPocillopora damicornis to 114 d inM. verrucosa. A model is suggested in which corals draw upon their extensive lipid stores on days of sub-optimal light, replenishing the reserves again when daily light levels are high, and finally excreting the excess energy fixed, as mucus-lipid when the lipid stores are replete.  相似文献   

12.
Feeding, growth and bioluminescence of the thecate heterotrophic dinoflagellate Protoperidinium huberi were measured as a function of food concentration for laboratory cultures grown on the diatom Ditylum brightwellii. Ingestion of food increased with food concentration. Maximum ingestion rates were measured at food concentrations of 600 g C l-1 and were 0.7 g C individual-1 h-1 (1.8 D. brightwelli cells individual-1 h-1). Clearance rates decreased asymptotically with increasing food concentration. Maximum clearance rates at low food concentration were ca. 23 l ind-1 h-1, which corresponds to a volume-specific clearance rate of 5.9x105 h-1. Cell size of P huberi was highly variable, with a mean diameter of 42 m, but no clear relationship between cell size and food concentration was evident. Specific growth rates increased with food concentration until maximum growth rates of 0.7 d-1 were reached at a food concentration of 400 g C l-1 (1000 cells ml-1). Food concentrations as low as 10 g C l-1 of D. brightwellii (25 cells ml-1) were able to support growth of P. huberi. The bioluminescence of P. huberi varied with its nutritional condition and growth rate. Cells held without food lost their bioluminescence capacity in a matter of days. P. huberi raised at different food concentrations showed increased bioluminescence capacity, up to food concentration that supported maximum growth rates. The bioluminescence of P. huberi varied over a diel cycle, and these rhythmic changes persisted during 48 h of continuous darkness, indicating that the rhythm was under endogenous control.  相似文献   

13.
The effect of light intensity, pH and carbonic anhydrase (CA) inhibitors on photosynthesis of the red marine macroalgae Solieria filiformis (Kützing) Gabrielson, collected from Taliarte (Gran Canaria, Canary Islands) in 1991, has been investigated. Plants taken from the sea (wild phenotype) developed spherical morphology (ball phenotype) after 2 mo culture in aerated tanks. The photosynthetic oxygen evolution in the wild phenotype was saturated at 100 mol photons m-2s-1, while the ball phenotype displayed saturation at 200 mol photons m-2s-1. The inhibitors of total CA activity (6-ethoxizolamide) and extracellular CA activity (dextran-bound sulfonamide) inhibited photosynthesis at pH 8.2, to 90 and 50% respectively, in both phenotypes. No inhibition of the photosynthetic oxygen evolution was detected at pH 6.5. CA activity was associated with both supernatant and pellet fractions of crude extracts of S. filiformis. The rate of alkalization of the medium by the algae was dependent on light intensity. We suggest that carbon dioxide is the general form of inorganic carbon transported across the plasmamembrane in S. filiformis. HCO3 transport into the cell takes place simultaneously by an indirect mechanism (dehydration to CO2 catalyzed by CAext) and by direct uptake. Extracellular (CAext) and intracellular (CAint) CAs are involved in the mechanisms of inorganic carbon assimilation by S. filiformis.  相似文献   

14.
Vertical distributions of picophytoplankton (ppp) (<2 m) were studied by ship-board flow cytometry during two cruises in Western Pacific waters to Palau and to Australia in 1990. Weak red-fluorescing small ppp, supposed to be free-living prochlorophytes (Chisholm et al. 1988), were abundant in the area surveyed. These ppp, designated the prochlorophytes, were abundant in the surface waters (>104 cells ml-1) at the northern region (27°03N; 7°11N) in November, whereas in December at the southern tropical stations (0°23.54S; 9°20.30S; 13°50.6S), they formed subsurface maximum layers (>105 cells ml-1) on a nitracline at a depth of 3.5 to 5.4% surface irradiation. Their fluorescence intensity increased with depth below 10% surface irradiation. The prochlorophytes at a depth of 1% surface irradiation had ten times higher fluorescence than those at the surface layer. The total fluorescence intensity of the prochlorophytes accounted for 32 to 63% of the sum of the total fluorescence intensity of all fluorescing phytoplankton detected at subsurface chlorophyll maxima in the tropical area. These results suggest that distribution of the prochlorophytes is greatly affected by nitracline and by light intensity and that their chlorophyll is a major contributor to the subsurface chlorophyll maximum in the pelagic West Pacific Ocean.  相似文献   

15.
An investigation on the abundance and distribution of trace metals (Fe, Cu, Zn, Mn, Cr, Cd and Pb) in water, and nine species of fish samples from Calabar river was carried out in 1992. The concentrations of iron (6000–7240gl–1), zinc (4910–7230gl–1), and cadmium (3–7gl–1) showed moderate pollution while those of copper (420–630gl–1), manganese (23–48gl–1), chromium (<10–20gl–1) and lead (<1–10gl–1) in water were well below WHO permissible levels. Significant seasonal changes (0.001p0.25) were obtained for iron, copper, zinc, manganese and cadmium in water. Furthermore, iron, zinc and cadmium showed statistically significant spatial changes (0.005p0.10). Of the nine fish species studied, no statistically significant relationship between body weight and the concentrations of the metals was observed. The concentrations of the metals per mean total body weight apparently decreases in the order Fe>Zn>Cu>Mn>Pb>Cd=Cr and were within the limits that were safe for consumption.  相似文献   

16.
Photosynthetic performance in the kelp Laminaria solidungula J. Agardh was examined from photosynthesis irradiance (P-I) parameters calculated from in situ 14C uptake experiments, using whole plants in the Stefansson Sound Boulder Patch, Alaskan Beaufort Sea, in August 1986. Rates of carbon fixation were determined from meristematic, basal blade, and second blade tissue in young and adult sporophytes. Differences in saturating irradiance (I k, measured as photosynthetically active radiation, PAR), photosynthetic capacity (P max), and relative quantum efficiency () were observed both between young and adult plants and between different tissue types. I k was lowest in meristematic tissue (20 to 30 E m–2 s–1) for both young and adult plants, but consistently 8 to 10 E m–2 s–1 higher in young plants compared to adults in all three tissues. Average I k for non-meristematic tissue in adult plants was 38 E m–2 s–1. Under saturating irradiances, young and adult plants exhibited similar rates of carbon fixation on an area basis, but under light limitation, fixation rates were highest in adult plants for all tissues. P max was generally highest in the basal blade and lowest in meristematic tissue. Photosynthetic efficiency () ranged between 0.016 and 0.027 mol C cm–2 h–1/E m–2 s–1, and was highest in meristematic tissue. The relatively lower I k and higher exhibited by L. solidungula in comparison to other kelp species are distinct adaptations to the near absence of light during the eight-month ice-covered period and in summer when water turbidity is high. Continuous measurement of in situ quantum irradiance made in summer showed that maximum PAR can be less than 12 E m–2 s–1 for several days when high wind velocities increase water turbulence and decrease water transparency.The Univeristy of Texas Marine Science Institute Contribution No. 695  相似文献   

17.
In order to assess the intake of lead and cadmium by consumers of home grown vegetables in urban areas, replicated experimental plots of uniform size, comprising summer and winter crops, were established in 94 gardens and allotments in nine towns and cities in England.The geometric mean lead and cadmium concentrations for the soils (n = 94) were 217 g g–1 (ranging from 27 to 1,676 g g–1) and 0.53 g g–1 (<0.2–5.9 g g–1), respectively. Compared with agricultural soils, the garden and allotment soils contained elevated levels of lead but not cadmium.Lead concentrations in the vegetables ranged from <0.25 g g–1 to 16.7 g g–1 dry weight and cadmium concentrations ranged from <0.025 g g–1 to 10.4 g g–1 dry weight. Lead concentrations were higher than reported background levels, although <1% exceeded the statutory limit for saleable food in the UK (1 g g–1 fresh weight). Cadmium concentrations were generally similar to background levels.  相似文献   

18.
Two vegetative clones (designated 11/85 and 7/86 in accordance with month/year of collection) of the green macroalga Ulva rotundata were collected in the vicinity of Beaufort, North Carolina, USA. Each was grown in an outdoor continuous-flow system in summer (20°C) of 1986 and late winter (10° to 17°C) of 1987, in irradiances ranging from 9 to 100% of full sunlight, with and without NH 4 + enrichment. Continuous enrichment of influent estuarine water (dissolved inorganic nitrogen 2 M, N:P5) to 8–12 M NH 4 + had only a slight effect on growth rate. Temperature changes of 2 to 3°C had a much greater effect. Prolonged exposure to a given daily irradiance resulted in acclimation, exposure to a given daily irradiance resulted in acclimation, indicated by faster growth of conditioned plants relative to those transferred from a different irradiance. Most of the difference in growth rates between transferred and control plants was attributed to differences in thallus absorptance. Growth was photoinhibited above 40% sunlight at temperatures below 15°C, but not above 20°C. Following interday irradiance transfers, thallus percent dry weight changed in a manner that suggests different response times for photosynthesis and cell division.  相似文献   

19.
Environmental Accumulation of Airborne Fluorides in Romania   总被引:2,自引:0,他引:2  
The nature and extent of pollution from an aluminium smelter and a fertiliser factory in Romania were studied. These are large industrial complexes, and both types of industry are known to release fluorides into the atmosphere. In grass samples collected from around the aluminium smelter, the maximum fluoride levels were found to be 4023mgkg–1 and 162mgkg–1 in unwashed and washed grass samples respectively, and 89mgkg–1 in soils. For the fertiliser factory, the maximum levels in washed grasses were found to be 207mgkg–1, and 11mgkg–1 in the soils. In both locations, these maximum values were obtained in samples collected from within 200m of the factory limits, and compare with regional background levels of less than 10mgkg–1 for grasses and 2mgkg–1 for soils. The high fluoride levels of fluoride in the grasses are sufficient to give cause for concern for the effects that these could have on the local population and on grazing animals.  相似文献   

20.
Measurements of net photosynthesis of benthic estuarine diatoms were made by polarographic registration of oxygen saturation. A measuring cell was constructed in which media with salinities of 2.0 to 100.7 were pumped over the algae between measurements. Diatoms from unialgal cultures and mixed populations from intertidal flats appeared to be highly tolerant of extreme salinities. During short-term exposures (20 min) the net photosynthesis of the algae did not drop below 70% of the initial values, within the salinity range 4.0 to 60.0. Prolonged exposure (up to 6 h) gave essentially the same results. Populations of benthic diatoms, sampled from field stations with mean salinities of about 30, 12, and below 5, showed only gradual differences in their tolerance of salinities between 2.0 and 33.7. Two species, Navicula arenaria and Nitzschia sigma, were cultured in media ranging in salinity from 8.0 to 45.0 and from 2.0 to 45, respectively. The tolerance to changing salinity was only slightly affected by the salinity of the medium in the preculture. The role of salinity in the production and distribution of intertidal diatoms is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号