首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Alapi T  Dombi A 《Chemosphere》2007,67(4):693-701
The gas-phase photooxidations of CCl(4), CHCl(3), CH(2)Cl(2) and their binary mixtures in an O(2) stream were studied in a flow reactor under various experimental conditions using a low-pressure mercury lamp as light source covered with a high-purity silica sleeve being used. The 184.9 nm VUV irradiation emitted is responsible for the Cl-C bond rupture in the chlorinated methanes and for the formation of O(3) from O(2). The rate of degradation of H-containing chlorinated methanes increased sharply on increase of their initial concentrations, most probably of a (*)Cl chain reaction, as indicated by the increase in the molar ratio of the amount of HCl formed to the amount of H-containing target substance decomposed. The experimental results suggested that the further transformations of the radicals and products formed play an important role as (*)Cl sources, causing a considerably higher rate of decomposition of the H-containing target substances. In a humidified O(2) stream, the (*)OH formed opens up another route for oxidation of the target substances. Thus, the rates of degradation of CH(2)Cl(2) and CHCl(3) increased on increase of the relative humidity, whereas the water vapour had no effect at all on the decomposition of CCl(4). At the same time, competition occurs between (*)Cl or (*)OH for reactions with the target substance. The photooxidation of binary mixtures was investigated too. The addition of CCl(4) or CHCl(3) to CH(2)Cl(2) strongly increased its degradation rate. The addition of CH(2)Cl(2) did not have a considerable effect on the rate of degradation of CHCl(3).  相似文献   

2.
A silent electric discharge was applied to decompose halogenated methanes including CCl4, CHCl3, CFCl3, CF2Cl2 and CF3Cl, in argon-containing gas mixtures. The decompositions of the target compounds were studied in static reactors at a fixed electric field and room temperature. The reaction products were analyzed by FT-IR spectroscopy, gas chromatography and UV spectrophotometry. The results demonstrated, that the radical-type decomposition of chlorofluoromethanes led to products formed by realignment of the halogen atoms. The decomposition of CCl4 was faster than that of the cholorofluoromethanes, and produced perchloroethane and chlorine. CHCl3 exhibited the highest decomposition rate and produced a large variety of products.  相似文献   

3.
We have numerically modeled the breakdown of small quantities of several chlorinated hydrocarbons (CH3Cl, CH2Cl2, CHCl3, CCl4, C2H3Cl, and C2H5Cl) in a lean mixture of combustion products between 800 and 1480 K. This simulates the fate of poorly atomized waste in a liquid-injection incinerator. Kinetics calculations were performed using the CHEMKIN and SENKIN programs, with a reaction mechanism that was developed at Louisiana State University to model flat-flame burner experiments. A 99.99-percent destruction efficiency was attained in one second at temperatures ranging from 1280 to 960 K, with CCl4 requiring the highest temperature for destruction and C2H5Cl the lowest. For all compounds except C2H5Cl, there was a range of temperatures at which byproducts accounted for several percent of the elemental chlorine at the outlet. The more heavily chlorinated compounds formed more byproducts even though the amount of elemental chlorine was the same in all cases. The sensitivity of results to residence time, equivalence ratio, temperature profile, and the presence of additional chlorine, was examined for the case of CHCl3.  相似文献   

4.
A method for a photochemically induced mineralization of CCl4 is described in which use is made of reductive radicals. The UVC-photolysis (254 nm) of H2O2 added to aqueous solutions of CCl4 is leading to the homolysis of the oxidant yielding hydroxyl radicals (HO) that subsequently react with added methanol to generate hydroxymethyl radicals (CH2OH). The latter radicals initiate mineralization of CCl4 by reductive C-Cl bond splitting. CHCl3, C2Cl4 and C2Cl6 were found as reaction intermediates, but are quantitatively depleted in a parallel oxidative reaction manifold leading to mineralization. Carbon dioxide radical anion, CO2(-), an intermediate in the mineralization pathway of methanol, is also shown to initiate the mineralization of CCl4 by reductive dechlorination. A reaction mechanism is proposed and validated with computer simulations of all the experimental results.  相似文献   

5.
A method is described for near-quantitative extraction of micromolar concentrations of chlorinated aliphatic hydrocarbons (CAHs) from water for determination of chlorine (Cl) isotope ratios. A low pressure, carrier-gas procedure of extraction was proven to be applicable to CH2Cl2, CCl4, C2H2Cl2, and C2HCl3. The pH of the water was adjusted with NaOH to prevent extraction of CO2 from air and/or dissolved inorganic carbonate species. Recoveries of CAH samples (approximately 15 mumol), added to and extracted from approximately 340 ml of water, averaged approximately 96%. Average changes in the delta 37Cl values of the CAHs, attributable to the extraction process, were -0.01 +/- 0.06@1000. Significant isotopic fractionation of Cl was measured during partial extraction of C2CHCl3 from water, indicating that near-quantitative extraction is required for reliable stable Cl isotope analysis of CAHs. This method is also suitable for the extraction of dissolved CAH for gas chromatography-combustion-isotope ratio mass spectrometric measurements of hydrogen and carbon.  相似文献   

6.
Biodegradation of chlorinated solvents in a water unsaturated topsoil   总被引:5,自引:0,他引:5  
In order to investigate topsoils as potential sinks for chlorinated solvents from the atmosphere, the degradation of trichloromethane (CHCl(3)), 1,1,1-trichloroethane (CH(3)CCl(3)), tetrachloromethane (CCl(4)), trichloroethene (C(2)HCl(3)) and tetrachloroethene (C(2)Cl(4)) was studied in anoxic laboratory experiments designed to simulate denitrifying conditions in water unsaturated topsoil. Active denitrification was demonstrated by measuring the release of 15N in N(2) to the headspace from added 15N labeled nitrate. The degradation of chlorinated aliphatic compounds was followed by measuring their concentrations in the headspace above the soil.The headspace concentrations of all the chlorinated solvents except CH(3)CCl(3) were significantly (P相似文献   

7.
Removal of methyl chloroform in a coastal salt marsh of eastern China   总被引:3,自引:0,他引:3  
Wang J  Li R  Guo Y  Qin P  Sun S 《Chemosphere》2006,65(8):1371-1380
The atmospheric burden of methyl chloroform (CH(3)CCl(3)) is still considerable due to its long atmospheric lifetime, although CH(3)CCl(3) emissions have declined considerably since it was included into the Montreal Protocol. Moreover, CH(3)CCl(3) emissions are used to estimate hydroxyl radical (OH) levels, trends, and hemispheric distributions, and thus the mass balance of the trace gas in the atmosphere is critical for characterizing OH concentrations. Salt marshes may be a potential sink for CH(3)CCl(3) due to its anoxic environment and abundant organic matter in sediments. In this study, seasonal dynamics of CH(3)CCl(3) fluxes were measured using static flux chambers from April 2004 to January 2005, along an elevational gradient of a coastal salt marsh in eastern China. To estimate the contribution of higher plants to the gas flux, plant aboveground biomass was experimentally harvested and the flux difference between the treatment and the intact was examined. In addition, the flux was analyzed in relation to soil and weather conditions. Along the elevational gradient, the salt marsh generally acted as a net sink of CH(3)CCl(3) in the growing season (from April to October). The flux of CH(3)CCl(3) ranged between -3.38 and -32.03 nmol m(-2)d(-1) (positive for emission and negative for consumption), and the maximum negative rate occurred at the cordgrass marsh. However, the measurements made during inundation indicated that the mudflat was a net source of CH(3)CCl(3). In the non-growing season (from November to March), the vegetated marsh was a minor source of CH(3)CCl(3) when soil was frozen, the emission rate ranging from 3.43 to 7.77 nmol m(-2)d(-1). However, the mudflat was a minor sink of CH(3)CCl(3) whether it was frozen or not in the non-growing season. Overall, the coastal salt marsh in eastern China was a large sink for the gas, because the magnitude of consumption rate was lager than that of emission, and because the duration of the growing season was longer than that of the non-growing season. Plant aboveground biomass had a great effect on the flux. Comparative analysis showed that the direction and magnitude of the effect of higher plants on the flux of CH(3)CCl(3) depended on timing of sampling vegetation type. In the growing season the plant biomass decreased the gas flux and acted as a large sink of the gas, whereas it presented as a minor source in the non-growing season. However, the mechanism underlying plant uptake process is not clear. The CH(3)CCl(3) flux was positively related to the dissolved salt concentration and organic matter content in soil, as well as light intensity, but it was negatively related to soil temperature, sulfate concentrations, and initial ambient atmospheric concentrations of CH(3)CCl(3). Our observations have important implications for estimation of the tropospheric lifetime of CH(3)CCl(3) and global OH concentration from the global budget concentration of CH(3)CCl(3).  相似文献   

8.
Dichloromethane (DCM, also known as methylene chloride [CH2Cl2]) is often present in industrial waste gas and is a valuable chemical product in the chemical industry. This study addresses the oxidation of airstreams that contain CH2Cl2 by catalytic oxidation in a tubular fixed-bed reactor over perovskite-type oxide catalysts. This work also considers how the concentration of influent CH2Cl2 (Co = 500-1000 ppm), the space velocity (GHSV = 5000-48,000 1/hr), the relative humidity (RH = 10-70%) and the concentration of oxygen (O2 = 5-21%) influence the operational stability and capacity for the removal of CH2Cl2. The surface area of lanthanum (La)-cobalt (Co) composite catalyst was the greatest of the five perovskite-type catalysts prepared in various composites of La, strontium, and Co metal oxides. Approximately 99.5% CH2Cl2 reduction was achieved by the catalytic oxidation over LaCoO3-based perovskite catalyst at 600 degrees C. Furthermore, the effect of the initial concentration and reaction temperature on the removal of CH2Cl2 in the gaseous phase was also monitored. This study also provides information that a higher humidity corresponds to a lower conversion. Carbon dioxide and hydrogen chloride were the two main products of the oxidation process at a relative humidity of 70%.  相似文献   

9.
An investigation of the decomposition of dihaloacetonitriles (DHANs) in water solutions and fortified drinking water samples was conducted. The concentrations of dichloroacetonitrile (CHCl2CN, DCAN), bromochloroacetonitrile (CHBrClCN, BCAN) and dibromoacetonitrile (CHBr2CN, DBAN) were determined by a gas chromatography mass spectrometry (GC-MS) method at regular time intervals and different temperatures. The effect of sodium thiosulfate (Na2S2O3), which is used as a preservative in water samples, was also examined. The rates of decomposition were determined for each compound. The results show that the reactions are faster in fortified drinking water samples than in ultrapure water solutions. They are also favored at higher temperature, especially when sodium thiosulfate is present. The highest decomposition rate is shown by DCAN, followed by BCAN and DBAN, while at the presence of sodium thiosulfate the decomposition of DBAN is the fastest.  相似文献   

10.
Gas-phase reaction of CFC-12 (CCl2F2) with methane was carried out in a plug flow reactor over the temperature range of 873-1123 K. The major organic halocarbons formed during the reaction were C2F4, C2H2F2, CHClF2, CH3Cl, C3H2F6 and CCl3F. The formation of all products except C2H2F2 decreased with temperature, while the selectivity to C2H2F2 (difluoroethylene) increased with temperature and reached approximately 80% at 1123 K. Under these reaction conditions, methane acts as hydrogen and carbon source, resulting in the formation of an unsaturated C2 hydrofluorocarbon from two C1 precursors.  相似文献   

11.
The relationship between the irradiance in a photoreactor and the rate of photodegradation of organics is essential in the scaling-up of photoreactors to treat large volumes of air contaminated with organic pollutants. In this study, the analysis is adopted to compare results obtained from two different photoreactors. Initially, the applicability of two light models in calculating the irradiance in two photoreactors was evaluated. Thereafter, kinetic models of ultraviolet (UV) photooxidation of chloroform (CHCl3) and carbon tetrachloride (CCl4) from the archived literature were tested using experimental data under various operating conditions and different irradiances. Sensitivity analyses were conducted using different values of model parameters to determine the significance of each parameter on the photodegradation of the two chlorinated organics. For compounds that undergo photolysis as a primary mode of degradation, the rate of photodegradation at low initial concentrations can be predicted easily by the following equation: d[C]/dt = -2.303Iave, lambdaepsilonlambdaphilambda[C]. Although the photodegradation of chlorinated organic compounds in dry and humid air can be predicted well, it is difficult to predict the Cl* sensitized oxidation occurring at high initial concentrations. A good agreement between the simulated and experimental data provides a sound basis for the design of large-scale reactors.  相似文献   

12.
Trichloroacetic acid (TCA, CCl(3)COOH) is a phytotoxic chemical. Although TCA salts and derivates were once used as herbicides to combat perennial grasses and weeds, they have since been banned because of their indiscriminate herbicidal effects on woody plant species. However, TCA can also be formed in the atmosphere. For instance, the high-volatile C(2)-chlorohydrocarbons tetrachloroethene (TECE, C(2)Cl(4)) and 1,1,1-trichloroethane (TCE, CCl(3)CH(3)) can react under oxidative conditions in the atmosphere to form TCA and other substances. The ongoing industrialisation of Southeast Asia, South Africa and South America means that use of TECE as solvents in the metal and textile industries of these regions in the southern hemisphere can be expected to rise. The increasing emissions of this substance--together with the rise in the atmospheric oxidation potential caused by urban activities, slash and burn agriculture and forest fires in the southern hemisphere--could lead to a greater input/formation of TCA in the vegetation located in the lee of these emission sources. By means of biomonitoring studies, the input/formation of TCA in vegetation was detected at various locations in South America, North America, Africa, and Europe.  相似文献   

13.
Miranda B  Díaz E  Ordóñez S  Vega A  Díez FV 《Chemosphere》2007,66(9):1706-1715
The performance of bulk chromium oxide is compared with that of a Mn commercial catalyst for the deep oxidation of trichloroethene (1000-2500ppmv, 55h(-1) space velocity) in air, in dry and wet (20000ppm of H(2)O) conditions, in terms of activity, selectivity and stability. Chromium oxide was found to be more active (on a catalyst weight basis), however its activity decreases continuously with time on stream. The presence of water increases its stability, the Mn catalyst showing the opposite behaviour. The effect of water on the Cr catalyst can be explained according to the Deacon equilibrium, as the presence of water tends to decrease the Cl(2) concentration, assumed to be responsible of the catalyst deactivation. Regarding to the selectivity, the Mn catalyst yields C(2)Cl(4), CCl(4) and CHCl(3) as organochlorinated by-products, whereas chromium oxide produces only trace amounts of CCl(4). Simple power-law kinetics expressions (first-order for Mn and zero-order for Cr) provide fairly good fits for the evolution of the conversion with the temperature. Furthermore, the kinetic behaviour of chromium oxide can be represented with a Langmuir-Hinshelwood model taking into account the chlorine inhibitory effect.  相似文献   

14.
Brown RH  Cape JN  Farmer JG 《Chemosphere》1999,38(4):795-806
Concentrations of 4 chlorinated hydrocarbons, C2H3Cl3 (1,1,1-trichloroethane), CCl4 (tetrachloromethane), C2HCl3 (trichloroethene) and C2Cl4 (tetrachloroethene) have been measured in needles of Scots pine (Pinus sylvestris L.) growing close to two industrial sites and in a rural area in northern Britain. Pentane extracts of pine needles sampled over 14 months were analysed using gas chromatography with electron capture detection. Geometric mean concentrations were not significantly different among the sites, with values (in ng g(-1) dry weight) of 7-15 for C2H3Cl3, 3.2-6.5 for CCl4, 70-240 for C2HCl3 and 11-26 for C2Cl4. There was no evidence of accumulation with needle age, but more exposed sites (e.g. those higher in the canopy) showed significantly larger concentrations. The influence of possible local sources could not be detected.  相似文献   

15.
Burfeindt J  Homann KH 《Chemosphere》2001,42(5-7):439-447
Premixed chlorine-containing, fuel-rich, low-pressure benzene/oxygen flames were analysed for the formation of (oxygenated) chloroaromatic compounds and their radicals by means of the condensation/radical-scavenging method (Hausmann, M., Homann, K.-H., 1995. Ber. Busenges. Phys. Chem. 99, 853-862). Several chlorinated organic compounds (methyl chloride, t-butyl chloride, chlorobenzene, chloroform) were used as additives within a maximum concentration of 10% of total fuel. Product identification and quantification were performed by GC/MS. The extent of formation of chloroaromatic compounds in these flames was largest in the cases of chlorobenzene and chloroform as additives. For chlorobenzene, 12 different chloroaromatics could be analysed in between C7H7Cl and C12H9Cl. Their formation is mainly due to conversion of initial chlorobenzene into substituted or oxidised derivatives, or growth products. Additional chlorination of aromatics is shown to be of minor importance in chlorobenzene-containing flames. Three isomeric (o/m/p) scavenging products could be identified for the chlorophenyl radical. In the chloroform case, 15 chloroaromatics could be analysed in between C6H5Cl and C14H9Cl. The weak C-Cl bond in chloroform is responsible for the high extent of chloroaromatics formation, either by Cl abstraction from the additive or by chlorination reactions via Cl radicals. Additionally, specific pathways to (di)chloroaromatics and chlorinated fulvene-type structures are outlined via CHCl2 and CCl2 radicals.  相似文献   

16.
A tall passive flux chamber with a height significantly greater than its horizontal dimensions is proposed for measuring fluxes of volatile organic compounds (VOCs) at the soil surface. The main feature of this tall chamber is the presence of a vertical concentration gradient of the target gas in the chamber. The emission and transport behavior of the target gas in the soil-chamber system are analyzed using the diffusion theory. A mathematical model is developed to estimate the flux from the soil into the tall chamber, providing the target gas establishes a detectable vertical concentration gradient in the chamber. To obtain the data required for calculating flux, only two gas concentrations (C1 and C2) at two heights (h1 and h2) within the chamber need to be measured at the end of a short chamber placement time (tp). To evaluate the applicability of the tall chamber for measuring flux, several laboratory tests have been conducted, using CH2Cl2 and CH3Br as the target gases. The results indicate that the proposed tall chamber has promising potential as a method for measuring fluxes of VOCs at the soil surface.  相似文献   

17.
Yu H  Kennedy EM  Mackie JC  Dlugogorski BZ 《Chemosphere》2007,68(10):2003-2006
Gas phase reaction of CHClF(2) with CH(3)Br in an alumina tube reactor at 773-1123 K as a function of various input ratios of CH(3)Br to CHClF(2) is presented. The major products detected include C(2)F(4), CH(2)CF(2), and CH(4). Minor products include CH(3)Cl, CHF(3), C(2)H(4), C(2)H(2), CH(2)CF-CF(3), and C(2)H(3)F. The reaction produces a high yield of CH(2)CF(2) (53% based on CHClF(2) feed) at 1123 K and an input molar ratio of CH(3)Br to CHClF(2) of 1.8, suggesting that the reaction potentially can be developed as a process to convert two ozone depleting substances (CHClF(2) and CH(3)Br) to a highly valuable chemical, CH(2)CF(2). The reaction of CHClF(2) with CH(3)Cl and CH(3)I was also investigated under similar reaction conditions, to assist in understanding the reaction chemistry involved in the reaction of CHClF(2) with CH(3)Br.  相似文献   

18.
Chloromethane (CH(3)Cl) is the most abundant halocarbon in the atmosphere. Although largely of natural origin it is responsible for around 17% of chlorine-catalysed ozone destruction. Sources identified to date include biomass burning, oceanic emissions, wood-rotting fungi, higher plants and most recently tropical ferns. Current estimates reveal a shortfall of around 2 million ty(-1) in sources versus sinks for the halocarbon. It is possible that emissions from green plants have been substantially underestimated. A potentially valuable tool for validating emission flux estimates is comparison of the delta13C value of atmospheric CH(3)Cl with those of CH(3)Cl from the various sources. Here we report delta13C values for CH(3)Cl released by two species of tropical ferns and show that the isotopic signature of CH(3)Cl from pteridophytes like that of CH(3)Cl from higher plants is quite different from that of CH(3)Cl produced by biomass burning, fungi and industry. delta13C values for CH(3)Cl produced by Cyathea smithii and Angiopteris evecta were respectively -72.7 per thousand and -69.3 per thousand representing depletions relative to plant biomass of 42.3 per thousand and 43.4 per thousand. The characteristic isotopic signature of CH(3)Cl released by green plants should help constrain their contribution to the atmospheric burden when reliable delta13C values for all other major sources of CH(3)Cl are obtained and a globally averaged delta13C value for atmospheric CH(3)Cl is available.  相似文献   

19.
The peroxyacyl nitrates, a series of eye-irritating plant toxicants, are synthesized by gasphase reactions at low concentrations. They are purified by preparative-scale gas chromatography. The preparation and purification of the first member of the series by photolysis of ethyl nitrite vapor (ca 400 ppm) in oxygen is described in some detail. The entire procedure is designed to minimize factors which might cause decomposition of this extremely unstable product. Pure PAN is stored as a vapor diluted with dry nitrogen at about 100 psig and 40°F. Such mixtures (about 1000 ppm) can be analyzed by infrared spectrophotometry using a 10 cm cell. The product is used in studies of its toxicity toward biological materials, in instrument calibration, and for studies of air pollution chemistry.  相似文献   

20.
Sun GR  He JB  Pittman CU 《Chemosphere》2000,41(6):907-916
Model halogenated aromatic and aliphatic hydrocarbons and halogenated phenols were dehalogenated in seconds by solvated electrons generated from sodium in both anhydrous liquid ammonia and ammonia/water solutions. The minimum sodium required to completely dehalogenate these model compounds was determined by increasing the Na/substrate ratio until halogen loss was complete. Minimum sodium consumptions were determined in both anhydrous liquid ammonia and with a (5, 20, 50-fold molar excess of water per mole of halide). While more Na was consumed in the presence of water, these dehalogenations were still efficient when a 50-fold water excess was present. Dehalogenation is faster than competiting reactions with water. CCl4 and CH3CCl3 in the presence of a stoichiometric deficiency of sodium produced only CH4 and CH3CH3 and recovered CCl4 or CH3CCl3, respectively. No partially dechlorinated products were detected, indicating dechlorination was diffusion controlled. Na consumption per chlorine removed (as NaCl) was lower than that of Li, K or Ca and this advantage increased in the presence of water. Na consumption was lower using Na chunks instead of a thin Na mirror. Chloroaromatic compounds gave the parent aromatic hydrocarbon and aminated products in anhydrous ammonia but aminated products did not form when water was present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号