首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Management of air quality by local government in the United Kingdom (England, Scotland, Wales and Northern Ireland) requires a process of local decision-making, involving collaboration between local politicians, authority officers and interest-groups. Since the establishment of the first National Air Quality Strategy for the UK in 1997, local authority environmental health professionals have undertaken a scientific review and assessment process to identify locations where predicted future pollutant concentrations may exceed national air quality objectives. Air quality management areas (AQMAs) are declared where such exceedences are predicted. Over recent years, significant changes in local authority decision-making structures in England, Scotland and Wales have occurred, resulting in changes to the structure and governance in many local authorities. Results are presented from local authority surveys undertaken to examine the occurrence of any conflicts between the science involved in predicting exceedences and the local political decision-making processes in declaring AQMAs. Data are presented for a sample set of local authorities in Great Britain from which it is concluded that decision-making structures in local government are having a demonstrable impact on the designation of AQMAs.  相似文献   

2.
The CORINE land cover database for Ireland (in ARC/INFO) is used to estimate the amount of carbon stored (tonnes) by each land-cover (vegetation) type. Carbon store is the area of each CORINE land-cover type multiplied by its carbon density (t C ha−1). Derivations of these carbon densities are described and limitations of data and other empirical evidence discussed. The total vegetation-carbon stores are calculated for Northern Ireland (3·81 Mt), the Republic of Ireland (19·27 Mt) and Ireland (23·08 Mt). Carbon densities are grouped into classes and their distributions across Ireland are mapped. The vegetation-carbon store is taken to include stems, branches, foliage and roots. It does not include litter, microbial biomass and organic carbon in the soil. Forests store 49% of the vegetation carbon on less than 5% of the total CORINE land area, with a further 22% in other semi-natural vegetation. In contrast, pastures account for 56% of the land-cover area, but only 19% of the carbon store. High carbon densities are found in the west and in uplands, reflecting the distribution of forests and semi-natural vegetation, particularly peatland and moors. The inventory of vegetation-carbon stores is an important first step in attempts to monitor changes in carbon sequestration from, and emissions to, the atmosphere by terrestrial vegetation. Greenhouse gas fluxes, including CO2, and climate warming are global issues which require responses by all countries. Inventories of carbon stores and fluxes therefore need to be comparable between countries so that agreed reductions can be targetted. CORINE land-cover data are available for 19 European Union and adjacent countries and could be used to provide an inventory of carbon stores, and through updating of CORINE, changes in those stores. Commonality in determining the carbon densities of CORINE classes would be required. This study exemplifies how that was achieved in two countries using their national data.  相似文献   

3.
The UK National Air Quality Strategy has required local authorities to review and assess air quality in their area of jurisdiction and determine locations in their areas where concentrations of specific air quality pollutants are predicted to exceed national air quality objectives in the future. Statutory air quality management areas (AQMAs) are designated where air quality is predicted to be above specified objective concentrations by specific target dates, and statutory air quality action plans will be necessary to improve the local air quality within these areas. Over 124 local authorities in England (including London), Wales and Scotland anticipate declaring AQMAs following the conclusion of the statutory air quality review and assessment process. However, other influences are being exerted on the local air quality management process and AQMA decision-making processes. Such influences include regional and sub- regional collaborative working between local authorities and government agencies and wider political decision-making processes. Some regions of Great Britain (encompassing England (including London), Scotland and Wales) anticipate many AQMA designations, whilst other regions are not anticipating any such designations despite apparently similar air quality circumstances. Evidence for regional or sub-regional variations in the locations of anticipated AQMAs are examined through an evaluation of the outcomes of the scientific review and assessment process undertaken by local authorities declaring AQMAs, and through a local authority survey to identify influences on decision-making processes at a level above that of the local authority. Regional variation is reported in the type of pollutant causing AQMAs to be declared, in the numbers of AQMAs in regions and in the spatial distribution of AQMAs across Great Britain.  相似文献   

4.
Management of air quality by local government in the United Kingdom (England, Scotland, Wales and Northern Ireland) requires a process of local decision-making, involving collaboration between local politicians, authority officers and interest-groups. Since the establishment of the first National Air Quality Strategy for the UK in 1997, local authority environmental health professionals have undertaken a scientific review and assessment process to identify locations where predicted future pollutant concentrations may exceed national air quality objectives. Air quality management areas (AQMAs) are declared where such exceedences are predicted. Over recent years, significant changes in local authority decision-making structures in England, Scotland and Wales have occurred, resulting in changes to the structure and governance in many local authorities. Results are presented from local authority surveys undertaken to examine the occurrence of any conflicts between the science involved in predicting exceedences and the local political decision-making processes in declaring AQMAs. Data are presented for a sample set of local authorities in Great Britain from which it is concluded that decision-making structures in local government are having a demonstrable impact on the designation of AQMAs.  相似文献   

5.
6.
Local authorities in Great Britain have had the powers to acquire, declare and manage statutory Local Nature Reserves since 1949; these powers were extended to Northern Ireland in 1985. As of March 1997, there are some 564 Local Nature Reserves in England, three in Northern Ireland, 24 in Scotland and 38 in Wales. Local Nature Reserves are important for biodiversity and nature conservation at a local level and can have a special role for local schools. The overall situation in respect of Local Nature Reserves has been recently reviewed by the Urban Forum of the UK Man and the Biosphere Committee. This review will add impetus and purpose to the wide variety of programmesand projects involving Local Nature Reserves. It will add emphasis to their potential not only for nature conservation and environmental education but also for community development.  相似文献   

7.
/ To understand the total impact of humans on the carbon cycle, themodeling and quantifying of the transfer of carbon from terrestrial pools tothe atmosphere is becoming more critical. Using previously published data,this research sought to assess the change in carbon pools caused by humans inthe Lower Fraser Basin (LFB) in British Columbia, Canada, since 1827 anddefine the long-term, regional contribution of carbon to the atmosphere. Theresults indicate that there has been a transfer of 270 Mt of carbon frombiomass pools in the LFB to other pools, primarily the atmosphere. The majorlosses of biomass carbon have been from logged forests (42%), wetlands(14%), and soils (43%). Approximately 48% of the forestbiomass, almost 20% of the carbon of the LFB, lies within old-growthforest, which covers only 19% of the study area. Landfills are nowbecoming a major sink of carbon, containing 5% of the biomass carbonin the LFB, while biomass carbon in buildings, urban vegetation, mammals, andagriculture is negligible. Approximately 26% of logged forest biomasswould still be in a terrestrial biomass pool, leaving 238 Mt of carbon thathas been released to the atmosphere. On an area basis, this is 29 times theaverage global emissions of carbon, providing an indication of the pastcontributions of developed countries such as Canada to global warming andpossible contributions from further clearing of rainforest in both tropicaland temperate regions.KEY WORDS: Carbon pools; Global warming; Carbon release to atmosphere;Greenhouse effect  相似文献   

8.
In 1989 the Countryside and Forestry Commissions launched a national programme to create Community Forests on the fringes of major towns and cities in England and Wales. The assumption that such forests will be of benefit to the community at large was tested by means of surveys of two existing multi‐purpose woodlands adjacent to major conurbations. Contingent valuation, travel cost and time cost methods of environmental valuation were used to estimate the existing user benefits of the two woodlands for recreation. The study highlights weaknesses in the travel cost approach when applied to recreational facilities located near urban fringe areas which can be accessed on foot. The results of the two surveys are discussed and compared with similar results for more rural woodlands/ forests. The study suggests that on social grounds at least the concept of Community Forests should be pursued with recreation benefits alone exceeding management costs by a factor of three.  相似文献   

9.
Maps showing the critical loads for soil acidification and their exceedence produced by the UK Department of the Environment were examined for the potential impacts on nature conservation in England. Consideration was given to modelled depositions in 2005, after full implementation of the EC Large Combustion Plant Directive (i.e. a 60% reduction in UK sulphur emissions from 1980 levels). A second scenario was also examined, in which the remaining deposition was further reduced by 50% (i.e. an 80% reduction from 1980 levels). No examination was made of the impacts of present day deposition. Critical load exceedence maps for soil acidification were studied at the 1 km square scale for all of England. All SSSIs in England within squares where the critical load will remain exceeded were identified; geological SSSIs were excluded. In these squares 736 biological SSSIs were found to occur. The special interest for 136 of these was not considered to be susceptible to soil acidification damage. The remaining 600 sites are, therefore, considered to be at risk from continued acidification. The 600 sites represent 16.3% of the total number of SSSIs in England. The actual ‘exceeded’ area on these sites was found to represent 26.2% of the total SSSI area of Britain. If emissions are further reduced by 50% the proportions drop to 6.8% and 15.6% respectively. The sites are located throughout England, especially in upland areas of the north and west. However, a large number of sites also occur on exceeded areas on the dry acidic soils of southern and eastern parts of the country. These sites exhibit a wide range of habitat types. Most common are woodlands, peatlands and heathlands. A significant proportion of the nature conservation resource of England will remain at risk from acidification even after full implementation of existing UK government policy commitments. Even a major reduction beyond that commitment is not sufficient to prevent exceedence of critical loads on 250 of these SSSIs. Protection of Britain's natural environment would, therefore, require a very significant reduction in acid emissions beyond that which is currently agreed.  相似文献   

10.
The soil carbon (C) stock of the Republic of Ireland is estimated to have been 2048 Mt in 1990 and 2021 Mt in 2000. Peat holds around 53% of the soil C stock, but on 17% of the land area. The C density of soils (tCha(-1)) is mapped at 2 km x 2 km resolution. The greatest soil C densities occur where deep raised bogs are the dominant soil; in these grid squares C density can reach 3000 tCha(-1). Most of the loss of soil C between 1990 and 2000-up to 23 MtC (1% of 1990 soil C stock)-was through industrial peat extraction. The average annual change in soil C stocks from 1990 to 2000 due to land use change was estimated at around 0.02% of the 1990 stock. Considering uncertainties in the data used to calculate soil C stocks and changes, the small average annual 'loss' could be regarded as 'no change'.  相似文献   

11.
Determining the effect of tropical land use on the carbon dioxide (CO2) content of the atmosphere requires: (a) estimates of the rates of land use change, (b) estimates of the difference between the carbon stored in forests and that stored in pastures and cultivated fields, and (c) a consideration of the fate of carbon stored in the cleared vegetation. The first article of this series analyzed land use in four tropical countries and estimated the carbon released to the atmosphere as a consequence of changes in land use. This article estimates the carbon released from the entire tropical region based on the two published studies of land use change for the tropics as a whole that distinguish between temporary and permanent land use: Seiler and Crutzen (1980) and Lanly (1982). We combine these estimates with two estimates of the difference in carbon storage between forests and fields derived from Whittaker and Likens (1975) and Brown and Lugo (1982), and the two scenarios of the fate of cleared vegetation, developed in the previous article, to produce several complete sets of data describing the necessary parameters to calculate carbon exchange. These data sets, entered into our model, produce a range of estimates of the annual release of carbon from tropical vegetation in 1980 of from 0.6 to 1.8 BMT/year, with the more likely range being 0.9–1.2 BMT/year. Our preliminary analysis suggests that the release from tropical soils due to land use change adds about an additional 0.3 BMT C/year, so that the total release is probably between 1.2 and 1.5 BMT C/year. Peng and others (1983) reported that new models of the oceanic carbon cycle can accommodate at least 1.2 BMT C/year in 1980 from forests and soils. Our results indicate that, given the uncertainties in the size of both the biotic release and oceanic uptake, the global carbon budget may be balanced if there is no significant release from nontropical ecosystems due to land use change and all mature ecosystems are in collective equilibrium with the atmosphere.  相似文献   

12.
Well-being is a positive physical, mental and social state and has increasingly become an area of interest to researchers and policy-makers internationally. This paper presents results from research that analyses the well-being benefits gained by different sections of society through viewing, engaging with, and accessing woodlands and forests in Britain. We draw on 31 studies undertaken since 2001 and present a meta-analysis of quantitative data and a meta-synthesis of qualitative data to explore the range of benefits and associated activities in woodlands, and their social distribution. We also present a state-of-the-art typology of well-being benefits for woodlands in Britain. The findings illustrate the wide range of well-being benefits gained by different social groups through various forms of engagement with and activities undertaken in woodlands. We illustrate the wide range of meanings and values attached to trees and woodlands across different social groups. The evidence also illustrates how carefully designed and targeted interventions can be particularly effective in enabling and encouraging people to visit woodland sites, to participate or get involved in new activities and, therefore, to realise a range of well-being benefits.  相似文献   

13.
Estimates of terrestrial Broad Habitat cover for Wales from the Countryside Survey 2000 stratified sample field mapping programme in Britain are compared with the findings of a full census field mapping project, the Habitat Survey of Wales. The Countryside Survey sampling regime comprised a stratified random sample of 1 km squares [corrected] covering <0.5% of the land surface. Comparative assessment indicates that although few of the sample-derived estimates for individual Broad Habitats are within 30% of the full census survey results, relative extents accord with data from the complete census survey for all Broad Habitats apart from Arable & Horticultural. The accuracy of this estimate is improved when the national boundary of Wales is taken into account in the sample stratification scheme. It is suggested that cultural land-use differences between countries render cropland habitat extent less predictable from physical environmental parameters than semi-natural habitat extent. It is also shown that the precision of sample-derived cover estimates is influenced by habitat pattern: the error term associated with habitats of broadly equal extent is greater for those with the most clumped distributions.  相似文献   

14.
The Appalachian region in the eastern United Sates is home to the Earth's most extensive temperate deciduous forests, but coal mining has caused forest loss and fragmentation. More than 6000 km in Appalachia have been mined for coal since 1980 under the Surface Mining Control and Reclamation Act (SMCRA). We assessed Appalachian areas mined under SMCRA for forest restoration potentials. Our objectives were to characterize soils and vegetation, to compare soil properties with those of pre-SMCRA mined lands that were reforested successfully, and to determine the effects of site age on measured properties. Soils were sampled and dominant vegetation characterized at up to 10 points on each of 25 post-SMCRA mines. Herbaceous species were dominant on 56%, native trees on 24%, and invasive exotics on 16% of assessed areas. Mean values for soil pH (5.8), electrical conductivity (0.07 dS m(-1)), base saturation (89%), and coarse fragment content (50% by mass) were not significantly different from measured levels on the pre-SMCRA forested sites, but silt+clay soil fraction (61%) was higher, bicarbonate-extractable P (4 mg kg(-1)) was lower, and bulk density (1.20 g cm(-1)) was more variable and often unfavorable. Pedogenic N and bicarbonate-extractable P in surface soils increased with site age and with the presence of weathered rocks among coarse fragments. Our results indicate a potential for many of these soils to support productive forest vegetation if replanted and if cultural practices, including temporary control of existing vegetation, soil density mitigation, and fertilization, are applied to mitigate limitations and aid forest tree reestablishment and growth.  相似文献   

15.
An assessment of the biodiversity of soils was a component of the Countryside Survey 2000 (CS2000). This was the first integrated survey of soil biota and chemical properties at a national scale. A total of 1052 soil samples were collected across Great Britain during CS2000 and analysed for a range of soil microbial and invertebrate characteristics resulting in the production of a series of robust datasets. A principal objective was to use these datasets to investigate relationships between soil biota and environmental factors such as geographical location, vegetation, land use, land cover, soil type and pollutant levels as first stages in characterising the inherent biodiversity of British soils and investigating the potential of soil biodiversity as indicators of soil health at a regional or national scale. Preliminary results for culturable heterotrophic, invertebrate taxa, Acari, Collembola and Oribatid mites are presented here to illustrate the nature of the data collected and the patterns of soil biodiversity in relation to large-scale regional, vegetation and soil characteristics across the British countryside.  相似文献   

16.
The aim of this study was to assess the effects of forest management on carbon sequestration in forests and wood products by using a gap-type forest model interfaced with a wood product model. The assessment is based on total carbon sequestration, i.e. the amount of carbon left in vegetation, litter, soil organic matter and products when the flows of carbon back to the atmosphere have been subtracted. Thirty mixed-species stands, representing medium fertility sites in southern Finland, were included in each simulation for 300 years under current climatic conditions and predicted conditions of changing climate. The average total balance for the first 100 years was higher in the unmanaged system than in the managed system, but for the second and third 100-year periods the results were clearly opposite. Differences in the total balance between the treatments were larger during the first 100 years than over the whole 300-year period. Under conditions of changing climate, differences in carbon sequestration between management options were more pronounced than under current climatic conditions. Under current climatic conditions with the 100-year time frame, the ratio between the total annual balance and annual gross production was 0·208–0·289. Over the whole 300 years, however, efficiency was much lower, 0·088–0·121. Under changing climatic conditions, efficiency was also lower, 0·182–0·252 and 0·081–0·096, respectively. Different management alternatives clearly produced different amounts of timber for the production process; under conditions of changing climate, timber production was substantially enhanced. However, total carbon storages at the end of the simulation varied less than timber production. In the managed system, the flow back into the atmosphere was largest from litter, 41–51% of the total outflow, the flow from vegetation was 23–28%, from soil organic matter 22–25%, emissions from products 1–7%, and emissions from landfills 0–3%. If emissions due to the use of machinery in timber harvesting and transportation were included, they made up only 0·03–0·33% of the total outflow.  相似文献   

17.
Accounting of carbon stocks in woody vegetation for greenhouse purposes requires definition of medium term trends with accurate error assessment. Tree and shrub cover was sampled through time at randomly located sites over a large area of central Queensland, Australia using aerial photography from 1945 to 1999. Calibration models developed from field data for the same land types as those represented within the study area allowed for the extrapolation of overstorey and understorey cover, basal area and biomass values and these were modelled as trends over the latter half of the 20th century. These structural attributes have declined over the region because of land clearing with values for biomass changing from a mean of 58.0(+/-1.2)t/ha in 1953 to 41.1(+/-1.0)t/ha in 1991. The biomass of Acacia on clay and Eucalypt on texture contrast soils land types has declined most dramatically. Within uncleared vegetation there was an overall trend of increase from 56.1(+/-1.2)t/ha in 1951 to 67.6(+/-1.3)t/ha in 1995. The increase in structural attributes within uncleared vegetation was most pronounced for the Eucalypt on texture contrast soils and Eucalypt on clay land types. It was demonstrated that the sites sampled were representative of their land types and that spatial bias of the photography, undetected tree-killing, sampling error, inherent variability of structural attributes and measurement error should not have impacted greatly on bias or precision of trend estimates for well-sampled land types. Certainly the errors are not likely to be substantial for trends averaged over all land types and they provide an accurate assessment of the magnitude and direction of change. The technique presented here would appear to be a robust means of accounting for the above-ground woody component of woodlands and open forests and will also contribute to a broader understanding of savanna dynamics.  相似文献   

18.
We examined constraints on soil CO2 respiration in natural oak woodlands, and adjacent vineyards that were converted approximately 30 yr ago from oak woodlands, in the Oakville Region of Napa Valley, California. All sites were located on the same soil type, a Bale (variant) gravelly loam (fine-loamy, mixed, superactive, thermic Cumulic Ultic Haploxeroll) and dominated by C3 vegetation. Seasonal soil CO2 efflux was greatest at the oak woodland sites, although during the summer drought the rates of soil CO2 efflux measured from oak sites were generally similar to those measured from the vineyards. Soil profile CO2 concentrations at the oak woodland sites were lower below 15 cm despite higher CO2 efflux rates. Soil gas diffusion coefficients for oak sites were larger than for vineyard sites, and this indicated that the apparent discrepancy in soil profile carbon dioxide concentration ([CO2]) may be caused by a diffusion limitation. Soil profile [CO2] and delta13C values showed substantial temporal changes over the course of a year. Vineyard soil CO2 was more depleted in 13CO2 below 25 cm in the soil profile during the active growing season as indicated by more negative delta13C ratios. This result indicated that different C sources were being oxidized in vineyard soils. Annual C losses were less from vineyard soils (7.02 +/- 0.58 Mg C ha(-1) yr(-1)) as compared to oak soils (15.67 +/- 1.44 Mg C ha(-1) yr(-1)), and both were comparable to losses reported in previous investigations.  相似文献   

19.
Carbon flows and carbon use in the German anthroposphere: An inventory   总被引:2,自引:0,他引:2  
Today, global climate change is one of the most urgent environmental problems. The atmospheric concentration of carbon dioxide (CO2) has to be stabilised by significant reductions of CO2 emissions in the next decades to keep the expected temperature rise within tolerable borders. Efforts exceeding the implemented measures to reduce CO2 emissions in Germany are desirable. An important pre-condition for such measures is a scientific-based inventory of the sources, sinks, and use of carbon.In this paper, we present CarboMoG, i.e. Carbon Flow Model of Germany. CarboMoG is a carbon flow model covering carbon flows, carbon sources and sinks in Germany and the German anthroposphere, showing concurrent energy and non-energy use of carbon sources.The model consists of seven modules in German anthroposphere following the German classification of economic sectors. Carbon flows to and from atmosphere and lithosphere as well as imports and exports were included into the model. The model comprises roughly 220 material flows determined based on material flow procedures for the base year 2000.Main sources of carbon are fossil energy carriers from lithosphere and uptake of CO2 by crops (52% resp. 48% of all carbon sources). The model calculations show that import of energy carriers dominates total carbon import to Germany (82%). Total non-energy use of carbon in Germany is significantly higher than energy use (386 Mt C and 230 Mt C, resp.). Carbon throughput of Industry is greatest (about 224 Mt C input), followed by Energy (about 129 Mt C input). Agriculture and Forestry & Industry show the highest figure for non-energy use of carbon, energy use of carbon is largest in the Energy sector. Emissions of CO2 to atmosphere account for 94% of all carbon flows to sinks in Germany. Carbon accumulates in German anthroposphere 5 Mt C in 2000.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号