首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change poses a major threat to human security and poverty in Africa. In Africa, where livelihoods are mainly based on climate-dependent resources and environment, the effect of climate change will be disproportionate and severe. Moreover, Africa's capacity to adapt to and cope with the adverse effects of climate variability is generally weak. This article discusses how climate change affects human security in Africa. It also assesses the policy options available to policymakers in terms of mitigation and adaptation to climate change to reduce vulnerability and human insecurity in Africa.  相似文献   

2.
In this overview two definitions of climate are presented, from the meteorological point of view and from the climate system’s point of view. The origin of climate change is discussed, i.e., externally forced variability and free, or internal variability that is caused without external trigger by internal instabilities of the system. Both, forced and free variability can appear as periodic, randomly quasi-periodic, and abrupt climate change. Finally, various possibilities of climate forecast are considered.  相似文献   

3.
Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate‐change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate‐change scenarios for ecological impact assessment. Selección y Uso de Escenarios de Cambio Climático para Estudios de Impacto Ecológico y Decisiones de Conservación  相似文献   

4.
Mobility has been argued to be the single factor explaining why some pastoralists do relatively well during extreme climatic events, while others do not, because mobility works by taking advantage of the spatial and temporal structure of resource failure by moving away from scarcity towards abundance. In spite of this, a common governmental management strategy is to resettle pastoral populations and thereby significantly reduce mobility. By revealing the underlying logic of mobility for Tibetan pastoralists, this paper questions official policy that aims at privatizing communally owned rangelands since it reduces pastoral flexibility and access to key resources. This is especially pertinent in the face of climate change. While little is known as to the specifics of how climate change will affect nomadic pastoralists, environmental variability is likely to increase. Consequently, policies resulting in decreased mobility may exacerbate the negative effects of climate change because of a positive feedback between climate and negative density dependence.  相似文献   

5.
Wildlife managers face the daunting task of managing wildlife in light of uncertainty about the nature and extent of future climate change and variability and its potential adverse impacts on wildlife. A conceptual framework is developed for managing wildlife under such uncertainty. The framework uses fuzzy logic to test hypotheses about the extent of the wildlife impacts of past climate change and variability, and fuzzy multiple attribute evaluation to determine best compensatory management actions for adaptively managing the potential adverse impacts of future climate change and variability on wildlife. A compensatory management action is one that can offset some of the potential adverse impacts of climate change and variability on wildlife. Implementation of the proposed framework requires wildlife managers to: (1) select climate impact states, hypotheses about climate impact states, possible management actions for alleviating adverse wildlife impacts of climate change and variability, and future climate change scenarios; (2) choose biological attributes or indicators of species integrity; (3) adjust those attributes for changes in non-climatic variables; (4) define linguistic variables and associated triangular fuzzy numbers for rating both the acceptability of biological conditions under alternative management actions and the relative importance of biological attributes; (5) select minimum or maximum acceptable levels of the attributes and reliability levels for chance constraints on the biological attributes; and (6) define fuzzy sets on the extent of species integrity and biological conditions and select a fuzzy relation between species integrity and biological conditions. A constructed example is used to illustrate a hypothetical application of the framework by a wildlife management team. An overall best compensatory management action across all climate change scenarios is determined using the minimax regret criterion, which is appropriate when the management team cannot assign or is unwilling to assign probabilities to the future climate change scenarios. Application of the framework can be simplified and expedited by incorporating it in a web-based, interactive, decision support tool.  相似文献   

6.
Both means and year-to-year variances of climate variables such as temperature and precipitation are predicted to change. However, the potential impact of changing climatic variability on the fate of populations has been largely unexamined. We analyzed multiyear demographic data for 36 plant and animal species with a broad range of life histories and types of environment to ask how sensitive their long-term stochastic population growth rates are likely to be to changes in the means and standard deviations of vital rates (survival, reproduction, growth) in response to changing climate. We quantified responsiveness using elasticities of the long-term population growth rate predicted by stochastic projection matrix models. Short-lived species (insects and annual plants and algae) are predicted to be more strongly (and negatively) affected by increasing vital rate variability relative to longer-lived species (perennial plants, birds, ungulates). Taxonomic affiliation has little power to explain sensitivity to increasing variability once longevity has been taken into account. Our results highlight the potential vulnerability of short-lived species to an increasingly variable climate, but also suggest that problems associated with short-lived undesirable species (agricultural pests, disease vectors, invasive weedy plants) may be exacerbated in regions where climate variability decreases.  相似文献   

7.
Phenological tracking enables positive species responses to climate change   总被引:1,自引:0,他引:1  
Earlier spring phenology observed in many plant species in recent decades provides compelling evidence that species are already responding to the rising global temperatures associated with anthropogenic climate change. There is great variability among species, however, in their phenological sensitivity to temperature. Species that do not phenologically "track" climate change may be at a disadvantage if their growth becomes limited by missed interactions with mutualists, or a shorter growing season relative to earlier-active competitors. Here, we set out to test the hypothesis that phenological sensitivity could be used to predict species performance in a warming climate, by synthesizing results across terrestrial warming experiments. We assembled data for 57 species across 24 studies where flowering or vegetative phenology was matched with a measure of species performance. Performance metrics included biomass, percent cover, number of flowers, or individual growth. We found that species that advanced their phenology with warming also increased their performance, whereas those that did not advance tended to decline in performance with warming. This indicates that species that cannot phenologically "track" climate may be at increased risk with future climate change, and it suggests that phenological monitoring may provide an important tool for setting future conservation priorities.  相似文献   

8.
ABSTRACT

Climatic variability and its effects have been experienced in the high-altitude regions of Nepal for some considerable time. Most of the studies on local people’s perception available so far in Nepal on climate include with respect to weather changes, and almost none have been verified with satellite imagery. This study thus attempts to combine meteorological and satellite imagery for comparing local people’s perception so that a more robust validation can be established. Both qualitative (transect walk, key informant interview, focus group discussion and institutional visit) and quantitative (meteorological and satellite image) data and techniques were employed. Local people from Rara and Langtang in Nepal shared their observations and perceptions on the changing climate for the last three decades and the effects on them and their local microclimate. Apart from temperature, rainfall and snowfall anomalies, locals observed changes in the water sources and increasing drought along with alteration in the phenology of tree and agricultural crops as well as vegetation range migration. Satellite image analysis also confirms a change in snow cover as notified by the local people. This study shows that local people’s knowledge could be considered as a complement to the observed scientific evidences of climate change science and their perceptions can be used reliably where scientific data are lacking. Finally, perceived climatic risks, current gaps and future opportunities are discussed and some recommendations are suggested.  相似文献   

9.
Bonebrake TC  Deutsch CA 《Ecology》2012,93(3):449-455
Evolutionary history and physiology mediate species responses to climate change. Tropical species that do not naturally experience high temperature variability have a narrow thermal tolerance compared to similar taxa at temperate latitudes and could therefore be most vulnerable to warming. However, the thermal adaptation of a species may also be influenced by spatial temperature variations over its geographical range. Spatial climate gradients, especially from topography, may also broaden thermal tolerance and therefore act to buffer warming impacts. Here we show that for low-seasonality environments, high spatial heterogeneity in temperature correlates significantly with greater warming tolerance in insects globally. Based on this relationship, we find that climate change projections of direct physiological impacts on insect fitness highlight the vulnerability of tropical lowland areas to future warming. Thus, in addition to seasonality, spatial heterogeneity may play a critical role in thermal adaptation and climate change impacts particularly in the tropics.  相似文献   

10.
Numerical experiments based on atmosphere–ocean general circulation models (AOGCMs) are one of the primary tools in deriving projections for future climate change. Although each AOGCM has the same underlying partial differential equations modeling large scale effects, they have different small scale parameterizations and different discretizations to solve the equations, resulting in different climate projections. This motivates climate projections synthesized from results of several AOGCMs’ output. We combine present day observations, present day and future climate projections in a single highdimensional hierarchical Bayes model. The challenging aspect is the modeling of the spatial processes on the sphere, the number of parameters and the amount of data involved. We pursue a Bayesian hierarchical model that separates the spatial response into a large scale climate change signal and an isotropic process representing small scale variability among AOGCMs. Samples from the posterior distributions are obtained with computer-intensive MCMC simulations. The novelty of our approach is that we use gridded, high resolution data covering the entire sphere within a spatial hierarchical framework. The primary data source is provided by the Coupled Model Intercomparison Project (CMIP) and consists of 9 AOGCMs on a 2.8 by 2.8 degree grid under several different emission scenarios. In this article we consider mean seasonal surface temperature and precipitation as climate variables. Extensions to our model are also discussed.  相似文献   

11.
Ecological Consequences of Recent Climate Change   总被引:47,自引:0,他引:47  
Abstract: Global climate change is frequently considered a major conservation threat. The Earth's climate has already warmed by 0.5° C over the past century, and recent studies show that it is possible to detect the effects of a changing climate on ecological systems. This suggests that global change may be a current and future conservation threat. Changes in recent decades are apparent at all levels of ecological organization: population and life-history changes, shifts in geographic range, changes in species composition of communities, and changes in the structure and functioning of ecosystems. These ecological effects can be linked to recent population declines and to both local and global extinctions of species. Although it is impossible to prove that climate change is the cause of these ecological effects, these findings have important implications for conservation biology. It is no longer safe to assume that all of a species' historic range remains suitable. In drawing attention to the importance of climate change as a current threat to species, these studies emphasize the need for current conservation efforts to consider climate change in both in situ conservation and reintroduction efforts. Additional threats will emerge as climate continues to change, especially as climate interacts with other stressors such as habitat fragmentation. These studies can contribute to preparations for future challenges by providing valuable input to models and direct examples of how species respond to climate change.  相似文献   

12.
This study assesses the role of trees in adaptation strategies of rural households to local environmental change in the central highlands of Ethiopia. Change in tree cover was assessed by producing Land Use and Land Cover (LULC) maps using satellite remote sensing images, and household survey was conducted to generate socioeconomic data. The results show that tree cover has increased over the last 30 years, mostly in the form of eucalyptus woodlots around homesteads. Eucalyptus reportedly helps households pass through livelihood shocks and provide protection against negative effects of climate change and variability. Despite some concerns on the part of local agricultural experts that planting eucalyptus may affect future food production, farmers are converting their croplands into eucalyptus woodlots. We conclude that land use planning and proper allocation of land resource is important to improve local livelihoods while also supporting adaptation of communities to local environmental change in general and climate change in particular.  相似文献   

13.
Natural resource managers are seeking tools to help them address current and future effects of climate change. We present a model for collaborative planning aimed at identifying ways to adapt management actions to address the effects of climate change in landscapes that cross public and private jurisdictional boundaries. The Southwest Climate Change Initiative (SWCCI) piloted the Adaptation for Conservation Targets (ACT) planning approach at workshops in 4 southwestern U.S. landscapes. This planning approach successfully increased participants’ self‐reported capacity to address climate change by providing them with a better understanding of potential effects and guiding the identification of solutions. The workshops fostered cross‐jurisdictional and multidisciplinary dialogue on climate change through active participation of scientists and managers in assessing climate change effects, discussing the implications of those effects for determining management goals and activities, and cultivating opportunities for regional coordination on adaptation of management plans. Facilitated application of the ACT framework advanced group discussions beyond assessing effects to devising options to mitigate the effects of climate change on specific species, ecological functions, and ecosystems. Participants addressed uncertainty about future conditions by considering more than one climate‐change scenario. They outlined opportunities and identified next steps for implementing several actions, and local partnerships have begun implementing actions and conducting additional planning. Continued investment in adaptation of management plans and actions to address the effects of climate change in the southwestern United States and extension of the approaches used in this project to additional landscapes are needed if biological diversity and ecosystem services are to be maintained in a rapidly changing world. Acelerando la Adaptación del Manejo de Recursos Naturales para Atender el Cambio Climático  相似文献   

14.
Abstract: In 1998, tropical sea surface temperatures were the highest on record, topping off a 50-year trend for some tropical oceans. In the same year, coral reefs around the world suffered the most extensive and severe bleaching ( loss of symbiotic algae) and subsequent mortality on record. These events may not be attributable to local stressors or natural variability alone but were likely induced by an underlying global phenomenon. It is probable that anthropogenic global warming has contributed to the extensive coral bleaching that has occurred simultaneously throughout the reef regions of the world. The geographic extent, increasing frequency, and regional severity of mass bleaching events are an apparent result of a steadily rising baseline of marine temperatures, combined with regionally specific El Niño and La Niña events. The repercussions of the 1998 mass bleaching and mortality events will be far-reaching. Human populations dependent on reef services face losses of marine biodiversity, fisheries, and shoreline protection. Coral bleaching events may become more frequent and severe as the climate continues to warm, exposing coral reefs to an increasingly hostile environment. This global threat to corals compounds the effects of more localized anthropogenic factors that already place reefs at risk. Significant attention needs to be given to the monitoring of coral reef ecosystems, research on the projected and realized effects of global climate change, and measures to curtail greenhouse gas emissions. Even those reefs with well-enforced legal protection as marine sanctuaries, or those managed for sustainable use, are threatened by global climate change.  相似文献   

15.
Scientific consensus shows that the changes related to climate change are already occurring and will intensify in the future. This will likely result in significant alterations to coastal ecosystems such as mangroves, increase coastal hazards and affect lifestyles of coastal communities. There is increasing speculation that mangrove, a socio-economically important ecosystem, will become more fragile and sensitive to uncertain climate variability such as sea level rise. As a result, mangrove-dependent societies may find themselves trapped in a downward spiral of ecological degradation in terms of their livelihoods and life security. Strengthening the resilience capacity of coastal communities to help them cope with this additional threat from climate change and to ensure sustainability calls for immediate action. In this context, this paper critically examines the regional implications of expected sea level rise and threats to mangrove-dependent communities through a case study approach. The main objective is to highlight the requirement for climate change communication and education to impart information that will fulfil three expectations: (1) confer understanding; (2) assess local inference on climate change through a participatory approach; and (3) construct a framework for climate change awareness among mangrove-dependent communities through community-based non-formal climate change education. This scale of approach is attracting increasing attention from policymakers to achieve climate change adaptation and derive policies from a social perspective.  相似文献   

16.
17.
Changes of streamflow reflect combined effects of climate, soil and vegetation in the basin scale. This study was conducted to investigate the response of streamflow to the climate changes/variability in different scales of the Yellow River Basin (YRB). The spatial distribution and temporal trends were explored for precipitation and potential evapotranspiration (PE) during 1961-2000 to illustrate climate change/variability and impacts of climate change/variability on streamflow were explained by investigating the relationship of precipitation, PE and streamflow in the YRB. The results presented that: (i) precipitation and PE exhibited different spatial distribution patterns and temporal trends in different regions, and most stations showed negative trends for precipitation in the basin; (ii) the relationship of streamflow with precipitation and PE showed high nonlinearity, and the magnitudes and patterns of streamflow response to precipitation and PE displayed different patterns varied with the dry conditions in different region or years; and (iii) the precipitation elasticity of streamflow (?P) was 1.80, 1.08, 1.78 and 1.95 in Lanzhou, Toudaoguai, Huayuankou and Lijin respectively, while the PE elasticity of streamflow (?ET) was −3.41, −4.40, −4.52 and −4.20 in above four scales, respectively, from which can be seen that streamflow was more sensitive to precipitation in wet region than in arid region and inversely it was more sensitive to PE in arid regions than in wet regions. Furthermore, precipitation elasticity of streamflow calculated from the partial correlation presented a reasonable result to show the combined effect of precipitation and PE on streamflow.  相似文献   

18.
Aquatic species are threatened by climate change but have received comparatively less attention than terrestrial species. We gleaned key strategies for scientists and managers seeking to address climate change in aquatic conservation planning from the literature and existing knowledge. We address 3 categories of conservation effort that rely on scientific analysis and have particular application under the U.S. Endangered Species Act (ESA): assessment of overall risk to a species; long‐term recovery planning; and evaluation of effects of specific actions or perturbations. Fewer data are available for aquatic species to support these analyses, and climate effects on aquatic systems are poorly characterized. Thus, we recommend scientists conducting analyses supporting ESA decisions develop a conceptual model that links climate, habitat, ecosystem, and species response to changing conditions and use this model to organize analyses and future research. We recommend that current climate conditions are not appropriate for projections used in ESA analyses and that long‐term projections of climate‐change effects provide temporal context as a species‐wide assessment provides spatial context. In these projections, climate change should not be discounted solely because the magnitude of projected change at a particular time is uncertain when directionality of climate change is clear. Identifying likely future habitat at the species scale will indicate key refuges and potential range shifts. However, the risks and benefits associated with errors in modeling future habitat are not equivalent. The ESA offers mechanisms for increasing the overall resilience and resistance of species to climate changes, including establishing recovery goals requiring increased genetic and phenotypic diversity, specifying critical habitat in areas not currently occupied but likely to become important, and using adaptive management. Incorporación de las Ciencias Climáticas en las Aplicaciones del Acta Estadunidense de Especies en Peligro para Especies Acuáticas  相似文献   

19.
This study examines the importance of climate variability when simulating forest succession using a process-based model of stand development. The FORSKA-2V forest gap model, originally developed for forcing with monthly mean climate data, was modified to accept daily weather data. The model's performance was compared using different temporal resolutions of forcing along a bioclimatic transect crossing the boreal region of central Canada, including the aspen-parkland and forest-tundra ecotones. Forcing the model with daily weather data improved the simulation of key attributes of present-day forest along the transect, particularly at the ecotones, compared to forcing with monthly data or long term averages. The results support the hypothesis that climatic variability at daily time-scales is an important determinant of present-day boreal forest composition and productivity. To simulate boreal forest response to climatic change it will be necessary to create climatic scenarios that include plausible projections of future daily scale variability.  相似文献   

20.
The last two decades have seen an increasing number of studies assessing the impact of climate change upon biodiversity. A central assumption underpinning research into the potential future habitat of terrestrial biota is that species are presently in equilibrium with their environments and that quantitative climate models adequately represent the distribution of species. Recently, many alarming predictions have emerged concerning the extinction and redistribution of species. Here, we show that even large-scale models of the climatic niche dimensions of species are temporally variable. Distributional models were developed for Salix (willow) species occurring in the province of Ontario, Canada, using three historical climate data sets. Although historical data very accurately represented the distributions of willows, the inherent variability within the models of species based on different periods greatly influenced the direction and magnitude of projected distributional change. We expose a fundamental uncertainty with respect to predicting the responses of species to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号