首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of salinity on embryonic development ofSepia officinalis (cuttlefish) in the Delta Area (South Western part of The Netherlands) was investigated in 1988/1989, and compared with data concerning the distribution ofS. officinalis in the three main parts of this area: Oosterschelde, Westerschelde and Grevelingen. Embryos hatched in water collected at Yerseke (Oosterschelde), Vlissingen (Western part of the Westerschelde) and Bommenede (Grevelingen), i.e., at salinity values above 28.1, but not in water sampled at Hoedekenskerke and Hansweert (Middle and Eastern part of the Westerschelde; salinities below 22.0). Under laboratory conditions, using diluted Oosterschelde water, the highest hatching percentages ofS. officinalis were found at salinities above 29.8. Some embryos hatched at a salinity value of 26.5 but no hatching occurred at salinities below 23.9. In embryos exposed to salinity changes during late embryonic development, the developmental rate decreased at salinity values of 28.7 or less. Below 22.4 embryos with morphological malformations were found. It can be concluded that salinity is an important factor limiting the distribution ofS. officinalis in most parts of the Delta Area, with the exception of the Western part of the Westerschelde and the Grevelingen.Contribution no. 489 of the Library of the Delta Institute for Hydrobiological Research  相似文献   

2.
The 30-d survival limit of Eupentacta quinquesemita and Strongylocentrotus droebachiensis is 12–13 S. The activity coefficient (1 000/righting time in seconds) of stepwise acclimated sea urchins declined from 16.3 at 30 S to 3.5 at 15 S. Oxygen consumption rates (QO2) of both species held at 30 S and 13°C were highest in June and lowest in December. During the summer, when environmental salinity is most variable in southeastern Alaska, the QO2 of both species held at 30, 20 and 15 S varied directly with salinity. Perivisceral fluid PO2 varied directly with acclimation salinity in sea urchins, but not in sea cucumbers. Perivisceral fluid oxygen content of acclimated sea urchins was significantly lower at 15 and 20 S than at 30 S due to reduced PO2 and extracellular fluid volume at the lower salinities. The QO2 of both species varied directly with ambient salinity during a 30-10-30. semidiurnal pattern of fluctuating salinity. No change occurred in the average QO2 of either species over a 15-30-15. semidiurnal pattern of fluctuating salinity. Sea urchin perivisceral fluid PO2 declined as ambient salinity fluctuated away from the acclimation salinity in both cycles and increased as ambient salinity returned to the acclimation salinity. Total nitrogen excretion of stepwise acclimated sea cucumbers declined significantly from 30 to 15 S, but there was no salinity effect on total nitrogen excretion in sea urchins. Ammonia excretion varied directly with salinity in stepwise acclimated sea cucumbers (67–96% of total nitrogen excreted), but there was no salinity effect on ammonia excretion (89–95% of total nitrogen excreted) of sea urchins. Urea excretion did not vary with salinity in sea cucumbers (2–4% of total nitrogen excreted) or sea urchins (2–9% of total nitrogen excreted). Primary amines varied inversely with salinity in sea cucumbers (2–30% of total nitrogen excreted), but did not vary with salinity in sea urchins (2–4% of total nitrogen excreted). The oxygen: nitrogen ratio of both species indicated that carbohydrate and/or lipid form the primary catabolic substrate. The O:N ratio did not vary as a function of salinity. Both species are more tolerant to reduced salinity than previously reported, however, rates of oxygen consumption and/or nitrogen excretion are modified by salinity as well as season.  相似文献   

3.
This study documents the effects of short-term (24h) sublethal copper exposures on undirected swimming activity and photobehavior of Balanus improvisus stage II nauplii. All Cu treatments were static, with temperature and salinity conditions at 20°C and 15 or 30. The 24h LC 50 estimate for Cu is 88 ppb at 15 and >200 ppb at 30. Sub-lethal Cu concentrations cause reductions in swimming speed, which decrease progressively with increasing Cu dose. At 50 ppb Cu, this was significant primarily at light intensities below the phototactic threshold. At higher Cu concentrations, significant reductions in mean linear velocity occurred at most light intensities tested. At 30, 50 and 100 ppb Cu also reduce the positive phototactic response and 150 ppb Cu causes reversal of phototaxis at optimal intensities. Photokinesis is reduced at 100 ppb Cu and disappears at 150 ppb Cu. At 15, the behavioral effects of 50 ppb Cu resemble those occurring with 150 ppb Cu at 30. Swimming speed and photobehavior show promise as sensitive behavioral indicators of copper toxicity. Additional research is required to determine if these responses apply to a broad range of pollutants and to other planktonic organisms. There is also a need to further evaluate the significance of these behavioral effects ecologically.Contribution No. 181 from the EPA Environmental Research Laboratory, Narragansett, RI 02882, USA  相似文献   

4.
Larvae of Lithodes antarcticus Jacquinot were reared in October, 1981 from hatching to the glaucothoe stage at 16 temperature/salinity combinations (5.5°; 7.5°; 9.5° and 13.5°C; 26, 29, 32 and 35 S) to determine optimal environmental conditions for larval development. The highest survival percentage was obtained in the culture at 7.5°C and diminished according to temperature increase or decrease. High temperature cultures significantly shorten the larval life duration, but produce large mortalities. At 5.5°C mortality occurred almost exclusively during the moult to glaucothoe stage. Higher survival percentages were obtained as salinity was increased. In the lowest salinity culture (26 S) no zoea reached the post-larvae stage at culture temperatures. The best T/S combination was obtained at 7.5°C and 35 S, with a survival percentage of 29%. The shortest zoeal developments were obtained at 32 S in all culture temperatures. Salinity also affects larvae coloration: there is a pigment concentration on erythrophores, which causes a color decrease.  相似文献   

5.
S. V. Job 《Marine Biology》1969,2(2):121-126
In a series of experiments 174, 120 and 139 individuals of the teleost Tilapia mossambica (Peters), were acclimated to 30°C and to salinities of 0.4, 12.5 and 30.5, respectively. The effect of temperature and salinity upon oxygen consumption was studied by abruptly transferring fish of different wet weights to temperatures from 15° to 40°C at an average initial pO2 of 250mm Hg. At each salinity, the proportionate response to temperature is size-independent. The metabolic rate increases as a function of temperature at 15° and 30°C but not at 40°C. Oxygen consumption is, however, salinity dependent; maximum rates are obtained at 12.5S. This salinity is isotonic in the 80 g fish and, to a lesser extent, in the 5 g fish. Reduction in osmotic load is suggested as the probable cause for a greater scope for activity and greater rate of oxygen consumption in 12.5 salinity.  相似文献   

6.
The seasonal variations in distribution and abundance of the common zooplankton species in the Bristol Channel and Severn Estuary were related to the salinity regimes observed over the period November 1973 to February 1975. The dominant constituents in all regions were the calanoid copepods, which reached maximum densities in July: approximately 100 times their winter levels. Four zooplankton assemblages were recognised using an objective classification program which computed similarity coefficients and used group-average sorting. The assemblages existed along the salinity gradient observed from the Severn Estuary to the Celtic Sea. The assemblages were classified as true estuarine, estuarine and marine, euryhaline marine and stenohaline marine and were characterized by the copepods Eurytemora affinis (Poppe) (<30S), Acartia bifilosa var. inermis (rose) (27 to 33.5S), Centropages hamatus (Lilljeborg) (31 to 35S) and Calanus helgolandicus (Claus) (>33S), respectively.  相似文献   

7.
S. V. Job 《Marine Biology》1969,3(3):222-226
Tilapia mossambica (Teleostei) weighing 5 to 80 g were acclimated at 30°C to salinities of 0.4 (tap water), 12.5 (50% sea water) and 30.5 (100% sea water). Their respiration was measured at routine activity and the partial pressure of ambient oxygen gradually reduced from 250 to 50 mm Hg. Respiration is salinity-dependent; the proportionate ability to use oxygen in any one salinity is — above the critical pO2 —the same in all experimental groups. This ability is a function of temperature and increases from 15° to 30°C, becoming temperature independent from 30° to 40°C as long as the pO2 remains above 150 mm Hg. At 50 mm Hg pO2, the limiting effect of oxygen causes a decrease in metabolic rate. This limiting effect is minimal in 80 g fish kept in an isotonic medium (12.5 S), allowing greater scope for activity and a higher rate of oxygen uptake.  相似文献   

8.
Measurements of net photosynthesis of benthic estuarine diatoms were made by polarographic registration of oxygen saturation. A measuring cell was constructed in which media with salinities of 2.0 to 100.7 were pumped over the algae between measurements. Diatoms from unialgal cultures and mixed populations from intertidal flats appeared to be highly tolerant of extreme salinities. During short-term exposures (20 min) the net photosynthesis of the algae did not drop below 70% of the initial values, within the salinity range 4.0 to 60.0. Prolonged exposure (up to 6 h) gave essentially the same results. Populations of benthic diatoms, sampled from field stations with mean salinities of about 30, 12, and below 5, showed only gradual differences in their tolerance of salinities between 2.0 and 33.7. Two species, Navicula arenaria and Nitzschia sigma, were cultured in media ranging in salinity from 8.0 to 45.0 and from 2.0 to 45, respectively. The tolerance to changing salinity was only slightly affected by the salinity of the medium in the preculture. The role of salinity in the production and distribution of intertidal diatoms is discussed.  相似文献   

9.
The coralline alga Phymatolithon calcareum was dredged from 13 m in the Kattegatt, Baltic Sea, in December, 1980, and its rate of calcification was measured by 45Ca++-uptake methods. Light-saturated calcification rates at 5°C ranged from 15.8 g CaCO3 g-1 dry wt h-1 for the basal parts of the plants to 38.7 g CaCO3 g-1 dry wt h-1 for the tips. These age gradients were not apparent when calcification rates were expressed on the basis of surface area. Experiments with salinity (10, 20, 30) and temperature (0°, 5°, 10°, 20°C) indicated that optimum conditions for calcification were at 30 S and at temperatures above 10°C. Salinity had a greater influence on calcification rate than did temperature, and there was a positive relationship between salinity and calcification rate at all temperatures. In 6 mo old cultures, salinity was again the important factor, with all plants remaining healthy at 30 except those at the highest temperature (20°C). These trends, and the low calcification rates at 10S (4.6 g CaCO3 g-1 dry wt h-1 at 5°C to 8.6 g CaCO3g-1 dry wt h-1 at 20°C) suggest that low salinity may be the explanation for the general absence of P. calcareum from the brackish waters of the Baltic Sea. Short-term experiments in which salinity was kept constant while Ca++ concentration was altered, and experiments in which salinity was varied and Ca++ concentration kept constant, suggest that it is the calcium ion concentration and not salinity per se which affects calcification rates.  相似文献   

10.
The combined effects of salinity and temperature on survival and growth of larvae of the mussel Mytilus edulis (L.) were studied. The effects of salinity and temperature are significantly related only as the limits of tolerance of either factor are approached. Survival of larvae at salinities from 15 to 40 is uniformly good (70% or better) at temperatures from 5° to 20°C, but is reduced drastically at 25 °C, particularly at high (40) and low (20) salinities. Larval growth is rapid at a temperature of 15 °C in salinities from 25 to 35, at 20 °C in salinities from 20 to 35. Optimum growth occurs at 20 °C in salinities from 25 to 30. Growth decreases both at 25° and 10 °C; the decline is most drastic at high (40) and low (20) salinities.Part of a study completed at the Bureau of Commercial Fisheries, Biological Laboratory, Milford, Connecticut, USA, while on a UNESCO Fellowship.  相似文献   

11.
A salinity dependent mictic response was observed in a clone of Brachionus plicatilis cultured in the 2 to 4 salinity range. This response was related to asexual exponential reproduction rates (G) and could be divided into three categories: (a) no mixis occurred at a salinity of 35 S and above, where G values were lower than 0.30 d-1, (b) low mictic levels in rotifers cultured at 2 and 30 S, where G values ranged between 0.40 to 0.50 d-1, and (c) high mictic levels in rotifers cultured at salinities ranging between 4 and 20 S, where G values ranged between 0.50 to 0.85 d-1. Fluctuations in mictic levels varied with time during the course of the experiments. Results suggest that salinity conditions leading to optimal parthenogenic reproduction also support mixis.  相似文献   

12.
The infratidal zonation of animals in a 35 m deep fjord-like South African estuary is described. The barnacle Balanus amphitrite Darwin and the bivalve Musculus virgiliae Barnard form the uppermost zone and extend to a depth of 9 m. The oyster Crassostrea margaritacea (Lam.) forms a zone between 1 and 3 m depth while the sponge Grantessa ramosa (Haeckel) occurs between 3 and 7 m. The tubiculous polychaete Mercierella enigmatica Fauvel is the only species found below 10 m, and attains a depth of 33 m. In the wet season (summer) the surface salinity dropped to 2 and temperatures rose to 24°C. In the dry season (winter) surface salinity rose to 24 and temperatures dropped to 16°C. Salinity and temperature of deep water (6 to 33 m) were more stable and varied only between 32.5 and 35 and between 19.6° and 20.5°C, respectively. In June, water below 12 m was 50 to 60% saturated with oxygen but this declined to less than 5% saturation in January.  相似文献   

13.
The responses of the post-embryonic stages of Corophium volutator (Pallas) and C. arenarium Crawford to the combined effects of salinity and temperature show that gravid females have a wider tolerance than nongravid adult females which in turn are more tolerant than adult males. C. volutator is more tolerant of low salinity (2 to 10) than C. arenarium, but the latter is more tolerant of salinities above 45. The embryos of C. volutator develop normally and hatch at lower salinities and temperatures than those of C. arenarium, in which successful development was recorded at higher temperatures. Females undergoing a pre-copulatory moult failed to lay eggs below salinities of 3 (C. volutator) and 10 (C. arenarium), but in both species the lowest salinity at which all females moulted and laid eggs was 20. The results are discussed in relation to the distribution of both species.  相似文献   

14.
Grass shrimp, Palaemonetes pugio, were capable of hypo- and hyper-osmotic regulation of body fluids. Hemolymph chloride and osmotic concentrations were maintained at relatively stable levels over a wide salinity range. Following an abrupt transfer from intermediate (14 and 17) to high (31 and 35) or low (1 and 2) salinities, hemolymph chloride levels exhibited initial overshoot and undershoot, respectively, of new steady-state levels. Osmotic concentrations exhibited an initial undershoot at low, but not overshoot at high salinity. Chloride space in salinity-acclimated shrimp was relatively stable at salinities from 1 to 35. Changes in chloride space following salinity transfer paralleled those of hemolymph chloride levels, and are discussed in the light of alterations in intracellular sodium concentrations reported earlier. Rate constants for chloride turnover indicated independent exchanges of sodium and chloride ions. Water-turnover measurements showed that permeability of P. pugio was greatest at the isosmotic salinity (17) and reduced at salinities which were associated with active osmoregulation. Exposure to sublethal and 96-h LC50 levels of Aroclor® 1254 did not seriously alter hemolymph chloride and osmotic concentrations, chloride space or chloride-exchange kinetics in adult shrimp. Disruption of hemolymph chloride regulation in juvenile shrimp was associated with large mortalities not observed in adults. Shrimp exposed to Aroclor 1254 at 17 S exhibited reduced water permeability similar to levels previously observed in controls at high and low salinities in response to osmotic or ionic gradients. Exposure to PCBs did not result in further reduction in permeability at the latter salinities.  相似文献   

15.
B. Ganning 《Marine Biology》1971,8(4):271-279
The ostracod fauna of Baltic brackish-water rockpools is made up of two groups: permanent members of the pools, and occasional guests from the littoral zone. The former group consists of Heterocypris salinus, H. incongruens and Cypridopsis aculeata. These species are characterized by rapid development (which starts when the water temperature approaches 15°C), a short life span, and 2 or 3 separate generations during the summer and autumn. The number of generations is determined by water temperature. Hibernation always takes place as eggs. Hatching and development during the late spring or early summer has been found to be mostly simultaneous. The spawning of the 3 species always starts epidemically. Reproduction is entirely parthenogenetic in the investigated area. Under natural conditions, C. aculeata may be found with either H. salinus or H. incongruens, but these two latter species have never been recorded together. H. incongruens is less tolerant to high salinities than the other 2 species and, even after successive adaptation, it does not resist salinities higher than 16. H. salinus has been found in 35.2 S in the field, and has been kept in 30 S in the laboratory after successive adaptation. The optimum salinity-temperature range for this species is 5 to 10 S and 15°C, when both survival and development are considered. Corresponding figures for C. aculeata are 0.5 to 20 S and 15°C, although this species, like H. salinus, survives longest at 5°C. The very rapid development, parthenogenetic reproduction and short life span of these species must be considered as favourable adaptations to the variable and unstable environment of the rockpool ecosystems.  相似文献   

16.
Mussels, Mytilus edulis L., were subjected to high temperatures, low salinities and dissolved zinc in order to investigate possible environmental hazards of a discharge of heated effluent near Newport on the Yarra River estuary, Victoria, Australia. Exposure to zinc at 0.8 mg l-1 for 14 d in otherwise favourable conditions significantly increased mortality resulting from subsequent exposure to temperatures between 29° to 31°C for 24 h without added zinc. Mussels collected from water of temporarily lowered salinity (8–16 S) showed significantly lower thermal resistance than controls collected from marine salinities (35 S). Mussels taken from a marine environment and exposed to 10 S died at a rate which increased with temperature. Mussels acclimated for 14 d to combinations of 10°, 16° and 22°C and 22 and 35 S, and subsequently exposed to increased zinc concentrations accumulated zinc to levels which were independent of temperature and salinity. The zinc was lethal more quickly at 22°C and 35 S than at the lower temperatures and salinities. The modes of toxic action of the salinity, zinc and temperature factors are discussed and it is argued that zinc which has been found accumulated in mussels near Newport could be reducing their resistance to raised temperatures and perhaps other stresses, probably as a result of effects on lysosomal functioning. The evidence suggests that the heated effluent will accelerate any toxic effects of zinc or low salinities which occur near Newport and so poses a hazard in winter as well as in summer.  相似文献   

17.
Free amino acid (FAA) levels were measured from May through October 1991 in gill tissues of two groups of juvenile oysters (Crassostrea virginica Gmelin), one transferred from a low salinity field site (8) to a field site of high salinity (20) and high Perkinsus marinus (Mackin, Owen, and Collier) prevalence, the other kept at the low salinity field site. Within 24 h, glycine levels in the oysters transferred to high salinity increased 8-fold, taurine concentrations doubled and the total FAA pool rose from 150 mol g–1 dry wt to 400 mol g–1 dry wt. Taurine levels reached a plateau within 20 d after transfer to high salinity and remained at that level until P. marinus infections were detected 85 d after transfer. Taurine and glycine levels declined by 40% in the high salinity population as infection intensity increased between 70 and 105 d. Total FAA declined by approximately 33% over this period. The oysters kept at low salinity were not infected and continued to grow while the infected high salinity oysters showed no increase in shell length after Day 85. FAA levels in the low salinity group remained relatively constant throughout the experiment except for an initial rise triggered by an increase in ambient salinity from 8 to 12. The results suggest that salinity tolerance mechanisms in C. virginica may be impaired by P. marinus infection.  相似文献   

18.
At 33 salinity a tissue stump formed 2 to 3 d after autotomy and developing ossicles were present by the fourth day inOphiothrix angulata (Say). Regeneration proceeded rapidly from the sixth day until the thirteenth day, when the rate decreased greatly. The length of the regenerated arm and the number of ossicles formed did not vary over a salinity range of 28 to 38 S, but were significantly less at 23 S. The number of ossicles regenerated increased linearly (y=1.9 x-7.7;r=0.9089) with the calcium concentrations ranging from 3.8 to 9.5 mM. No ossicle formation occurred at 3.8 mM calcium concentration. Rate of net uptake of calcium-45 into the ossicles of intact individuals in salinities of 28 and 33 was significantly greater than that in 23 and 38 S. However, net uptake rate of calcium into the soft tissues of the arms was significantly higher at 18S than at the lower two salinities.  相似文献   

19.
The European seabass is an active euryhaline teleost that migrates and forages in waters of widely differing salinities. Oxygen uptake (MO2) was measured in seabass (average mass and forklength 510 g and 34 cm, respectively) during exercise at incremental swimming speeds in a tunnel respirometer in seawater (SW) at a salinity of 30 and temperature of 14°C, and their maximal sustainable (critical) swimming speed (Ucrit) determined. Cardiac output (Q) was measured via an ultrasound flow probe on their ventral aorta. The fish were then exposed to acute reductions in water salinity, to either SW (control), 10, 5, or freshwater (FW, 0), and their exercise and cardiac performance measured again, 18 h later. Seabass were also acclimated to FW for 3 weeks, and then their exercise performance measured before and at 18 h after acute exposure to SW at 30. In SW, seabass exhibited an exponential increase in MO2 and Q with increasing swimming speed, to a maximum MO2 of 339±17 mg kg–1 h–1 and maximum Q of 52.0±1.9 ml min–1 kg–1 (mean±1 SEM; n=19). Both MO2 and Q exhibited signs of a plateau as the fish approached a Ucrit of 2.25±0.08 bodylengths s–1. Increases in Q during exercise were almost exclusively due to increased heart rate rather than ventricular stroke volume. There were no significant effects of the changes in salinity upon MO2 during exercise, Ucrit or cardiac performance. This was linked to an exceptional capacity to maintain plasma osmolality and tissue water content unchanged following all salinity challenges. This extraordinary adaptation would allow the seabass to maintain skeletal and cardiac muscle function while migrating through waters of widely differing salinities.Communicated by S.A. Poulet, Roscoff  相似文献   

20.
H. Queiroga 《Marine Biology》1990,104(3):397-402
The population ofCorophium multisetosum (L.) from Canal de Mira, Ria de Aveiro, Portugal, was sampled seasonally from December 1985 to September 1986, as part of a larger survey of the benthic invertebrate macrofauna. Its distribution along the channel exposes the species to a range of salinities from freshwater to above 30. A principal components analysis, using the physical and chemical parameters of the sediment as variables and sampling stations as operational taxonomic units, indicated that abundance is negatively correlated with salinity, depth, and the occurrence of sediments rich in particles below 125µm and rich in organic matter. Abundance is positively correlated with temperature. The distribution of the species does not seem to be affected by the occurrence of sediment grades between 125 and 1 000µm. Paired-choice salinity experiments indicated thatC. multisetosum prefers salinities within the range 2.5 to 10. In multi-choice experiments concerning sediment grade, amphipods did not show any significant preference within the 125 to 500µm range, although the 125µm grade was chosen less frequently. The influence of temperature on the overall distribution ofC. multisetosum is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号