首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
本文以橙黄Ⅰ、橙黄Ⅱ、橙黄Ⅳ和日落黄4种偶氮染料为目标染料,首次尝试利用外加弱磁场(~20 mT)的方法来强化零价铁脱色降解偶氮染料。结果表明加磁或不加磁时反应过程均符合一级反应动力学。在磁场的存在下,4种偶氮染料的降解速率都较不加磁场时有很大的提高,提高倍数分别为110.67、111.97、59.51和94.00。弱磁场对零价铁降解偶氮染料的促进作用可能是由于外加磁场所产生的洛伦兹力以及零价铁表面产生的感应磁场所产生的磁场梯度力促进了Fe2+的释放,加快了零价铁的腐蚀,促进零价铁释放更多电子和新生态氢,加速了—N=N—键的断裂,从而强化了染料的脱色降解。  相似文献   

2.
Spermophilus townsendii ) prey. These changes could occur directly or as a result of changes in the vegetation available as food and cover for the ground squirrels. We assessed the effects of long-term tracking by armored vehicles by comparing 9-ha areas in sagebrush (Artemisia tridentata) -dominated shrubsteppe and bluegrass (Poa secunda) -dominated grasslands subjected to low-intensity tracking for ∼50 years with others that had not been tracked. We did not detect any effect on ground squirrel population dynamics associated with long-term tracking. Although densities of adults and juveniles tended to be higher in the areas exposed to such tracking, we attribute this difference to other factors that varied spatially. To determine short-term (two-year) effects, we experimentally tracked two sagebrush and two grassland sites with an M-1 tank after animals had begun their inactive season. In the following two active seasons we monitored squirrel demography and behavior and vegetative characteristics on the experimentally tracked sites and compared the results with control sites. Although we experimentally tracked ∼33% of the surface of each of four sites where ground squirrel densities were assessed, the tracking had a detectable effect only on some herbaceous perennials and did not influence ground squirrel densities or behavior significantly during the subsequent two active seasons. We conclude that tracking after the start of the inactive season is likely to influence ground squirrel demography or behavior only if vegetation cover is substantially changed by decreasing coverage of preferred food plants or increasing the coverage of annual grasses and forbs that are succulent for only a short time each year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号