首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concentrations of atmospheric PM10 and chemical components (including twenty-one elements, nine ions, organic carbon (OC) and elemental carbon (EC)) were measured at five sites in a heavily industrial region of Shenzhen, China in 2005. Results showed that PM10 concentrations exhibited the highest values at 264 μg/m3 at the site near a harbor with the influence of harbor activities. Sulfur exhibited the highest concentrations (from 2419 to 3995 ng/m3) of all the studied elements, which may be related to the influence of coal used as fuel in this area for industrial plants. This was verified by the high mass percentages of SO42-, which accounted for 34.3%-39.7% of the total ions. NO3-/SO42- ratios varied from 0.64-0.71, which implies coal combustion was predominant compared with vehicle emission. The anion/cation ratios range was close to 0.95, indicating anion deficiency in this region. The harbor site showed the highest OC and EC concentrations, with the influence of emission from vessels. Secondary organic carbon accounted for about 22.6%-38.7% of OC, with the highest percentage occurring at the site adjacent to a coal-fired power plant and wood plant. The mass closure model performed well in this heavily industrial region, with significant correlation obtained between chemically determined and gravimetrically measured PM10 mass. The main constituents of PM10 were found to be organic materials (30.9%-69.5%), followed by secondary inorganic aerosol (7.9%-25.0%), crustal materials (6.7%-13.8%), elemental carbon (3.5%-10.8%), sea salt (2.4%-6.2%) and trace elements (2.0%-4.9%) in this heavily industrialized region. Principal component analysis indicated that the main sources for particulate matter in this industrial region were crustal materials and coal/wood combustion, oil combustion, secondary aerosols, industrial processes and vehicle emission.  相似文献   

2.
大气颗粒物源成分谱可以表征源排放颗粒物的理化特征,为受体模型开展来源解析研究提供基础数据.餐饮油烟排放是室内外环境大气污染的来源之一,当前餐饮源排放PM2.5的化学成分谱仍然缺乏.该研究分别在成都市、武汉市和天津市采集了29组6种餐饮源(居民烹饪、火锅店、烧烤店、职工食堂、中餐馆、商场综合餐饮)排放的PM2.5样品,分析无机元素、离子、碳、多环芳烃(PAHs)等化学组分,并构建了餐饮源排放颗粒物化学成分谱.结果表明:①餐饮源排放PM2.5化学成分中的主要组分为OC(有机碳)、EC(元素碳)、Ca、Al、Fe、NH4+、SO42-、NO3-、Na+、K+、Mg2+和Cl-,其中w(OC)最高,为41.67%~57.91%.②餐饮源排放PM2.5的PAHs中,3环和4环占比较高,其中芴(Flu)、菲(Phe)、荧蒽(Fla)、芘(Pyr)的质量分数相对其他物质较高.研究显示:餐饮源排放PM2.5中OC/EC约为15.99~67.61,在一定程度上可以用来表征餐饮源排放;Fla/(Fla+Pyr)和InP/(InP+BghiP)多集中在0.45~0.55之间,或可作为标识餐饮源的特征比值.   相似文献   

3.
为探讨生物质在明火和阴燃两种不同条件下PM_(2.5)及主要成分的排放差异,选取了7种具有代表性的生物质样品(小麦、水稻、马尾松叶、马尾松枝、杂草、玉米、棉花)进行了燃烧实验,并对PM_(2.5)样品中的7种主要水溶性离子(Na~+、NH_4~+、K~+、Ca~(2+)、Cl~-、NO_3~-、SO_4~(2-))及有机碳(OC)、元素碳(EC)、水溶性有机碳(WSOC)、有机酸和左旋葡聚糖(LG)等有机成分进行了分析.结果表明,明火和阴燃条件下PM_(2.5)的排放因子分别为2.82~7.74 mg·g~(-1)和3.24~22.56 mg·g~(-1),阴燃时的排放因子偏高,不同燃料类型也存在一定差异.燃烧排放PM_(2.5)中水溶性离子以Cl~-为最高,占总离子的比例为72%~94%,且与NH_4~+存在显著正相关关系,水溶性离子整体表现为明火条件下的浓度显著高于阴燃条件下的浓度.受阴燃条件下氧气不足的影响,PM_(2.5)中有机组分的浓度表现为阴燃高于明火,进而导致阴燃时PM_(2.5)的排放因子增加.水稻秸秆燃烧烟尘中3种来源特征比值(LG/PM_(2.5)、LG/OC和LG/WSOC)仅为小麦和玉米秸秆燃烧排放相应比值均值的0.34、0.24和0.27倍,表明在不同农作物的收获季节采用上述特征比值进行生物质燃烧来源估算时,应区别对待.  相似文献   

4.
Haze phenomena were found to have an increasing tendency in recent years in Yong'an, a mountainous industrial city located in the center part of Fujian Province, China. Atmospheric fine particles (PM2.5) in the urban area during haze periods in three seasons (spring, autumn and winter) from 2007 to 2008 were collected, and the mass concentrations and chemical compositions (seventeen elements, water soluble inorganic ions (WSIIs) and carbonaceous species) of PM2.5 were determined. PM2.5 mass concentrations did not show a distinct difference among the three seasons. The carbonaceous species organic carbon (OC) and elemental carbon (EC) constituted up to 19.2%-30.4% of the PM2.5 mass during sampling periods, while WSIIs made up 25.3%-52.5% of the PM2.5 mass. The major ions in PM2.5 were SO42-, NO3- and NH4+, while the major elements were Si, K, Pb, Zn, Ca and Al. The experimental results (from data based on three haze periods with a 10-day sampling length for each period) showed that the crustal element species was the most abundant component of PM2.5 in spring, and the secondary ions species (SO42-, NO3-, NH4+, etc.) was the most abundant component in PM2.5 in autumn and winter. This indicated that dust was the primary pollution source for PM2.5 in spring and combustion and traffic emissions could be the main pollution sources for PM2.5 in autumn and winter. Generally, coal combustion and traffic emissions were considered to be the most prominent pollution sources for this city on haze days.  相似文献   

5.
Atmospheric particles(total suspended particles(TSPs); particulate matter(PM) with particle size below 10 μm, PM10; particulate matter with particle size below 2.5 μm, PM2.5)were collected and analyzed during heating and non-heating periods in Harbin. The sources of PM10 and PM2.5were identified by the chemical mass balance(CMB) receptor model.Results indicated that PM2.5/TSP was the most prevalent and PM2.5was the main component of PM210, while the presence of PM10–100was relatively weak. SO-4and NO-3concentrations were more significant than other ions during the heating period. As compared with the non-heating period, Mn, Ni, Pb, S, Si, Ti, Zn, As, Ba, Cd, Cr, Fe and K were relatively higher during the heating period. In particular, Mn, Ni, S, Si, Ti, Zn and As in PM2.5were obviously higher during the heating period. Organic carbon(OC) in the heating period was 2–5 times higher than in the non-heating period. Elemental carbon(EC) did not change much. OC/EC ratios were 8–11 during the heating period, which was much higher than in other Chinese cities(OC/EC: 4–6). Results from the CMB indicated that 11 pollution sources were identified, of which traffic, coal combustion, secondary sulfate, secondary nitrate, and secondary organic carbon made the greatest contribution. Before the heating period, dust and petrochemical industry made a larger contribution. In the heating period, coal combustion and secondary sulfate were higher. After the heating period, dust and petrochemical industry were higher. Some hazardous components in PM2.5were higher than in PM10, because PM2.5has a higher ability to absorb toxic substances. Thus PM2.5pollution is more significant regarding human health effects in the heating period.  相似文献   

6.
During November-December 2010 aerosol scattering coefficients were monitored using a single-waved (525 nm) Nephelometer at a regional monitoring station in the central Pearl River Delta region and 24-hr fine particle (PM2.5) samples were also collected during the period using quartz filters for the analysis of major chemical components including organic carbon (OC), elemental carbon (EC), sulfate, nitrate and ammonium. In average, these five components accounted for about 85% of PM2.5 mass and contributed 42% (OC), 19% (SO42-), 12% (NO3-), 8.4% (NH4+) and 3.7% (EC), to PM2.5 mass. A relatively higher mass scattering efficiency of 5.3 m2/g was obtained for fine particles based on the linear regression between scattering coefficients and PM2.5 mass concentrations. Chemical extinction budget based on IMPROVE approach revealed that ammonium sulfate, particulate organic matter, ammonium nitrate and EC in average contributed about 32%, 28%, 20% and 6% to the light extinction coefficients, respectively.  相似文献   

7.
四川省典型工业行业PM2.5成分谱分析   总被引:3,自引:3,他引:0  
利用荷电低压颗粒物撞击器(ELPI+)对四川省水泥行业、玻璃行业、陶瓷行业、砖瓦行业、燃煤锅炉、生物质锅炉、电厂、钢铁行业等典型行业开展排放特征测试,通过组分分析,获取各行业PM_(2.5)成分特征谱.结果表明:①水泥、玻璃、陶瓷、砖瓦等建材行业均以Si、Ca、Mg等元素为主要排放组分,双碱法脱硫SO_4~(2-)排放占比高于其他脱硫工艺;②电厂PM_(2.5)中SO_4~(2-)、Ca~(2+)、NH_4~+、Mg和Si为特征组分;燃煤锅炉中OC、Al、Si和Ca等为特征组分;③OC和EC是生物质锅炉PM_(2.5)主要排放组分,成型生物质燃料锅炉中K排放占比也较高,非成型生物质燃料锅炉中Cl~-排放占比为所有行业中最高;④钢铁行业中Ca含量最高,为18. 11%,其次为SO_4~(2-)、Na~+和Fe.  相似文献   

8.
Chemical characteristics of size-resolved aerosols in winter in Beijing   总被引:4,自引:0,他引:4  
Size-resolved aerosols were continuously collected by a Nano Sampler for 13 days at an urban site in Beijing during winter 2012 to measure the chemical composition of ambient aerosol particles. Data collected by the Nano Sampler and an ACSM(Aerodyne Aerosol Chemical Speciation Monitor) were compared. Between the data sets,similar trends and strong correlations were observed,demonstrating the validity of the Nano Sampler. PM10 and PM2.5concentrations during the measurement were 150.5 ± 96.0 μg/m3(mean ± standard variation)and 106.9 ± 71.6 μg/m3,respectively. The PM2.5/PM10 ratio was 0.70 ± 0.10,indicating that PM2.5dominated PM10. The aerosol size distributions showed that three size bins of 0.5–1,1–2.5 and 2.5–10 μm contributed 21.8%,23.3% and 26.0% to the total mass concentration(TMC),respectively. OM(organic matter) and SIA(secondary ionic aerosol,mainly SO42-,NO3-and NH4+) were major components of PM2.5. Secondary compounds(SIA and secondary organic carbon) accounted for half of TMC(about 49.8%) in PM2.5,and suggested that secondary aerosols significantly contributed to the serious particulate matter pollution observed in winter. Coal burning,biomass combustion,vehicle emissions and SIA were found to be the main sources of PM2.5. Mass concentrations of water-soluble ions and undetected materials,as well as their fractions in TMC,strikingly increased with deteriorating particle pollution conditions,while OM and EC(elemental carbon) exhibited different variations,with mass concentrations slightly increasing but fractions in TMC decreasing.  相似文献   

9.
利用紫外-可见光谱与三维荧光-平行因子分析法(EEM-PARAFAC),研究了广州市2014年12月~2015年1月大气气溶胶中水溶性有机物(WSOC)和类腐殖质(HULIS)的吸光性和荧光光谱特征.结果表明,广州冬季气溶胶中HULIS的芳香性(SUVA254)、腐殖化程度(HIX)和光吸收效率(MAE365)均高于WSOC.利用EEM-PARAFAC从WSOC和HULIS解析出了类富里酸(C1)、类腐殖酸(C2)和类蛋白(C3)这3种荧光组分.其中类腐殖质组分(C1+C2)分别占WSOC和HULIS中总荧光组分的78%和85%,说明类腐殖荧光组分是WSOC和HULIS的最主要组成,且HULIS富集了更多的WSOC中主要的类腐殖组分.另外,灰霾期的WSOC和HULIS表现出更高的芳香性、腐殖化程度和C2组分,说明灰霾期有助于大分子量吸光性有机质的形成.相关性分析结果显示,WSOC和HULIS的C1组分相对含量与HIX、MAE365、OCsec、K+、SO_4~(2-)和NH_4~+呈现极显著的负相关关系,而C2与它们之间存在极显著的正相关关系.由此说明,WSOC和HULIS中C1的降低和C2的增加会引起它们的腐殖化程度和光吸收能力的增强;同时生物质燃烧排放和二次气溶胶过程可能有助于C2组分的增加.  相似文献   

10.
北京市典型排放源PM_(2.5)成分谱研究   总被引:6,自引:1,他引:5  
为了建立和完善北京市PM_(2.5)本地化源谱,对北京市11类排放源PM_(2.5)进行采集,并测定其26种组分,分析了不同排放源源谱的组分特征.结果表明,在有组织排放源中,燃煤电厂PM_(2.5)中OC和Si含量很高,占PM_(2.5)的质量分数分别为8.56%和6.19%(平均值),而供热/工业锅炉排放PM_(2.5)中则是SO_4~(2-)(占48.38%)和OC(11.0%)比例最高,水泥窑炉PM_(2.5)中OC(7.12%)、Ca(4.81)和Si(4.41%)占有较大比例;垃圾焚烧排放的PM_(2.5)中Si、Ca、K和SO_4~(2-)均较高,分别占8.15%、9.36%、7.17%和6.79%,且Cl~-含量(2.5%)高于其他所有源,生物质燃烧源PM_(2.5)中OC(21.7%)、Si(6.75%)、Ca(6.15%)较为丰富,餐饮源PM_(2.5)中OC(19.44%)、SO_4~(2-)(5.76%)和K(3.11%)含量均较高;无组织开放源中,道路扬尘和土壤风沙PM_(2.5)化学组分含量变化较为一致,均是Si(分别为16.8%和9.3%)和OC(分别为8.89%和6.61%)最高,建筑水泥尘PM_(2.5)中Ca(17.46%)含量高于其他源;流动排放源PM_(2.5)中OC、EC比例最高,其中,重型柴油车的OC(29.79%)与EC(26.5%)排放比例相当,而轻型汽油车OC排放占有绝对优势(占75%).本文通过对比国内外部分排放源PM_(2.5)成分谱的差异,指出不同区域相同源类排放的PM_(2.5)化学组分差异较大,在应用受体模型中的化学质量平衡模型(CMB)判断受体颗粒物来源时,应基于本地的排放源成分谱,以避免较大的误差.  相似文献   

11.
The distribution and source of the solvent-extractable organic and inorganic components in PM 2.5(aerodynamics equivalent diameter below 2.5 microns),and PM 10(aerodynamics equivalent diameter below 10 microns) fractions of airborne particles were studied weekly from September 2006 to August 2007 in Beijing.The extracted organic and inorganic compounds identified in both particle size ranges consisted of n-alkanes,PAHs(polycyclic aromatic hydrocarbons),fatty acids and water soluble ions.The potential emission sources of these organic compounds were reconciled by combining the values of n-alkane carbon preference index(CPI),%waxC n,selected diagnostic ratios of PAHs and principal component analysis in both size ranges.The mean cumulative concentrations of n-alkanes reached 1128.65ng/m3 in Beijing,74% of which(i.e.,831.7ng/m3) was in the PM 2.5 fraction,PAHs reached 136.45ng/m3(113.44ng/m3 or 83% in PM 2.5),and fatty acids reached 436.99ng/m3(324.41ng/m3 or 74% in PM 2.5),which resulted in overall enrichment in the fine particles.The average concentrations of SO42-,NO3-,and NH4+ were 21.3±15.2,6.1±1.8,12.5±6.1μg/m3 in PM 2.5,and 25.8±15.5,8.9±2.6,16.9±9.5μg/m3 in PM 10,respectively.These three secondary ions primarily existed as ammonium sulfate((NH4)2SO4),ammonium bisulfate(NH4HSO4) and ammonium nitrate(NH4NO3).The characteristic ratios of PAHs revealed that the primary sources of PAHs were coal combustion,followed by gasoline combustion.The ratios of stearic/palmitic acid indicated the major contribution of vehicle emissions to fatty acids in airborne particles.The major alkane sources were biogenic sources and fossil fuel combustion.The major sources of PAHs were vehicular emission and coal combustion.  相似文献   

12.
A field campaign on air quality was carried out in Shanghai in winter of 2012. The concentrations of NO, NO2, NOx, SO2, CO, and PM2.5 increased during haze formation. The average masses of SO42-, NO3- and NH4+ were 10.3, 11.7 and 6.7 μg/m3 during the haze episodes, which exceeded the average (9.2, 7.9, and 3.4 μg/m3) of these components in the non-haze days. The mean values for the aerosol scattering coefficient (bsp), aerosol absorption coefficient (bap) and single scattering albedo (SSA) were 288.7, 27.7 and 0.91 Mm-1, respectively. A bi-peak distribution was observed for the mass concentrations of CO, NO, NO2, and NOx. More sulfate was produced during daytime than that in the evening due to photochemical reactions. The mass concentration of NH4+ achieved a small peak at noontime. NO3- showed lower concentrations in the afternoon and higher concentrations in the early morning. There were obvious bi-peak diurnal patterns for bsp and bap as well as SSA. bsp and bap showed a positive correlation with PM2.5 mass concentration. (NH4)2SO4, NH4NO3, organic mass, elemental carbon and coarse mass accounted for 21.7%, 19.3%, 31.0%, 9.3% and 12.3% of the total extinction coefficient during non-haze days, and 25.6%, 24.3%, 30.1%, 8.1% and 8.2% during hazy days. Organic matter was the largest contributor to light extinction. The contribution proportions of ammonium sulfate and ammonium nitrate to light extinction were significantly higher during the hazy time than during the non-haze days.  相似文献   

13.
于2012年12月—2013年12月在广州城区(市站)和东部郊区(九龙)开展为期一年的PM2.5样品采集,并同步收集气象因子和气态污染物质量浓度等数据.结果表明,PM2.5中主要化学组分为有机质(OM)和硫酸盐(SO2-4),分别占市站和九龙PM2.5质量浓度的49.4%和15.2%及57.0%和17.3%.碳质气溶胶(OM和EC)贡献接近50%,二次无机气溶胶(SO2-4、NO-3和NH+4总和,SIA)贡献超过30%.由于以机动车尾气为代表的移动污染源在城市区域贡献较大,市站[NO-3]/[SO2-4]比值显著高于九龙.两个站点[NH+4]/[SO2-4]摩尔质量比均高于1.5,表明观测期间广州市干季大气处于富铵状态.市站和九龙站硫氧化率(SOR)和氮氧化率(NOR)的时空变化趋势与O3类似,表明大气光化学过程是影响广州市SOR和NOR的重要因素.相对湿度低于65%时,SOR和NOR均较高;温度对SOR和NOR的影响有显著的城郊差异.降雨对PM2.5及各化学组分浓度有显著去除作用.  相似文献   

14.
To increase the knowledge on the particulate matter of a wetland in Beijing, an experimental study on the concentration and composition of PM10 and PM2.5 was implemented in Beijing Olympic Forest Park from 2013 to 2014. This study analyzed the meteorological factors and deposition fluxes at different heights and in different periods in the wetlands. The results showed that the mean mass concentrations of PM10 and PM2.5 were the highest at 06:00–09:00 and the lowest at 15:00–18:00. And the annual concentration of PM10 and PM2.5 in the wetland followed the order of dry period (winter) > normal water period (spring and autumn) > wet period (summer), with the concentration in the dry period significantly higher than that in the normal water and wet periods. The chemical composition of PM2.5 in the wetlands included NH4+, K+, Na+, Mg2 +, SO42 −, NO3, and Cl, which respectively accounted for 12.7%, 1.0%, 0.8%, 0.7%, 46.6%, 33.2%, and 5.1% of the average annual composition. The concentration of PM10 and PM2.5 in the wetlands had a significant positive correlation with relative humidity, a negative correlation with wind speed, and an insignificant negative correlation with temperature and radiation. The daily average dry deposition amount of PM10 in the different periods followed the order of dry period > normal water period > wet period, and the daily average dry deposition amount of PM2.5 in the different periods was dry period > wet period > normal water period.  相似文献   

15.
In this work, a one-year observation focusing on high time resolution characteristics of components in fine particles was conducted at an urban site in Shanghai. Contributions of different components on visibility impairment were also studied. Our research indicates that the major components of PM2.5 in Shanghai are water-soluble inorganic ions and carbonaceous aerosol, accounting for about 60% and 30% respectively. Higher concentrations of sulfate (SO42−) and organic carbon (OC) in PM2.5 occurred in fall and summer, while higher concentrations of nitrate (NO3) were observed in winter and spring. The mass concentrations of Cl and K+ were higher in winter. Moreover, NO3 increased significantly during PM2.5 pollution episodes. The high values observed for the sulfate oxidizing rate (SOR), nitrate oxidizing rate (NOR) and secondary organic carbon (SOC) in OC indicate that photochemical reactions were quite active in Shanghai. The IMPROVE (Interagency Monitoring of Protected Visual Environments) formula was used in this study to investigate the contributions of individual PM2.5 chemical components to the light extinction efficient in Shanghai. Both NH4NO3 and (NH4)2SO4 had close relationships with visibility impairment in Shanghai. Our results show that the reduction of anthropogenic SO2, NOx and NH3 would have a significant effect on the improvement of air quality and visibility in Shanghai.  相似文献   

16.
为科学评估PM_(2.5)对生物体的综合生物效应,利用费氏弧菌检测了PM_(2.5)水溶性提取液的光抑制效应,统计分析了227组PM_(2.5)主要组分与发光抑制率的相关关系.实验结果表明:PM_(2.5)水溶性提取液的发光抑制率值与OC、NO-3、EC和微量元素等组分浓度显著相关,相关系数从高到低的排序为:OC微量元素ECNO-3(p0.01).PM_(2.5)中,主要来自燃煤、交通燃油、生物质燃烧及冶金工业污染源排放的组分(苯并(a)芘、Cl-、OC、Cu、K+、Mn、Zn、EC、Pb、Se、F-等)浓度与发光抑制率显著相关.此外,二次来源的NO-3、NH+4等组分浓度与发光抑制率在冬季和春季显著相关.  相似文献   

17.
为深入了解唐山市采暖期PM2.5污染成因与来源,采用在线监测设备于2017年12月1日-2018年1月28日连续监测了唐山市PM2.5及其水溶性离子和碳质组分(OC、EC)的质量浓度变化,并结合部分常规气体污染物及气象数据进行对比分析.结果表明:①相对湿度的增加和风速的降低促进了污染的发展.②清洁、轻中度污染和重污染时,SOR(硫氧化率)分别为0.05、0.08、0.20,NOR(氮氧化率)分别为0.05、0.12、0.26,随着污染的加重,SO2、NOx向PM2.5中SO42-、NO3-的二次转化现象更加明显.③清洁时,ρ(OC)、ρ(EC)、ρ(SO42-)和ρ(Cl-)占PM2.5化学组分(水溶性离子、碳质组分)质量浓度总和的68%,主要污染源为燃煤;清洁、轻中度污染和重污染时,ρ(NO2)/ρ(SO2)分别为0.96、1.14、1.44,ρ(NO3-)/ρ(SO42-)分别为0.94、1.57和1.75;重污染时,ρ(SO42-)、ρ(NO3-)、ρ(NH4+)三者之和占PM2.5化学组分质量浓度总和的61%,二次污染物成为主要污染源.④观测期,唐山市轻中度污染和重污染时,受经北京市、天津市等唐山市西部地区方向气团影响频率分别为61%、63%,受该方向气团影响时,ρ(NO2)/ρ(SO2)、ρ(NO3-)/ρ(SO42-)明显增大.研究显示,相较于燃煤排放物在大气污染物中的占比变化,随着污染的加重,工业工艺和机动车尾气排放产生的污染物占比明显增大,区域传输对大气污染影响不可忽略,政府有必要开展区域联防联控、停产限产和限行限号的措施.   相似文献   

18.
泉州市大气PM2.5中水溶性离子季节变化特征及来源解析   总被引:2,自引:0,他引:2  
为掌握泉州市大气PM_(2.5)中无机水溶性离子的季节变化特征,于2014年3月~2015年1月同步采集了泉州市5个采样点共116个PM_(2.5)样品.用离子色谱法分析了PM_(2.5)中Na~+、NH_4~+、K~+、Ca~(2+)、Mg~(2+)、F~-、Cl~-、NO_3~-和SO_4~(2-)等9种水溶性无机离子.观测期间,总水溶性离子浓度季节变化特征为春季(14.24±6.43)μg·m~(-3)冬季(8.54±7.61)μg·m~(-3)夏季(4.10±2.67)μg·m~(-3)秋季(3.91±2.58)μg·m~(-3);SO_4~(2-)、NO_3~-和NH_4~+(SNA)是PM_(2.5)中主要的3种离子,占水溶性离子总质量浓度比例分别为春季(90.3±3.3)%、夏季(68.8±11.7)%、秋季(78.9±7.1)%和冬季(74.0±18.4)%,说明春季二次污染较为严重;PM_(2.5)中阴、阳离子电荷平衡分析显示,阴离子相对亏损,大气细颗粒物组分呈弱碱性;春、冬季NH_4~+主要以(NH_4)_2SO_4、NH_4HSO_4和NH_4NO_3等形式存在,而夏、秋季则主要以NH_4HSO_4和NH_4NO_3形式存在;PMF源解析结果表明,泉州市大气PM_(2.5)中水溶性离子主要来自海盐、二次源、建筑扬尘、垃圾焚烧源和生物质燃烧源.  相似文献   

19.
为探究四川盆地典型城市PM2.5污染特征和来源,利用成都市、绵阳市、自贡市超站数据分析2020年冬季典型污染过程PM2.5组分特征,并采用CMB模型模拟获得研究期间PM2.5来源及演变特征.结果表明,不同城市PM2.5组分变化特征不尽相同,成都市污染过程整体呈现NO3-主导特征,但重度污染由OC主导.绵阳市污染期间呈现OC主导特征,是污染加重时增长最快的组分.EC是自贡市轻度污染增长最快的组分,NO3-、SO42-、NH4+是中度污染增长较快的组分,OC、EC是重度污染增长较快的组分.3个城市均是二次硝酸盐对PM2.5贡献率最高.比较而言,成都市机动车、扬尘源贡献率均最高;绵阳市二次有机碳贡献率最高,是成都市的2倍;自贡市燃煤源和二次硫酸盐贡献率分别比成都市和绵阳市高出4%~6%和7%~9%.成都市由优良天气到中度污染,二次硝酸盐贡献率随着污染程度的加重而增加,轻度污染较优良天气上升6%,中度污染较轻度污染天气上升3%.中度到重度污染,二次有机碳、机动车贡献率分别上升2%和1%.绵阳市由轻度到重度污染,二次有机碳对PM2.5的贡献率上升3%,机动车贡献率上升2%,是其污染加重的主要原因.自贡市由轻度到重度污染,各污染源贡献率变化幅度较小.  相似文献   

20.
燃煤电厂产生和排放的PM2.5中水溶性离子特征   总被引:5,自引:2,他引:3  
为了认识我国燃煤电厂一次PM2.5排放特征,并定量评估大规模开展烟气脱硫与脱硝对其影响,本研究选取了国内一个煤粉炉电厂和一个循环流化床电厂,对其产生和排放的PM2.5进行现场测试,并进行水溶性离子组分的分析.结果表明,在所测的这两个电厂中,循环流化床电厂产生的PM2.5的质量浓度高于煤粉炉电厂产生的PM2.5的质量浓度,但是这两个电厂排放的PM2.5的质量浓度相当.产生此结果的主要原因是该循环流化床电厂配备的电袋复合除尘器比煤粉炉电厂的普通电除尘器对PM2.5去除效率更高.煤粉炉电厂产生PM2.5中水溶性离子浓度低于循环流化床电厂,但是煤粉炉电厂排放PM2.5中水溶性离子浓度却远远高于循环流化床电厂,表明煤粉炉电厂排放的PM2.5受脱硫和脱硝设施的影响较大.煤粉炉烟气脱硝过程中可能形成硫酸雾,烟气中的部分硫酸雾和过剩的NH3反应生成NH4HSO4进入颗粒相,同时降低了PM2.5的p H值;而脱硫过程中脱硫液的夹带也会导致NH+4和SO2-4进入PM2.5.所以,虽然两个电厂产生的PM2.5中水溶性离子均以Ca2+和SO2-4为主,但煤粉炉排放PM2.5中的水溶性离子则以NH+4和SO2-4为主.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号