首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some avian brood parasitic nestlings are highly virulent, destroying all host eggs or nestmates, while others accept growing up together with host nestmates. The traditional idea was that all brood parasitic nestlings would benefit from being alone in the host nest. Thus, why do nestlings of some brood parasitic species accept the company of host offspring in the nest? The trade-off hypothesis suggests that brood parasites must balance the costs and benefits of killing host young because of two major potential costs: risk of nest desertion and loss of begging assistance. Here, we test this hypothesis in a non-evictor cuckoo species, the great spotted cuckoo Clamator glandarius and its main host, the magpie Pica pica, by manipulating brood size (1–3 nestlings) and brood composition (only cuckoo, only magpie or mixed) during three consecutive breeding seasons. None of the broods were abandoned by host parents, and cuckoo nestlings alone in the nest tended to grow faster (i.e. wing length). Thus, none of the predictions of the two potential costs on which the trade-off hypothesis is based apply to the great spotted cuckoo–magpie system. Our experimental study could not directly test why chick killing has not evolved in great spotted cuckoos, but the results point in the direction of several possibilities. We suggest that chick killing in great spotted cuckoos may not be adaptive mainly because another, less costly strategy (i.e. outcompeting host nestmates for food), is efficient for successful parasitism of magpie hosts.  相似文献   

2.
The post-fledging period is a critical phase for juvenile survival, and parental care provided during this period is a key component of avian reproductive performance. Very little is known about the relationships between foster parents and fledglings of brood parasites. Here, we present the results of a 5-year study about the relationships between fledglings of the non-evictor brood parasitic great spotted cuckoo (Clamator glandarius) and its magpie (Pica pica) foster parents. Sometimes, great spotted cuckoo and magpie nestlings from the same nest can fledge successfully, but most often parasitic nestlings outcompete host nestlings and only cuckoos leave the nest. We have studied several aspects of cuckoo post-fledging performance (i.e. feeding behaviour, parental defence and fledgling survival) in experimental nests in which only cuckoos or both magpie and cuckoo nestlings survived until leaving the nest. The results indicate that great spotted cuckoo fledglings reared in mixed broods together with magpie nestlings were disadvantaged by magpie adults with respect to feeding patterns. Fledgling cuckoos reared in mixed broods were fed less frequently than those reared in only cuckoo broods, and magpie adults approached less frequently to feed cuckoos from mixed broods than cuckoos from only cuckoo broods. These results imply that the presence of host's own nestlings for comparison may be a crucial clue favouring the evolution of fledgling discrimination; and furthermore, that the risk of discrimination at the fledgling stage probably is an important selection pressure driving the evolution of the arms race between brood parasites and their hosts.  相似文献   

3.
When brood parasites are about to lay an egg, they have to decide which nest to parasitize. The best nest in which to lay will depend on the parenting ability of the host. We have studied selection of magpie (Pica pica) hosts by great spotted cuckoos (Clamator glandarius). Great spotted cuckoos preferentially parasitize large host nests. Nest volume in magpies is a good indicator of territory quality, since there is a negative relationship between magpie nest size and breeding date, and timing of breeding in magpies is known to be positively related to territory quality. Moreover, magpies occupying high-quality territories have high breeding success. Therefore, nest size is positively related to the quality of magpies. Parasitized magpie nests were of greater volume than the nearest neighbouring nest not parasitized by the great spotted cuckoo. In order to test whether the great spotted cuckoos might select high-quality magpie hosts, we manipulated pairs of parasitized and non-parasitized nests with identical laying dates and habitats, introducing into each of the nests the same number of parasitic and non-parasitic eggs. The number of fledglings reared (magpie plus great spotted cuckoo chicks) in naturally parasitized nests was higher than in experimentally parasitized nests. Thus, the probability of survival of the parasite chicks increased if cuckoo eggs were laid in the nests of high-quality hosts originally chosen by the parasite.  相似文献   

4.
For avian brood parasites in which individual females are host-specialists, the arms race between hosts and parasites has favored egg color polymorphism in the parasite, with female lineages laying mimetic eggs that resemble those of the host species they parasitize. Female sex-linked inheritance of egg color fosters evolutionary stability of egg polymorphism if female lineages show both consistent eggshell color and host use. This co-evolutionary relationship is unlikely to occur if individual brood parasites use different hosts or if egg color is not maternally inherited. The shiny cowbird (Molothrus bonariensis) is an extreme generalist brood parasite that shows a very high degree of egg polymorphism. We tested whether egg spotting in this species has female sex-linked inheritance. If genetic factors controlling the expression of egg spotting were present on the female-specific W chromosome, we expected co-segregation between spotting patterns and mtDNA haplotypes, as both W and mtDNA are maternally inherited. In contrast to the known maternal inheritance of spotting patterns in great tits, we found no associations between eggshell spotting and mtDNA haplotypes, which suggests that eggshell spotting is not maternally inherited in this cowbird species.  相似文献   

5.
The quality and quantity of food delivered to young are among the major determinants of fitness. A parental provisioning capacity is known to increase with body size. Therefore, brood parasitism provides an opportunity to test the effects of varying provisioning abilities of different-sized hosts on parasitic chick growth and fledging success. Knowledge of growth patterns of common cuckoo, Cuculus canorus, chicks in nests of common hosts is very poor. Moreover, no study to date has focused on any currently unused hosts (i.e., suitable cuckoo host species in which parasitism is currently rare or absent). Here, I compare the growth performance of cuckoo chicks in nests of a common host (the reed warbler, Acrocephalus scirpaceus) and two unparasitized hosts (the song thrush, Turdus philomelos, and the blackbird, Turdus merula). Parasitic chicks were sole occupants of the observed nests, thus eliminating the confounding effect of competition with host chicks. Experiments revealed striking differences in parasitic chick growth in the two closely related Turdus hosts. Cuckoo chicks cross-fostered to song thrush nests grew much quicker and attained much higher mass at fledging than those in nests of their common reed warbler host. Alternatively, parasitic chicks in blackbird nests grew poorly and did not survive until fledging. I discuss these observations with respect to host selection by parasitic cuckoos.  相似文献   

6.
Brood parasites depend entirely on their host species to raise their nestlings until independence. Thus, brood-parasite females must discover and select nests that are at a suitable stage for parasitism, and thus, the location of each parasitic egg is crucial in determining the brood-parasite female’s fitness. In relation to host behaviour, one of the main hypotheses proposed to explain how brood-parasite females find and select a suitable nest posits that the most active hosts during nest building should undergo a higher risk of being parasitised (the “host-activity hypothesis”). Here, using the great spotted cuckoo, Clamator glandarius–magpie, Pica pica system, we found that not only cuckoo females parasitise magpie nests regardless of the location and characteristics of nests, but also that the parasite’s observation of host activity near the nest determines a cuckoo female’s decision of laying in a nest. Only one experimental nest (without host activity) was parasitised before the magpie started laying, while 34.14?% of natural active nests were parasitised before the magpie started laying. These observations support the host-activity hypothesis for nest location in great spotted cuckoos.  相似文献   

7.
The relationship between brood parasites and their hosts is usually assumed to result in coevolution, and documentation of changes in extant populations should thus be possible. Here we describe how the ejection rate of eggs of an obligate brood parasite, the great spotted cuckoo Clamator glandarius, by its host, the magpie Pica pica, has recently increased in an area in southern Spain. The ejection rate of great spotted cuckoo eggs in naturally parasitized nests of the magpie increased at a rate of 0.5% year' during the period 1982–1992. This result was verified in a number of field experiments using nonmimetic and mimetic model eggs. The rate of increase in ejection rate was 4.7% year-1 for mimetic eggs and 2.3% year-1 for nonmimetic eggs. There were clear differences in parasitism by the great spotted cuckoo between study plots and years, which makes comparisons of rates of parasitism between areas difficult without considering temporal variation. The recent increase in the ejection response of magpies to great spotted cuckoo eggs was not due to magpies using the abundance of cuckoos as a cue to the intensity of parasitism.  相似文献   

8.
Social parasites exploit the behaviours of other social species. Infiltration of host systems involves a variety of mechanisms depending on the conditions within the host society and the needs of the social parasite. For many species of socially parasitic ants, colony establishment entails the usurpation of colonies of other species. This frequently involves the eviction or death of the host colony queen and the subsequent adoption of the invading queen. The social parasite queen achieves host worker acceptance by either manipulating the nest-mate recognition processes of the host or undergoing chemical modification. Little is known, however, about how host workers respond to social parasite eggs or whether host species defend against brood parasitism during parasite invasions. Host species are believed to adopt social parasite offspring because the recent common ancestry between many social parasites and their hosts may grant the sharing of certain characteristics such as chemical cues. Use of multiple host species, however, suggests other processes are needed for the social bond between host and parasite young to form. This study reports the findings of adoption bioassays in which eggs from a slave-maker ant, Polyergus breviceps, were offered to workers of two of its host species from unparasitised or newly parasitised nests to determine whether P. breviceps eggs generally elicit rearing behaviours from multiple host species. Comparisons of parasite egg survival until adulthood with conspecific egg survival reveal that workers of both host species, free-living or newly enslaved, do not typically accept slave-maker eggs. Both host species thus have sufficient discriminatory power to reject social parasite eggs although our hydrocarbon analysis indicates parasite eggs may be adapted to their local host species. Combined these results suggest that host rearing of P. breviceps eggs may reflect an evolutionary equilibrium that is maintained by probability and cost of recognition errors.Communicated by L. Sundström  相似文献   

9.
Eggs of several brood parasites have thicker and stronger shells than expected for their size. The present study evaluated the puncture resistance hypothesis for the occurrence of thick-shelled eggs in common cuckoos Cuculus canorus by investigating costs of cuckoo egg ejection in four Acrocephalus warblers—the great reed warbler A. arundinaceus, reed warbler A. scirpaceus, marsh warbler A. palustris and sedge warbler A. schoenobaenus. The three latter species all suffered ejection costs, while ejection was not costly in the larger great reed warbler. The occurrence of ejection costs was negatively related to host bill size. In the marsh warbler, we compared ejection costs in naturally parasitized nests and two experimental treatments, in which broods were parasitized artificially with great reed warbler and conspecific eggs. Hosts damaged their own eggs significantly more often when ejecting the thick-shelled cuckoo eggs than when ejecting the similarly sized but thinner-shelled great reed warbler eggs, providing some support for the puncture resistance hypothesis. Ejection of conspecific eggs did not involve any costs. Furthermore, contrary to predictions derived from the laying damage hypothesis, there was no evidence that egg damage was associated with cuckoo egg laying. Hosts damaging their own eggs during ejection were more likely to subsequently desert their clutches than those that did not. The frequency of clutches smeared with the contents of the ejected egg were positively related to the hypothesized difficulty of foreign egg puncturing. Potential advantages of thicker shells in common cuckoo eggs are discussed.  相似文献   

10.
Hosts of brood parasites have evolved the ability to discriminate non-mimetic and even mimetic eggs, but not non-mimetic chicks. Here we demonstrate that the great spotted cuckoo Clamator glandarius does not provide its magpie Pica pica host with a super-normal stimulus that helps to avoid recognition, because single cuckoo chicks introduced into otherwise unparasitized magpie nests are not fed at a higher frequency than single magpie chicks introduced to parasitized magpie nests. Another series of experiments demonstrated that magpies have the ability to discriminate cuckoo chicks, mainly when these are introduced at the end of the nestling period, and especially when the cuckoo chick together with a magpie chick is presented to adult magpies outside the nest. This supports the idea that cuckoos exploit the obligatory reaction of magpies to feed all young that have been hatched in their nests and whose signatures they have learnt. Furthermore, the experimental cuckoo chicks in parasitized magpie nests were more likely to be accepted than they were in non-parasitized nests. This supports the hypothesis that magpies may learn to recognise their own nestlings as those present in the nest and may indicate that a comparison between cuckoo and magpie nestlings is the basis of discrimination.  相似文献   

11.
The Horsfield’s bronze-cuckoo (Chalcites basalis) egg closely matches the appearance of its host fairy-wren (Malurus spp.) eggs. Mimicry of host eggs by cuckoos is usually attributed to coevolution between cuckoos and hosts, with host discrimination against odd-looking eggs selecting for ever better mimicry by cuckoos. However, this process cannot explain Horsfield’s bronze-cuckoo egg mimicry because fairy-wren hosts rarely reject odd-looking eggs from their nest. An alternative hypothesis is that cuckoos have evolved egg mimicry to disguise their eggs from other cuckoos. Female cuckoos remove one egg from the nest during parasitism and would potentially benefit by selectively removing any cuckoo egg that has already been laid in the nest because otherwise, their egg will be evicted by the first nestling cuckoo along with the host clutch. We used painted, non-mimetic eggs to test whether cuckoos selectively remove odd-looking eggs during parasitism. We found that they were no more likely to remove a non-mimetic egg from a superb fairy-wren Malurus cyaneus clutch than would be expected by chance. Thus, our study does not support the cuckoo egg replacement hypothesis to explain mimicry of host eggs by cuckoos.  相似文献   

12.
Parasites can affect host behavior in subtle but ecologically important ways. In the laboratory, we conducted experiments to determine whether parasitic infection by the intestinal protozoan Crithidia bombi or the tracheal mite Locustacarus buchneri alters the foraging behavior of the bumble bee Bombus impatiens. Using an array of equally rewarding yellow and blue artificial flowers, we measured the foraging rate (flowers visited per minute, flower handling time, and flight time between flowers) and flower constancy (tendency to sequentially visit flowers of the same type) of bees with varying intensities of infection. Bumble bee workers infected with tracheal mites foraged as rapidly as uninfected workers, but were considerably more constant to a single flower type (yellow or blue). In contrast, workers infected with intestinal protozoa showed similar levels of flower constancy, but visited 12% fewer flowers per minute on average than uninfected bees. By altering the foraging behavior of bees, such parasites may influence interactions between plants and pollinators, as well as the reproductive output of bumble bee colonies. Our study is the first to investigate the effects of parasitic protozoa and tracheal mites on the foraging behavior of bumble bees, and provides the first report of Crithidia bombi in commercial bumble bees in North America.  相似文献   

13.
Social parasitism is widespread in many groups of social living hymenopteran species and has also evolved in the genus Bombus. Cuckoo bumblebees (subgenus Psithyrus) are obligate brood parasites in nests of other bumblebee species. After nest usurpation and the killing of the host queen, the parasite female has to control worker reproduction in order to accomplish and maintain reproductive dominance and to ensure her reproductive success. The aim of our study was to examine whether the generalist parasitic bumblebee Bombus bohemicus monopolizes and prevents worker reproduction by physical or chemical means and to identify possible odor compounds involved therein. We performed bioassays with callow workers of the host Bombus terrestris and have shown that B. bohemicus females are able to suppress host worker ovarian development, when these host workers are under the direct influence of the parasite female. Furthermore, by chemical analyses, we have demonstrated that the parasite females adjust to the odor profiles of their host queens in order to maintain the level of fertility signaling inside the host colony although the host queen is absent. We also found that host workers change their odor profile after nest usurpation by the parasite female and consequently, we suggest that the host and parasite are caught up in a chemical arms race.  相似文献   

14.
Common cuckoo (Cuculus canorus) parasitism drastically reduces the reproductive success of their hosts and selects for host discrimination of cuckoo eggs. In a second stage of anti-parasite adaptation, once cuckoos can lay eggs that mimic those of their hosts, a high uniformity of host egg appearance within a clutch may favour cuckoo egg discrimination. Comparative evidence provides indirect support for this hypothesis although experimental support is currently lacking. Here, we studied the effect of experimentally decreased uniformity of host egg appearance on cuckoo egg discrimination by great reed warbler (Acrocephalus arundinaceus) hosts in a population in which long-term cuckoo parasitism has led to high levels of cuckoo–host egg mimesis. We manipulated host clutch uniformity by adding extra spots to fresh host eggs just after they were laid. Rejection of non-mimetic experimental eggs added to these nests was compared with those in control nests in which uniformity was not altered. Previously, by over-painting real spots in a control group of nests, we showed a negligible effect of our paints on hosts’ perception of their eggs. We show that for the great reed warbler, non-mimetic experimental eggs were relatively more tolerated in experimental nests, i.e. with lower uniformity (40%) than in control nests (5%). This is the first experimental study, to our knowledge, which demonstrates a reduced discrimination of foreign eggs as a consequence of an increase of egg phenotypes variation perception in a cuckoo host.  相似文献   

15.
Summary Contrary to the expectations of kin selection theory, intracolony relatedness in eusocial insects is often low. We examined the idea that associations of low relatedness (high genetic variability) may be advantageous because of negative frequency-dependent selection on common host phenotypes by rapidly evolving parasites and pathogens. Using the natural host-parasite system of the bumble bee Bombus terrestris and its intestinal trypanosome Crithidia bombi, we investigated the transmission properties of parasites in host groups. Within naturally infested nests and in artificially constructed groups of workers, prevalence of infestation increased with time of exposure (Table 1). The susceptibility of isolated groups of workers to the parasites to which they were exposed differed with identity and natural infestation of their nest of origin (Table 2). In addition, those workers that were related to the individual introducing an infection to their group were more likely to become infested than were unrelated workers (Table 3). Although the bumble bee workers in experimental boxes appeared to differ in behavior toward kin and non-kin, making more physical contacts with kin, we found no discernible relationship between number of physical contacts and prevalence of infestation in a group. Therefore, we conclude that differences in parasite transmission reflected interactions among different host and parasite phenotypes. This system thus demonstrates the factors necessary for negative frequency-dependent selection by parasites on common host phenotypes - variability for susceptibility and infectiousness in host and parasite populations and similarity for these traits among related individuals. If, as we show here, high genetic relatedness within groups enhances parasite transmission, kin directed altruism may increase the risk of contracting parasites and infectious diseases. Therefore, parasites and pathogens may be an important force moderating the genetic structure of social groups. Offprint requests to: J.A. Shykoff at the present address  相似文献   

16.
Hosts of avian brood parasites use a variety of defenses based on egg recognition to reduce the costs of parasitism; the most important of which is rejecting the parasitic eggs. Two basic recognition mechanisms are possible: “true recognition”, whereby hosts recognize their own eggs irrespective of their relative frequency in the clutch, and minority recognition (or “recognition by discordancy”), whereby hosts respond to the minority egg type. The mechanism of recognition has been experimentally studied in a handful of species parasitized by interspecific brood parasites, but the mechanism used in defenses against conspecific brood parasitism is unknown. I experimentally determined the mechanism of egg recognition in American coots (Fulica americana), a species with high levels of conspecific brood parasitism, egg recognition, and rejection. I swapped eggs between pairs of nests to alter frequencies of host and “parasite” eggs and then used two criteria for recognition: egg rejection and nonrandom incubation positions in the clutch. Eight of 12 nests (66%) given equal frequencies of host and parasite eggs showed evidence of true recognition. In contrast, only one of eight (12.5%) nests where host eggs were in the minority showed evidence of recognition by discordancy. The nonrandom incubation positions of parasitic eggs indicates that birds sometimes recognize parasitic eggs without rejecting them and provides a means of assessing recognition on a per nest basis in species with large clutches. Adaptive recognition without rejection may also be an important evolutionary stepping stone to the evolution of egg rejection in some taxa.  相似文献   

17.
Abstract: Bumble bees are a group of pollinators that are both ecologically and economically important and declining worldwide. Numerous mechanisms could be behind this decline, and the spread of parasites from commercial colonies into wild populations has been implicated recently in North America. Commercial breeding may lead to declines because commercial colonies may have high parasite loads, which can lead to colonization of native bumble bee populations; commercial rearing may allow higher parasite virulence to evolve; and global movement of commercial colonies may disrupt spatial patterns in local adaptation between hosts and parasites. We assessed parasite virulence, transmission mode, and infectivity. Microparasites and so‐called honey bee viruses may pose the greatest threat to native bumble bee populations because certain risk factors are present; for example, the probability of horizontal transmission of the trypanosome parasite Crithidia bombi is high. The microsporidian parasite Nosema bombi may play a role in declines of bumble bees in the United States. Preliminary indications that C. bombi and the neogregarine Apicystis bombi may not be native in parts of South America. We suggest that the development of molecular screening protocols, thorough sanitation efforts, and cooperation among nongovernmental organizations, governments, and commercial breeders might immediately mitigate these threats.  相似文献   

18.
Adult great spotted cuckoos, Clamator glandarius, frequently damage one or more eggs of their magpie host, Pica pica, without removing or eating them. The presence of damaged host eggs could signal parasitism thereby increasing the probability that the parasitic egg is ejected. This hypothesis was tested by experimentally introducing a model cuckoo egg with or without damaged host eggs. Magpie responses to experimental parasitism did not differ significantly between treatments implying that damaged host eggs are not used by magpies to assess parasitism. We followed the fate of magpie eggs naturally damaged by the great spotted cuckoo or experimentally damaged by us. Host response was very similar for naturally or experimentally damaged host eggs, but varied significantly according to the type of egg damage, eggs being removed more frequently when pecked than crushed, while cracked eggs were never removed. However, the egg damage that most readily causes egg removal is albumen leakage. Received: 30 November 1998 / Received in revised form: 7 June 1999 / Accepted: 12 June 1999  相似文献   

19.
Reproductive success of brood parasites varies considerably both among and within host species, mainly due to differences in host egg-rejection rates and survival of parasitic chicks. Here, we investigated the breeding success of the cuckoo (Cuculus canorus) in one of its major hosts, the great reed warbler (Acrocephalus arundinaceus), with respect to host social mating status. In this passerine, polygynous males provide less parental care to their young per nest than monogamous males. Consequently, their less-assisted females may fledge lower numbers of nestlings than monogamous females. This may be especially true for secondary females, which often receive limited or no paternal help with young at all. Based on these findings, we expected higher cuckoo reproductive success in nests of socially monogamous than polygynous great reed warbler males. More specifically, we predicted lower fledging success of cuckoo young in nests of secondary than primary or monogamous females. In line with the prediction, we found higher cuckoo fledging success in nests of monogamous than polygynous males, monogamous nests being more than twice as successful as secondary nests. We detected, however, only a tendency to lower cuckoo success in primary compared to monogamous nests and no differences between primary and secondary nests. Moreover, neither parasitism nor host egg-rejection rates differed among the nests of different status. Our results show, for the first time, that the social mating status of a host may influence the overall reproductive success of a brood parasite and thus should be considered in further studies.  相似文献   

20.
Conservation Implications of Host Use for Rare Parasitic Plants   总被引:3,自引:0,他引:3  
Both the study and management of parasites have historically focused on the control, and even elimination, of parasite populations. In contrast, rare parasitic plants represent an uncommon challenge for conservation biologists and managers who often wish to bolster populations of these parasites. Although parasitic plants may suffer any of the maladies known to affect small populations of plants, parasitic plants may also be limited by the additional suite of factors of host availability, host quality, host resistance to parasitism, and parasite preference. We describe studies that have examined parasite growth and reproductive performance with a variety of host species to argue that consideration of the host needs of parasitic plants is necessary for successful conservation of rare species using this mode of resource acquisition. Although it is clear that parasite performance varies greatly with the availability of different host species, little is known about the host requirements of most parasitic plants, and the relative importance of particular host species may not immediately be obvious. Further, because published host lists generally do not distinguish minor hosts from those that sustain parasite populations, such lists may be misleading for conservation efforts. We argue that successful conservation and restoration of parasitic plants may necessitate the management of thoughtfully selected host populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号