共查询到19条相似文献,搜索用时 62 毫秒
1.
中国饮用水中多环芳烃的分布和健康风险评价 总被引:11,自引:0,他引:11
饮用水中存在的多环芳烃对人类的身体健康会产生危害。应用固相萃取富集法和气相色谱?质谱联用(GC/MS)分析方法对全国主要城市的80座自来水厂出水中多环芳烃的浓度进行了分析。结果表明:各自来水厂的出水中多环芳烃总量在174.02-658.44ng.L-1之间,其中致癌性多环芳烃的总量为55.08-173.36ng.L-1,致癌性多环芳烃占多环芳烃总量比例最高可达到49.68%。就其组成而言,出水中多环芳烃以3环芳烃(31%-37%)为主,但各环均有检出;通过评价水体健康风险,得到水厂出水中多环芳烃对人体的健康风险值是10-6a-1。 相似文献
2.
以重庆老龙洞岩溶槽谷为例,利用BaP毒性当量浓度(BaP_(eq))和终生癌症风险增量模型对儿童和成人暴露于土壤PAHs的健康风险进行评价.研究结果表明,土壤中BaP_(eq)∑_(16)PAHs为87.5±156.6 ng·g~(-1),7种致癌性PAHs占了97.8%;BaP_(eq)∑_(10)PAHs平均值为32.9±37.4 ng·g~(-1),33.3%的采样点的BaP_(eq)超过了荷兰土壤环境质量标准目标参考值(33.0 ng·g~(-1)),表明土壤PAHs存在潜在风险;儿童和成人的终生癌症风险(ILCR)分别为1.17×10~(-7)—7.11×10~(-6),1.24×10~(-7)—7.52×10~(-6),平均值为8.8×10~(-7)和9.3×10~(-7),总体在可接受的风险范围内,但有部分存在潜在风险;DaA和BaP产生的致癌风险占到总风险的35.2%和30.4%,是最主要的贡献组成;不同暴露途径对人群的致癌风险水平为:皮肤接触经口摄入呼吸吸入.经口摄入和皮肤接触对总致癌风险的贡献几乎为100%,高出呼吸吸入10~2—10~6倍,是土壤PAHs致癌风险的主要暴露途径. 相似文献
3.
城市回用水中多环芳烃致癌风险评价 总被引:1,自引:0,他引:1
为评价人群暴露于城市回用水中16种多环芳烃(polycyclic aromatic hydrocarbons,PAHs)对于人体健康的潜在风险,采用气相色谱-质谱(GC-MS)联用的分析化学方法对不同季节回用水中16种PAHs进行定量分析;在此基础上采用美国国家科学院和国家研究委员会提出的环境健康风险评价方法,分析不同回用条件下具有中国水体基质特色的城市回用水中PAHs健康风险.结果显示,回用水样中16种PAHs的总浓度为1 422.85 ng·L-1,污水处理厂二级出水水样16种PAHs的总浓度为1 791.77 ng ·L-1,经过处理后回用水中PAHs含量有所降低.风险评价分析结果显示,回用水在城市绿化、农业灌溉和景观娱乐3种不同回用途径下多环芳烃的致癌风险分别为788×10-8、2.77×10-6、3.04×10-6,总致癌风险为5.89×10-6.以上结果可以得出,回用水在城市绿化、农田灌溉和景观娱乐接触过程中多环芳烃所增加的致癌风险很低,回用水中多环芳烃的健康风险处于可接受水平. 相似文献
4.
兰州地区人群对多环芳烃的暴露及健康风险评价 总被引:3,自引:0,他引:3
采用多介质-多途径暴露模型,评价兰州地区居民暴露于多环芳烃的健康风险,分析风险来源、暴露介质及暴露途径,并结合蒙特卡罗方法分析研究过程中的不确定性。结果表明,兰州地区居民中男性和女性对环境中多环芳烃的终身日平均暴露量分别为4.55×10-4和5.07×10-4mg.kg-1.d-1。暴露途径中食物摄取是最主要途径,食物中贡献较大的为谷物。相应的男性和女性的健康风险度分别为4.12×10-5.a-1和4.80×10-5.a-1,兰州地区多环芳烃类污染物居民人体健康风险度远远高于可接受健康风险度的标准。兰州地区女性对多环芳烃的暴露量高于男性,女性健康风险平均值亦远远高于EPA标准值,兰州地区女性乳腺癌发病率较高可能与长时间低剂量多环芳烃暴露有一定的关系。兰州地区多环芳烃人群暴露与天津和北京相比存在一定的差异。 相似文献
5.
6.
某癌症高发区水中多环芳烃测定及其风险评价 总被引:1,自引:1,他引:1
在某癌症高发区选取5个镇中的10个村进行布点,分别在2010年6月和12月采集丰水期和枯水期水样,采用固相萃取与气相色谱-质谱联用方法对深层地下水、浅层地下水以及地表水中的多环芳烃(PAHs)进行测定.检测结果表明,深层地下水在丰、枯水期时PAHs总量分别为4058.29—9613.53 ng.L-1和72.78—809.00 ng.L-1.浅层地下水丰、枯水期PAHs总量分别为2205.84—24621.20 ng.L-1和82.88—601.95 ng.L-1.地表水丰、枯水期PAHs的总量分别为2747.44—33532.90 ng.L-1和127.78—321.04 ng.L-1.丰水期萘含量较高是造成PAHs总量在丰水期远高于枯水期的主要原因.10个水样中苯并(a)芘超标(GB5749—2006),最大超标8.42倍.采用优化的USEPA风险评价模型,对PAHs进行人体健康风险评价,其致癌风险水平在2×10-8—1.28×10-5之间,部分水样致癌风险超过10-6的水质监控值. 相似文献
7.
济南冬春季室内空气PM_(2.5)中多环芳烃污染特征及健康风险评价 总被引:3,自引:0,他引:3
2010年冬春季,在济南典型室内环境(超市、办公室和餐厅)采集了PM2.5样品,并对其多环芳烃(PAHs)进行了分析.结果表明,采样期间办公室的PAHs平均浓度最高,为93.11 ng.m-3,超市和餐厅的PAHs平均浓度分别为42.97 ng.m-3和26.65 ng.m-3.超市和办公室的多环芳烃均以室外源(燃煤)为主,吸烟导致办公室轻环多环芳烃浓度升高,高于室外相应物种的浓度,餐厅的轻环多环芳烃和重环多环芳烃分别来源于室内烹饪和室外的机动车尾气.与室外相比,超市和办公室PAHs中的菲(Phe)和苯并[b+k]荧蒽(BbkF)占总PAHs的比例较高,达到10%—15%,这与冬季室内使用中央空调取暖密不可分.超市、办公室和餐厅的毒性当量浓度值(BEQ)分别为7.05 ng.m-3、10.75 ng.m-3和0.75 ng.m-3.其中办公室的毒性当量浓度高于我国规定10 ng.m-3.超市,办公室和餐厅的PAHs暴露致终身肺癌风险度分别为0.6×10-3、0.9×10-3和6.5×10-5,均超过了世界卫生组织的建议值(10-5),超市和办公室的终身致癌健康风险高于美国最高法院规定的10-3的显著水平,说明生活在超市和办公室致癌风险高. 相似文献
8.
大辽河地表水中多环芳烃的污染水平及致癌风险评价 总被引:3,自引:0,他引:3
随着经济发展,水环境污染不断加剧,地表水中多环芳烃(PAHs)的水平及其致癌风险直接关系到居民的身体健康。为分析大辽河地表水中多环芳烃的污染水平,对大辽河2011年丰水期和枯水期地表水中16种优先控制的PAHs浓度进行监测,应用以Bap为参照物使用等效质量浓度TEQ和终生致癌风险评价模型(ILCR)对地表水中多环芳烃对人体的风险进行评价。结果表明:与国内外其他河流相比较,大辽河地表水中ΣPAHs的污染较为严重,且丰水期浓度显著大于枯水期。在丰水期,地表水中多环芳烃以4环多环芳烃为主,代表性多环芳烃为Baa;在枯水期,地表水中多环芳烃以3环和4环多环芳烃为主,代表性多环芳烃为Phe。与美国EPA标准相比较,致癌风险评价结果表明大辽河地表水中存在潜在的多环芳烃致癌风险,即使经过水厂处理后这种风险仍然存在,必须给予重视。上述研究结果为明确大辽河地表水中多环芳烃污染现状、加强水环境管理提供了基础数据。 相似文献
9.
我国10城市冬季大气颗粒物中多环芳烃污染及呼吸暴露风险评价 总被引:2,自引:0,他引:2
大气中颗粒物和多环芳烃对环境与人体健康危害较大,已引起社会各界的广泛关注。以我国10个城市2013年12月和2014年1月大气中空气动力学直径小于10μm的颗粒物(PM10)为研究对象,采用硅胶-氧化铝层析柱净化分离、气质联用仪分析的方法测定了27种多环芳烃(PAHs)的浓度水平,分析其谱分布及空间分布,并通过呼吸暴露途径估算了癌症病发增量(ILCRs)和人群归因危险度百分比(PAF)。结果表明,27种物质的总浓度为13.72~2 002 ng·m-3;在10个城市中晋中总浓度最高,厦门最低。PAHs空间污染水平呈现北方高于南方、东部沿海城市浓度相对较低的趋势。温度与总浓度有相关性。在27种PAHs中,占主导地位的单体为荧蒽(FLA,7.56%~19.8%),芘(PYR,6.72%~13.8%),艹屈(CHR,12.8%~19.6%)和苯并(k)荧蒽(Bk F,8.59%~15.5%),4者占到多环芳烃总浓度的42.1%~64.3%。根据研究区域苯并[a]芘(Ba P)人口加权浓度估算ILCRs范围为8.94×10-6~4.77×10-4,据此计算的PAFs为0.487%~13.2%,均值为3.44%,高于全国平均水平1.6%。上述研究结果为大气颗粒物中PAHs的研究提供重要的数据基础。 相似文献
11.
典型污水处理厂对多环芳烃及其衍生物的去除及再生水健康风险研究 总被引:1,自引:0,他引:1
多环芳烃(PAHs)在水环境中可以通过化学或微生物作用转化成其衍生物(SPAHs),而SPAHs可能具有更强的毒性和"三致性"从而危害人体健康。为探明污水厂中PAHs和SPAHs的存在性及不同二级处理和再生水处理工艺对它们的去除效果,对北京及广东共4座污水处理厂中PAHs及SPAHs进行了检测,同时对再生水进行了健康风险评价。结果显示:从进水浓度来看,4座污水处理厂中,低环芳烃浓度(191.8~394.2 ng·L~(-1))明显高于高环芳烃(89.3~108.2 ng·L~(-1));SPAHs中氧取代物(OPAHs)总浓度(253.8~322.2 ng·L~(-1))高于甲基取代物(MPAHs,44.3~220.4 ng·L~(-1))。不同二级处理工艺对PAHs的去除率为43.7%~58.2%,对SPAHs的去除率为45.8%~52.1%。不同再生水处理工艺对PAHs和SPAHs去除率差别较大,PAHs的去除率范围为1.8%~41.1%,SPAHs的去除率范围在2.35%~25.9%。结果表明,目标物的去除以生物降解为主,此外,吸附在固体颗粒上,随颗粒沉淀去除也是主要途径之一。通过对污水厂再生水的风险评价,苯并[a]芘(BaP)和二苯并[a,h]蒽(DBA)2种强致癌物TEQ浓度均高于1,其致癌风险较大,安全性有待提高。 相似文献
12.
太湖梅梁湾沉积物中多环芳烃的生态和健康风险 总被引:8,自引:4,他引:8
持久性有机物引起的水质安全性问题日益受到广泛的关注.利用生态和健康风险评价的原理和方法,对太湖梅梁湾水源地沉积物中的多环芳烃可能导致的负面效应进行了分析.首先采用商值法筛选出该地区沉积物中具有潜在风险的多环芳烃,再进一步用建立在暴露浓度分布和物种敏感度分布上的概率法定量表征风险.结果表明,太湖梅梁湾水源地沉积物的多环芳烃中,菲、荧蒽、芘、苯并[a]蒽、屈、苯并[a]芘、二苯并[a,h]蒽7种具有潜在风险;在保护95%的物种水平下,菲的风险最小,而荧蒽和芘风险较高,达20%.健康风险分析表明,美国EPA提出的7种具有遗传毒性的多环芳烃其致癌风险在梅梁湾沉积物中均在10-5水平以下. 相似文献
13.
白洋淀湿地表层沉积物多环芳烃的分布、来源及生态风险评价 总被引:7,自引:0,他引:7
对白洋淀湿地表层沉积物15种多环芳烃含量进行了检测.结果表明,其总含量范围为324.6~1738.5ng·g-1,整体来看,白洋淀湿地多环芳烃污染处于中等偏低污染水平.多环芳烃组成主要以2~3环、4环为主,其含量分别占总含量的47.8%、28.6%.白洋淀湿地表层沉积物多环芳烃主要以化石燃料、木柴及生物质低温燃烧来源为主,个别样点受油类排放污染严重.风险评价表明,严重的多环芳烃生态风险在白洋淀湿地表层沉积物中不存在,但是在部分区域某些多环芳烃含量超过了效应区间低值(ERL),可能存在着对生物的潜在危害. 相似文献
14.
曹妃甸和黄骅港是河北省近海工业布局和港口分布较密集的区域,对其近岸海域海水水质进行监测具有重要意义。2014年9月采集研究区近岸海域表层海水,并利用GC-MS对其中16种优先控制PAHs进行测定。结果表明,曹妃甸和黄骅港近岸海域表层海水中∑PAHs含量分别为52.6~192.1 ng·L~(-1)和85.4~156 ng·L~(-1),平均含量分别为74.59 ng·L~(-1)和121.45 ng·L~(-1)。黄骅港近岸海域∑PAHs含量高于曹妃甸近岸海域的含量,但PAHs的种类没有差异。对比其他研究区域水体中PAHs的含量,本区域表层海水中PAHs的含量处于中等水平,属于轻污染。异构体比值结合该区域现状分析初步判断,研究区表层海水中PAHs来源于石油污染和煤、生物质等的燃烧。应用风险商值法(RQ)对研究区域表层海水中PAHs的生态风险进行评价,结果表明该海域存在低生态风险,需采取措施控制PAHs的污染。 相似文献
15.
于2009年2月-8月利用高效液相色谱法对徐州市区冬、春、夏3个季节大气TSP和PM10中16种多环芳烃进行分析,结果表明:大气TSP和PM10中∑PAHs不同季节分布规律均为:冬季〉春季〉夏季;冬季,荧蒽污染浓度最高;春季和夏季苯并(g,h,i)芘浓度最高;不同环数PAHs春季和年均值呈规律均为:6环〉4环〉5环〉3环〉2环;夏季为:6环〉5环〉4环〉3环〉2环;冬季为:4环〉5环〉6环〉3环〉2环;大气TSP中整体苯并(a)芘等效致癌毒性(BEQ)不同季节分布规律为:冬季(4.517ng/m3)〉夏季(1.602ng/m3)〉春季(1.413ng/m3);PM10中整体BEQ不同季节分布规律为:冬季(3.706ng/m3)〉春季(1.504ng/m3)〉夏季(1.331ng/m3);采暖期大气颗粒物中PAHs污染对人体健康危害风险相对较高。 相似文献
16.
石油污染土壤中多环芳烃分析及生态风险评价 总被引:1,自引:0,他引:1
对中原油田石油污染土壤中多环芳烃(PAHs)的残留量进行了调查。结果表明,PAHs总残留量范围为70.8~5 013.2μg.kg-1,且以3环以上多环芳烃组分为主。其中,苯并[a]芘检出率为100%,采油树前地表土壤苯并[a]芘检出量很高,最高可达996.9μg.kg-1。参考加拿大农业区域土壤PAHs的治理标准值,采用内梅罗综合指数法进行评价的结果表明:运行中和停产时间较短的油井周围土壤的生态风险较高;油井运行状态、停产时间及距采油树(污染源)的距离对土壤的生态风险都有影响,油井停产时间越长,其周围土壤的生态风险随之降低,距污染源越远,土壤生态风险越低。 相似文献
17.
为探究室内地面灰尘中15种多环芳烃(PAHs)污染的时间变化规律,于2012年3—7月对北京市一座办公楼内的某办公室进行了每周一次的连续高密度灰尘样品采集。利用高效液相色谱-荧光检测器检测15种PAHs含量。结果表明,该办公室内灰尘样品中∑PAHs浓度范围为1 180~24 300 ng·g~(-1),平均浓度为8 960 ng·g~(-1)。总体上,检出的PAHs以3环PAHs为主,其中菲占PAHs总量的59%以上,其次是4环和5环PAHs,4环PAHs中占的比重最高,约占4环PAHs总量的34%。该办公室内灰尘中∑PAHs的浓度存在显著的时间变化差异,总体表现为∑PAHs浓度随气温升高而降低的趋势。源解析结果显示,机动车排放源、石油源、木材与煤燃烧是北京市室内灰尘中PAHs的主要来源。健康风险评估结果显示,ILCR皮肤接触ILCR手口摄入,且CR均值大于10-6,说明该采样点的PAHs污染存在"潜在致癌风险"。 相似文献
18.
19.
环渤海北部沿海地区表层土壤中PAHs的污染特征及风险评价 总被引:2,自引:0,他引:2
系统采集了环渤海北部沿海地区31个表层土壤样品,利用GC/MS分析了16种USEPA优控多环芳烃(PAHs)的含量和组分特征,运用主成分因子载荷法揭示了其污染来源,并初步评价了其风险水平.结果表明,沿海地区65%的土壤已被污染,最高污染样点PAHs含量达920.4ng·g-1,平均含量309.5ng·g-1,与国内外相关研究比较,处于中低等污染水平.各类燃料的不完全燃烧是该地区土壤中PAHs的主要来源,石油类挥发或泄漏对采油区土壤中PAHs的累积影响显著. 相似文献