首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This study showed that NH3 emitted from geothermal power plants affects the surrounding epiphytic lichen vegetation and diversity, confounding the interpretation of lichen diversity counts in terms of air pollution by H2S. The presence of nitrophytic lichen species around geothermal installations, determined by NH3, caused relatively high diversity values that were not related with the levels of air pollution by H2S. It is recommended that in the presence of NH3 emission, nitrophytic species are excluded from the calculation of lichen diversity values.  相似文献   

2.
Kılıç GA 《Chemosphere》2011,83(8):1175-1180
This study investigated biomarker responses of the earthworm Lumbricus terrestris in order to evaluate the soil pollution along Porsuk River Basin. Samples consisted of animals from six sites that are agricultural regions and a forested control. Histopathological and biochemical alterations were examined. Significant histopathological alterations were observed in animals from three of the sampling sites. There was an enlargement of epithelial cell lining, mucus cell hyperplasia and increase in mucus secretion. Circular and longitudinal muscles lost their structural integrity. Chloragogenous tissue was dilated and vocuolized. Necrosis was observed in the cells and tissues of some affected worms. A load of heavy metals in tissues of animals was determined. Heavy metals were found to be accumulated particularly in longitudinal muscles of animals. CAT activity was found to be increased in animals from three of the experimental sites. GST activity was also increased in five sites while it was stable in one site. The results have shown that animals from locations particularly that are close to urbanized and industrialized regions were seriously affected from the soil pollution around the basin. These results are reflecting the biological effects of soil pollution around Porsuk River Basin on the indicator organism L. terrestris and constitute an early warning of ecological change in relation to human health.  相似文献   

3.
At Mt. Amiata (Italy) geothermal energy is used, since 1969, to generate electricity in five plants with a nominal capacity of 88 MW. Anomalous levels of mercury characterise geothermal fluids of Mt. Amiata, an area renowned for its vast cinnabar deposits and for the mercury production carried out in the past. Mercury emission rates range from 300 to 400 g/h, or 3-4 g/h per MW electrical installed capacity. These emissions are coupled with a release of 7-8 kg/(h MW) of hydrogen sulphide (H2S). Mercury is discharged as Hg0 gaseous species and reaches the atmosphere with the non-condensable gas fraction. In this fraction, CO, is the major component (94-98%), H2S is around 1% and mercury concentration is as high as 1-10 mg/Nm3. Leaves of a spontaneous grass (Avena sterilis), at the end of the vegetative cycle, were used as mercury bioconcentrators to map deposition near geothermal power plants and to calculate the corresponding average levels of Hg0 in the air. Direct measurements of mercury and hydrogen sulphide vapours in the air reached by power plant emissions showed a ratio of about 1-2000. This ratio was applied to calculate average levels of hydrogen sulphide starting from mercury deposition mapping: typical concentrations of mercury and hydrogen sulphide were of the order of 10-20 ng/m3 and 20-40 microg/m3, respectively.  相似文献   

4.
The heterotrophic microbial communities of the Rouge River were tracked using Biolog Ecoplates to understand the metabolic diversity at different temporal and spatial scales, and potential link to river pollution. Site less impacted by anthrophogenic sources (site 1), showed markedly lower metabolic diversity. The only substrates that were utilized in the water samples were carbohydrates. Sites more impacted by anthrophogenic sources (sites 8 and 9) showed higher metabolic diversity. Higher functional diversity was linked to the physico-chemical and biological properties of the water samples (i.e. higher concentrations of DO, DOC, chlorophyll, and bacterial density). Biolog analysis was found to be useful in differentiating metabolic diversity between microbial communities; in determining factors that most influence the separation of communities; and in identifying which substrates were most utilized by the communities. It can also be used as an effective ecological indicator of changes in river function attributable to urbanization and pollution.  相似文献   

5.
Following a request by environmental authorities in New Zealand, atmospheric modelling has been applied to delimitation of clean air zones for urban areas. This approach involved the integration of a kinematic trajectory model with an atmospheric mesoscale model to identify the spatial extent of the catchment of air affecting air pollution concentrations in Christchurch on nights of high air pollution. The Regional Atmospheric Modelling System (RAMS) was configured for the region and idealised simulations performed to obtain predicted wind fields for synoptic situations typical of winter smog events. The predicted surface wind fields on two grids, with horizontal resolutions of 1.5 and 0.5 km, respectively, were then used to derive back-trajectories from the late evening peak of pollution over the central city (around 2200 NZST) to the time at which people tend to first light their domestic fires (around 1800 NZST). The results indicate that although winds are often light, the air tends to travel from a significant distance outside the city boundary over this time period. In particular, cold air typically travels up to 20 km from the Canterbury Plains to the west into the city during these air pollution events, as well as from small valleys in the Port Hills to the south of the city. This research illustrates the significance of upstream sources of air for providing relatively clean air to the city, and acting as buffer zones. It is, therefore, possible to identify the area around the city to which urban air quality is particularly sensitive. This area could either be designated as a buffer zone, or included within the clean air zone of the city. This technique also provides a useful tool for identifying the role of different components of the local wind field responsible for air pollution dispersion and transport in different parts of the area.  相似文献   

6.
Effects of industrial air pollution on growth parameters of clover and Egyptian mallow were examined at three locations in the industrial area of Shoubra Elkheima, north of Cairo. Symptoms of plant damage appeared in the form of chlorosis and necrotic patterns. The decrease in chlorophyll reached more than 60% in plants cultivated in the industrial region. Plant growth and dry weights were reduced by more than 50%. The reduction in chlorophyll and growth parameters was correlated with the concentrations of air pollutants measured in the atmosphere of the locations examined. Moreover, clover and Egyptian mallow plants cultivated in the region of Shoubra Elkheima accumulated lead and cadmium, which can pass into the human food chain. It is concluded that these plants can be used as biomonitors for industrial air pollution.  相似文献   

7.
The lichen Punctelia subrudecta (Nyl.) Krog was transplanted to 22 biomonitoring sites in a northwestern area of Córdoba city, Argentina and tested for chlorophyll a, chlorophyll b, phaeophytin a, soluble protein, hydroperoxy conjugated dienes (HPCD), malondialdehyde (MDA) concentration and sulphur accumulation. A pollution index (PI) was calculated for each biomonitoring site. The biomonitoring sites were set according to (1) traffic levels, (2) industrial density and (3) distance of the power station close to each site. The biomonitor's chemical response was associated with industries as well as power stations. Significant differences were observed in sulphur content, MDA concentration and PI values in lichen material transplanted to sites with different industrial densities. The higher values for these parameters were found at sites with high industrial levels. At the same time, significant differences were detected for sulphur content in samples at different distances from the power station, with higher accumulation in samples located far from the power plant. For MDA concentration, effect of different levels of industrial density was observed only at points close to the power station, probably because of higher levels of humidity near the power plant. For PI significantly higher values were observed in samples at points far from the power station and with high industrial density. This shows the additive effect of the principal emission sources that act on the response of P. subrudecta to air pollutants.  相似文献   

8.
The lichen Canomaculina pilosa was transplanted to 21 sampling sites, plus two controls sites in a north-western area of Córdoba City, Argentina. The transplantation sites were set according to traffic levels, industry condition and distances from the power plant. On the transplanted lichens chlorophyll a, chlorophyll b, phaeophytin a, soluble proteins, hydroperoxy-conjugated dienes, malondialdehyde concentration and sulphur accumulation were determined. A pollution index was calculated for each sampling site. The present study provides information about chemical parameters showing variations as the response of C. pilosa to different emission sources of air pollutants. The C. pilosa chemical response was mainly associated to industries. Significant higher values were observed in phaeophytin a/chlorophyll a ratio, sulphur content and pollution index values in lichen material transplanted at sites with industry. For the distance from the power plant category, only the hydroperoxy-conjugated dienes concentration showed significant differences. For the different traffic levels no significant variations were observed for any of the chemical parameters quantified.  相似文献   

9.
GOAL, SCOPE AND BACKGROUND: Air pollution has been of a major problem in the Pearl River Delta of south China, particularly during the last two decades. Emissions of air pollutants from industries have already led to damages in natural communities and environments in a wide range of the Delta area. Leaf parameters such as chlorophyll fluorescence, leaf area (LA), dry weight (DW) and leaf mass per area (LMA) had once been used as specific indexes of environmental stress. This study aims to determine in situ if the daily variation of chlorophyll fluorescence and other ecophysiological parameters in five seedlings of three woody species, Ilex rotunda, Ficus microcarpa and Machilus chinensis, could be used alone or in combination with other measurements for sensitivity indexes to make diagnoses under air pollution stress and, hence, to choose the correct tree species for urban afforestation in the Delta area. METHODS: Five seedlings of each species were transplanted in pot containers after their acclimation under shadowing conditions. Chlorophyll fluorescence measurements were made in situ by a portable fluorometer (OS-30, Opti-sciences, U.S.A). Ten random samples of leaves were picked from each species for LA measurements by area-meter (CI-203, CID, Inc., U.S.A). DW was determined after the leaf samples were dried to a constant weight at 65 degrees C. LMA was calculated as the ratio of DW/LA. Leaf N content was analyzed according to the Kjeldhal method, and the extraction of pigments was carried out according Lin et al. RESULTS AND DISCUSSION: The daily mean Fv/Fm (Fv is the variable fluorescence and Fm is the maximum fluorescence) analysis showed that Ilex rotunda and Ficus microcarpa were more highly resistant to pollution stress, followed by Machilus chinensis, implying that the efficiency of photosystem II in I. rotunda was less affected by air pollutants than the other two species. Little difference in daily change of Fv/Fm in I. rotunda between the polluted and the clean site was also observed. However, a relatively large variation of Fv/Fm appeared in the other two species, particularly in M. chinensis, suggesting that they were more sensitive to air pollutants than I. rotunda. The mean LA was reduced for all species growing at the polluted site. The mean LMA for all species exceeded the sclerophylly threshold given by Cowling and Campbell and increased for those under pollution stress, which could be explained as one of the acclimation strategies for plants to air pollution stress. Little difference in leaf chlorophyll content was observed in F. microcarpa and M. chinensis, while remarkable differences were found in I. rotunda growing at the polluted and the clean site. Content of leaf carotenoids was largely reduced in I. rotunda growing at the polluted site, but increased in F. microcarpa and M. chinensis, compared with plants growing at the clean site. Plants growing at the clean site had a lower leaf N content than those growing at the polluted site. In addition, species with a higher resistance to pollution stress showed less difference in leaf N content than those sensitive species. CONCLUSION: Based on Fv/Fm measurements of the three woody species, I. rotunda showed the highest resistance to air pollutants from ceramic industries, followed by F. microcarpa. M. chinensis was the most sensitive species to air pollution, had lowest capacities to cope with the air pollution stress, which was consistent with visual injury symptoms observed in the crown profiles of plants at the polluted site. Fv/Fm, LAM, LA, leaf pigments and N content could be used alone or in combination to diagnose the extent of the physiological injury. The ratio of Fv/Fm, however, was the best and most effective parameter. RECOMMENDATION AND OUTLOOK: Tree species which have higher air-pollutant resistance, as diagnosed by such ecophysiological parameters, should be considered first and planted widely for urban afforestation or forest regeneration in areas where the forest was seriously degraded or forest health was markedly effected by the same kind of air pollutants.  相似文献   

10.
The paper reports a case of evident and widespread leaf damage on trees in southern Tuscany (Central Italy) attributed to the input of pollutants produced in a geothermal area. The main potentially phytotoxic substances are boron and hydrogen sulphide. Trees affected are conifers as well as both evergreen and deciduous broadleaves. In the present study the possible impact of geothermal pollutants on Quercus pubescens leaves has been considered. Leaf samples coming from three sampling locations (S1 inside the geothermal area; S2 on the margins; S3 outside) and three consecutive dates (June, July and August) were analyzed for the following parameters: sulphur and boron concentration; leaf area; leaf mass per area; chlorophyll fluorescence (Fv/Fm); chlorophyll a, chlorophyll b and carotenoid concentrations. Anatomical and ultrastructural observations were also performed. In all sampling location sulphur and boron concentrations are greater than the background values recorded in southern Tuscany in a previous survey. The sulphur concentration in leaves was higher in S1 than S2 and S3, but did not increase throughout the survey period. Boron reached the greatest concentrations in S2 and showed a continuous increase over the study period. Leaves subjected to a higher load of pollutants were smaller in size (in terms of leaf area), but were more sclerophyllous. Damaged chloroplasts and reduced Fv/Fm values were observed at S1 and S2, but chlorophyll concentration values were higher at S1. Such an apparent anomaly can possibly be explained by the onset of compensation and recovery mechanisms. Foliar injuries appeared to be related to boron concentration.  相似文献   

11.
The composition of the ambient air is constantly changing; therefore, the monitoring of ambient air quality to detect the changes caused by aerogenic pollutants makes the essential part of general environmental monitoring. To achieve more effective improvement of the ambient air quality, the Directive 2008/50/EC on ‘Ambient Air Quality and Cleaner Air for Europe’ was adopted by the European Parliament and the European Council. It informed the public and enterprises about a negative effect of pollution on humans, animals and plants, as well as about the need for monitoring aerogenic pollutants not only at the continuous monitoring stations but also by using indicator methods, i.e. by analysing natural deposit media. The problem of determining the relationship between the accumulation level of pollutants by a deposit medium and the level of air pollution and its risks is constantly growing in importance. The paper presents a comprehensive analysis of the response of the main four deposit media, i.e. snow cover, soil, pine bark and epigeic mosses, to the long-term pollution by aerogenic pollutants which can be observed in the area of oil refinery influence. Based on the quantitative expressions of the amounts of the accumulated pollutants in the deposit media, the territory of the oil refinery investigated in this paper has been referred to the areas of mild or moderate pollution.  相似文献   

12.
In the last 10 yr, Beijing has made a great effort to improve its air quality. However, it is still suffering from regional coarse particulate matter (PM10) pollution that could be a challenge to the promise of clean air during the 2008 Olympics. To provide scientific guidance on regional air pollution control, the Mesoscale Modeling System Generation 5 (MM5) and the Models-3/Community Multiscale Air Quality Model (CMAQ) air quality modeling system was used to investigate the contributions of emission sources outside the Beijing area to pollution levels in Beijing. The contributions to the PM10 concentrations in Beijing were assessed for the following sources: power plants, industry, domestic sources, transportation, agriculture, and biomass open burning. In January, it is estimated that on average 22% of the PM10 concentrations can be attributed to outside sources, of which domestic and industrial sources contributed 37 and 31%, respectively. In August, as much as 40% of the PM10 concentrations came from regional sources, of which approximately 41% came from industry and 31% from power plants. However, the synchronous analysis of the hourly concentrations, regional contributions, and wind vectors indicates that in the heaviest pollution periods the local emission sources play a more important role. The implications are that long-term control strategies should be based on regional-scale collaborations, and that emission abatement of local sources may be more effective in lowering the PM10 concentration levels on the heavy pollution days. Better air quality can be attained during the Olympics by placing effective emission controls on the local sources in Beijing and by controlling emissions from industry and power plants in the surrounding regions.  相似文献   

13.
The present study was focused on the effect of increasing urbanization including industrial and traffic activity on the accumulation of heavy metals and possible damage of selected physiological parameters (composition of assimilation pigments, membrane lipid peroxidation, and membrane integrity) of an epiphytic foliose lichen, Flavoparmelia caperata (L.) Hale. The lichen samples were collected from three different localities in and around Kolkata, India, two sites being from the urban area and one from the relatively non-polluted sub-urban area. The results showed that thalli from the urban sites have significantly higher concentrations of Fe, Cr, Cu, Zn, and Pb compared to those collected from the sub-urban site. Physiological parameters of damage also exhibited stress symptoms in thalli from the urban sites—decreased chlorophyll a indicating less photosynthetic efficiency, and increase in lipid peroxidation and electrolyte conductivity indicating cell membrane injuries. Correlation studies among metals pinpointed vehicular traffic as the main source of pollution in this area.  相似文献   

14.
Using interdisciplinary field research in the Usa Basin, northeast European Russia, we compared local inhabitants' perception of environmental problems with chemical and remote-sensing signatures of environmental pollution and their local impacts. Extensive coal mining since the 1930s around Inta and Vorkuta has left a legacy of pollution, detected by measuring snowpack, topsoil, and lichen chemistry, together with remote-sensing techniques and analysis of lake water and sediments. Vorkuta and its environs suffered the worst impacts, with significant metal loading and alkalization in lakes and topsoils, elevated metals and cations in terricolous (reindeer) lichens, and changes in vegetation communities. Although the coal industry has declined recently, the area boasts a booming oil and gas industry, based around Usinsk. Local perceptions and concerns of environmental pollution and protection were higher in Usinsk, as a result of increased awareness after a major oil spill in 1994, compared with Vorkuta's inhabitants, who perceived air pollution as the primary environmental threat. Our studies indicate that the principal sources of atmospheric emissions and local deposition within 25 to 40 km of Vorkuta were coal combustion from power and heating plants, coal mines, and a cement factory. Local people evaluated air pollution from direct observations and personal experiences, such as discoloration of snow and respiratory problems, whereas scientific knowledge played a minor role in shaping these perceptions.  相似文献   

15.
Recent research has highlighted the substantial health-related costs of air pollution in the Hong Kong Special Administrative Region (HKSAR) and the potential threat from air pollution to HKSARs economic competitiveness. In order to address the air pollution problems, this paper seeks to analyse the individual contributions of major sulphur dioxide (SO2) sources in the Pearl River Delta Region (PRDR) (Pearl River Delta + HKSAR) on the air quality in the HKSAR. This study employed the coupling of the MM5/CALMET system with the CALPUFF, the multi-layer, non-steady-state puff dispersion model, where major power plants, marine vessels and vehicles, all in the PRDR, are taken into account. The observation data and simulation results at 11 Hong Kong Environmental Protection Department (HKEPD) general (non-road-side) stations are analyzed. Urban (in-zone) and Rural (out-zone) stations are defined in order to examine the SO2 contribution of different emission sources in different regions of the HKSAR. The model results show that the contribution of the HKSAR marine sources is significant both in summer and in winter, especially for the locations around the in-zone stations (in general 60%, and 55% in summer and winter respectively). In addition, the contribution of the HKSAR power plants is slightly higher than that of the PRD power plants in early summer, with a contribution difference of up to 20% when the prevailing wind is from the south. However, in late summer, this situation reverses. In winter, the contribution of the PRD power plants is two to three times greater than that of the HKSAR power plants. Moreover, Yantian port affects the northern part of the HKSAR when a northeasterly wind dominates the HKSAR. In order to solve these air pollution problems, the main implication of these results suggests that the HKSAR government, in close co-operation with the Guangdong government, needs to take immediate action.  相似文献   

16.
An air pollution monitoring biological indicator (AMBI) system for ambient ozone was tested in the South Coast Air Basin of California during the 1972 fall growing season. The basic unit or AMBI station was an inexpensive, portable plant station which operated independent of power sources. Reliability of these units was excellent as only three instances of missing data were observed from 330 possibilities. A photo-reference system of ozone injury evaluation utilizing direct comparisons of injured leaves with reference photographs was successful in standardizing assessments of ozone injury. Average weekly injury indices for field locations were correlated with average weekly ozone dosages and were found to be significant at the .01 level.  相似文献   

17.
Urban atmospheres contain complex mixtures of air pollutants including mutagenic and carcinogenic substances such as benzene, diesel soot, heavy metals and polycyclic aromatic hydrocarbons. In the frame of a European network for the assessment of air quality by the use of bioindicator plants, the Tradescantia micronucleus (Trad-MCN) test was applied to examine the genotoxicity of urban air pollution. Cuttings of Tradescantia clone #4430 were exposed to ambient air at 65 monitoring sites in 10 conurbations employing a standardised methodology. The tests revealed an elevated genotoxic potential mainly at those urban sites which were exposed to severe car traffic emissions. This bioassay proved to be a suitable tool to detect local 'hot spots' of mutagenic air pollution in urban areas. For its use in routine monitoring programmes, however, further standardisation of cultivation and exposure techniques is recommended in order to reduce the variability of results due to varying environmental conditions.  相似文献   

18.
The results of a study using epiphytic lichens (Parmelia caperata) as sentinels for heavy metal deposition at six selected forest ecosystems of central Italy are reported. The woods investigated are characterized by holm oak (Quercus ilex), turkey oak (Quercus cerris) and beech (Fagus sylvatica) and represent the typical forest ecosystems of central Italy at low, medium and high elevations, respectively. The results showed that levels of heavy metals in lichens were relatively low and consequently no risk of heavy metal air pollution is expected for the six forest ecosystems investigated. However, for two of them there are indications of a potential risk: the beech forest of Vallombrosa showed signs of contamination by Pb as a consequence of vehicle traffic due to the rather high touristic pressure in the area, and the holm oak forest of Cala Violina showed transboundary pollution by Mn, Cr and Ni originating from the steel industry in Piombino. Epiphytic lichens proved to be very effective as an early warning system to detect signs of a changing environment at forest ecosystems.  相似文献   

19.
A methodology is developed to include wind flow effects in land use regression (LUR) models for predicting nitrogen dioxide (NO2) concentrations for health exposure studies. NO2 is widely used in health studies as an indicator of traffic-generated air pollution in urban areas. Incorporation of high-resolution interpolated observed wind direction from a network of 38 weather stations in a LUR model improved NO2 concentration estimates in densely populated, high traffic and industrial/business areas in Toronto-Hamilton urban airshed (THUA) of Ontario, Canada. These small-area variations in air pollution concentrations that are probably more important for health exposure studies may not be detected by sparse continuous air pollution monitoring network or conventional interpolation methods. Observed wind fields were also compared with wind fields generated by Global Environmental Multiscale-High resolution Model Application Project (GEM-HiMAP) to explore the feasibility of using regional weather forecasting model simulated wind fields in LUR models when observed data are either sparse or not available. While GEM-HiMAP predicted wind fields well at large scales, it was unable to resolve wind flow patterns at smaller scales. These results suggest caution and careful evaluation of regional weather forecasting model simulated wind fields before incorporating into human exposure models for health studies. This study has demonstrated that wind fields may be integrated into the land use regression framework. Such integration has a discernable influence on both the overall model prediction and perhaps more importantly for health effects assessment on the relative spatial distribution of traffic pollution throughout the THUA. Methodology developed in this study may be applied in other large urban areas across the world.  相似文献   

20.
This study centres around the question of how far the analysis of spruce needles (Picea abies L.) provides a suitable tool for detecting and describing large-scale air pollution, primarily by heavy metals, in Switzerland. For that reason 1637 spruce shoots from 833 sites were analysed, relationships between the different elements were calculated and maps of their spatial distribution drawn. The results show that needle analysis is a valid instrument for the identification of various air pollutants in Switzerland. The element best suited is Pb, followed by some others like Mo, Fe, Cd or S. The most heavily polluted areas in Switzerland are the midlands, and in the north and north-west. Their spatial distribution suggests that in these areas the indicator elements are derived from local sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号