首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty-six-day-old black turtle bean cv. 'Domino' plants were exposed to nitrogen dioxide (0.0, 0.025, 0.05 and 0.10 microl liter(-1)), 7 h per day for 5 days per week for 3 weeks, under controlled environment. Data were collected on net photosynthesis rate (PN), stomatal resistance (SR), and dark respiration rate (DR), immediately after exposure, 24 h after the termination of exposure and at maturity (when the leaves had just started turning yellow), using a LICOR 6000 Portable Photosynthesis System. Chlorophyll-a (Ch-a), chlorophyll-b (Ch-b), total chlorophyll (tot-Ch) and leaf nitrogen were measured immediately after exposure and at maturity. Growth characteristics-relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and root: shoot ratio (RSR)-were computed for treated plants. Net photosynthesis rate increased by 53% in 0.10 microl liter(-1) NO2 treated plants immediately after exposure compared to control plants. Dark respiration rates were also higher in treated plants. Ch-a, Ch-b and tot-Ch showed significant increases with 0.1 microl liter(-1) NO2 treatment immediately after exposure. Foliar nitrogen content showed an increase in treated plants both immediately after exposure and at maturity. Increases were also seen in RGR and NAR. Plant yield increased by 86% (number of pods), 29% (number of seeds) and 46% (weight of seeds), respectively. Nitrogen dioxide stimulated the overall plant growth and crop yield.  相似文献   

2.
One-month-old soybean (Glycine max [L.] Merrill), cultivar 'Williams', plants were exposed to nitrogen dioxide (0.1, 0.2, 0.3 and 0.5 ppm) and carbon filtered air (control), 7 h per day, for 5 days, under a controlled environment. Leaf chlorophyll content (Ch a, Ch b, and total Ch content) and foliar nitrogen content (%N) were determined before and after the exposure. The influence of NO(2) treatments up to 0.3 ppm on leaf chlorophyll content was negligible although a stimulatory effect was evident in Ch a and total Ch content with 0.2 ppm NO(2). Marked decline in Ch content was observed with 0.5 ppm treatment; the reductions in Ch a and total Ch were 45% and 47%, respectively. Foliar-N contents of plants treated with 0.2 and 0.3 ppm NO(2) were higher than the control; plants exposed to 0.5 ppm NO(2) showed a 41% reduction in foliar-N compared to pre-exposure values.  相似文献   

3.
Continuous measurements of particle number (PN), particle mass (PM10), and gaseous pollutants [carbon monoxide (CO), nitric oxide (NO), oxides of nitrogen (NOx), and ozone (O3)] were performed at five urban sites in the Los Angeles Basin to support the University of Southern California Children's Health Study in 2002. The degree of correlation between hourly PN and concentrations of CO, NO, and nitrogen dioxide (NO2) at each site over the entire year was generally low to moderate (r values in the range of 0.1-0.5), with a few notable exceptions. In general, associations between PN and O3 were either negative or insignificant. Similar analyses of seasonal data resulted in levels of correlation with large variation, ranging from 0.0 to 0.94 depending on site and season. Summertime data showed a generally higher correlation between the 24-hr average PN concentrations and CO, NO, and NO2 than corresponding hourly concentrations. Hourly correlations between PN and both CO and NO were strengthened during morning rush-hour periods, indicating a common vehicular source. Comparing hourly particle number concentrations between sites also showed low to moderate spatial correlations, with most correlation coefficients below 0.4. Given the low to moderate associations found in this study, gaseous co-pollutants should not be used as surrogates to assess human exposure to airborne particle number concentrations.  相似文献   

4.
Soybean (Glycine max L. Merril) cv. 'Williams' plants were exposed 0.0, 0.05, 0.2 and 0.4 microl litre(-1) NO(2) under controlled environment. Amount of abscisic acid (ABA) was measured after either 7 h or 5 days of exposure as well as after 18 h of recovery period. For quantitative analysis of ABA enzyme-linked immunosorbent assay was used. A significant increase (160%) was observed in plants treated with 0.4 microl litre(-1) NO(2) for 5 days compared to an increase of only 82% on exposure for 7 h. Rate of recovery for plants treated with low doses of NO(2) was higher than those treated with higher doses.  相似文献   

5.
In order to screen for the best species for mitigating nitrogen dioxide (NO2) by plants at urban levels, we investigated assimilation of nitrogen dioxide by 70 taxa of woody plants that are mostly utilized as roadside trees. They were fumigated with 15N-labeled NO2 at 0.1 microl l(-1) for 8h, and the amount of reduced nitrogen derived from NO2 (in mg Ng(-1) dry weight) in the leaves (designated NO2 assimilation capability hereafter) were determined. Data were analyzed in the comparison with the previously reported ones obtained at 4 microl l(-1) NO2. Among the 70 taxa, the value of NO2 assimilation capability differed by a factor of 122 between the highest (Prunus yedoensis; 0.061) and the lowest (Cryptomeria japonica; 0.0005). Based on the analysis of NO2 assimilation capability values at 0.1 and 4 micro l(-1) NO2, the 70 taxa of woody plants appeared to be classified into four types; those of high NO2 assimilation and high NO2 resistance, those of high NO2 assimilation but low NO2 resistance, those of low NO2 assimilation and low NO2 resistance, and those of low NO2 assimilation but high NO2 resistance. The first, second, third and fourth types include 13, 11, 35 and 11 taxa, respectively. The broad-leaf deciduous trees may have advantages of high biomass and fast growth as compared with woody plants of other habits. Thus, four broad-leaf deciduous species, Robinia pseudo-acacia, Sophora japonica, Populus nigra and Prunus lannesiana, were concluded here to be the best phytoremediators for the urban air.  相似文献   

6.
Fluxes of NO, NO2 and O3 were determined over a drained marshland pasture in south-east England by using flux-gradient techniques. Nitric oxide was found to be emitted at rates of up to 40 ng m(-2) s(-1), the rate of emission being related to the magnitude of the eddy diffusivity. Nitrogen dioxide deposited at rates of up to 90 ng m(-2) s(-1) under the control of stomatal resistance, a clear diurnal cycle being observed. Minimum canopy resistance was of the order of 80 s m(-1). Ozone deposition was also controlled by stomatal resistance, the minimum canopy resistance being around 100 s m(-1) and fluxes reaching a maximum of 220 ng m(-2) s(-1). Corrections made to NO and NO2 fluxes to compensate for chemical reactions showed flux divergences of the order of 30% for NO and NO2, but these were not statistically significantly different from the measured fluxes. The pasture was found to be a net sink for nitrogen in the form of NOx.  相似文献   

7.
Concentrations of nitrogen gases (NH(3), NO(2), NO, HONO and HNO(3)) and particles (pNH(4) and pNO(3)) were measured over a mixed coniferous forest impacted by high nitrogen loads. Nitrogen dioxide (NO(2)) represented the main nitrogen form, followed by nitric oxide (NO) and ammonia (NH(3)). A combination of gradient method (NH(3) and NO(x)) and resistance modelling techniques (HNO(3), HONO, pNH(4) and pNO(3)) was used to calculate dry deposition of nitrogen compounds. Net flux of NH(3) amounted to -64 ng N m(-2) s(-1) over the measuring period. Net fluxes of NO(x) were upward (8.5 ng N m(-2) s(-1)) with highest emission in the morning. Fluxes of other gases or aerosols substantially contributed to dry deposition. Total nitrogen deposition was estimated at -48 kg N ha(-1) yr(-1) and consisted for almost 80% of NH(x). Comparison of throughfall nitrogen with total deposition suggested substantial uptake of reduced N (+/-15 kg N ha(-1) yr(-1)) within the canopy.  相似文献   

8.
The effects of SO(2) on species exhibiting Crassulacean Acid Metabolism (CAM) were determined with short term-high concentration 'acute' greenhouse exposures (0.6 to 3.0 microl liter(-1) (ppm) SO(2) for 2 and 8 h), and long term-low concentration 'chronic' field exposures (0.35 to 0.90 microl liter(-1) SO(2) for 32 to 79 h periodically over 7 to 13 days). In the acute greenhouse exposures, visible injury was observed on Opuntia basilaris Engelm. & Bigel., exposed to 2.0 microl liter(-1) SO(2), but no injury was observed on Ananas comosus (L.) Merr., Bryophyllum blossfeldiana Poelln., Bryophyllum pinnata (Lam.) Pers., or Bryophyllum tubiflora (Harv.) Hamet, exposed to up to 2.8 microl liter(-1) SO(2) for 8 h. Stomatal conductance during the exposures averaged 0.067+/-0.021mol(-2)s(-1) for Opuntia basilaris, 0.029+/-0.008mol(-2)s(-1) for Ananas comosus, and 0.029+/-0.008mol m(-2)s(-1) for Bryophyllum pinnata. Opuntia basilaris was injured early during the day, but not at night; with the injury appearing as a white necrotic banding across just fully expanded pads. Moderately injured pads would regreen beginning 1 to 2 weeks after exposure. In chronic field exposures, no visible injury from SO(2) was observed on Opuntia basilaris, Dudleya arizonica Rose or Agave deserti Engelm. plants, grown either with supplemental irrigation or natural rainfall. In addition, in the field SO(2) had no effect on CO(2) uptake, total sulfur content, transpiration, or tissue acidity in either the light or the dark, or in irrigated vs natural rainfall plots.  相似文献   

9.
The absolute accuracy and long-term precision of atmospheric measurements hinge on the quality of the instrumentation and calibration standards. To assess the consistency of the ozone (O3) and nitrogen oxides (NO(x)) standards maintained at the National Institute of Standards and Technology (NIST), these standards were compared through the gas-phase titration of O3 with nitric oxide (NO). NO and O3 were monitored using chemiluminescence and UV absorption, respectively. Nitrogen dioxide (NO2) was monitored directly by laser-induced fluorescence and indirectly by catalytic conversion to NO, followed by chemiluminescence. The observed equivalent loss of both NO and O3 and the formation of NO2 in these experiments was within 1% on average over the range of 40-200 nmol mol(-1) of NO in excess O3, indicating that these instruments, when calibrated with the NIST O3 and NO standards and the NO2 permeation calibration system, are consistent to within 1% at tropospherically relevant mixing ratios of O3. Experiments conducted at higher initial NO mixing ratios or in excess NO are not in as good agreement. The largest discrepancies are associated with the chemiluminescence measurements. These results indicate the presence of systematic biases under these specific conditions. Prospects for improving these experiments are discussed.  相似文献   

10.
The single and combined effects of ozone (O(3)) and Fusarium oxysporum on growth and disease expression of soybean genotypes differing in foliar sensitivity to O(3) were studied in the greenhouse. O(3) had no effect on root and hypocotyl rot severity of PI 153.283 (O(3)-sensitive, S) or PI 189.907 (O(3)-tolerant, T) maturity group I soybean lines. Plants of both genotypes infected with F. oxysporum and exposed to O(3) had greater reductions in relative growth rate (RGR), net assimilation rate (NAR), and had more stippled leaves per plant than Fusarium-free plants exposed to O(3). O(3) alone had a greater impact on shoot dry weight, RGR, and NAR of PI 153.283 (S) than of PI 189.907 (T). O(3) alone reduced shoot and root dry weights primarily through a depression in NAR and less through reduced leaf area. F. oxysporum alone reduced root dry weight at 35 days; however, infected plants responded with increases in root dry weight from 49 to 63 days. Similarly, F. oxysporum alone lowered early RGR but subsequent RGR decline was less rapid while NAR remained high, particularly during later sampling intervals. Infection by F. oxysporum that causes root and hypocotyl rot increased soybean sensitivity to O(3) by prolonging active vegetative growth.  相似文献   

11.
Thirty-five cultivars of pot plants of 20 families were exposed for 50-64 days in a greenhouse facility to either 1 microl litre(-1) NO with 0.5 microl litre(-1) NO2, or 1 microl litre(-1) NO2 with 0.1 microl litre(-1) NO for 15 h each day, with air which was free from these gases as the reference. A sensitivity ranking of the pot plants was compiled, with the highest priority on visible injuries, followed by growth reductions, primarily as a response to the NO-dominated exposures, simulating the NOx-polluted environment in direct-fired, CO2-enriched greenhouses. This treatment reduced the leaf dry weight more than the number and area of the leaves. Twenty-two cultivars were significantly injured, while two (Hibicus sp, Epipremnum pinnatum, green) were significantly improved. The NOx-sensitivity of pot plants was highest in cultivars with variegated, small or narrow leaves, and in the Moraceae family. Nine cultivars (Ficus elastica 'Robusta', F. benjamina, F. pumila 'Sonny', Dieffenbachia maculata 'Camilla', F. elastica 'Tineke', Epipremnum pinnatum 'Marble Queen', Begonia elatior 'Nelson', Cyclamen persica, Poinsettia 'Mini') were specifically sensitive to the NO-containing exposure; six were specifically sensitive to the NO2-containing exposure (F. elastica 'Robusta', Asparagus den. 'Sprengeri', Hedera helix 'Shamrock', Aspledium nidus, Aster novo-belgii, Hypoestes phyl. 'Betina'); and 12 (Soleirolia soleirolii, Asparagus den. 'Sprengeri', H. helix 'Ester', Codiaeum 'Pictum', Rosa 'Minimo Red', F. benjamina 'Starlight', Saintpaulia ionantha 'light blue', F. pumila, Rhododendron simsii, H. helix 'Shamrock', Hibiscus sp., E. pinnatum) were equally sensitive to mixtures dominated by either gas, as measured by at least one response parameter.  相似文献   

12.
Indoor and outdoor air quality investigation at schools in Hong Kong   总被引:7,自引:0,他引:7  
Lee SC  Chang M 《Chemosphere》2000,41(1-2):109-113
Five classrooms in Hong Kong (HK), air-conditioned or ceiling fans ventilated, were chosen for investigation of indoor and outdoor air quality. Parameters such as temperature, relative humidity (RH), carbon dioxide (CO2), sulphur dioxide (SO2), nitric oxide (NO), nitrogen dioxide (NO2), respirable particulate matter (PM10), formaldehyde (HCHO), and total bacteria counts were monitored indoors and outdoors simultaneously. The average respirable particulate matter concentrations were higher than the HK Objective, and the maximum indoor PM10 level exceeded 1000 microg/m3. Indoor CO2 concentrations often exceeded 1000 microl/l in air-conditioning and ceiling fan classrooms, indicating inadequate ventilation. Maximum indoor CO2 level reached 5900 microl/l during class at the classroom with cooling tower ventilation. Increasing the rate of ventilation or implementation of breaks between classes is recommended to alleviate the high CO2 level. Other pollution parameters measured in this study complied with the standards. The two most important classroom air quality problems in Hong Kong were PM10 and CO2 levels.  相似文献   

13.
Patterns of environmental change in the biosphere include concurrent and sequential combinations of increasing ultraviolet (UV-B) and ozone (O(3)) at increasing carbon dioxide (CO(2)) levels; long-term changes are resulting mainly from stratospheric O(3) depletion, greater tropospheric O(3) photochemical synthesis, and increasing CO(2) emissions. Effects of selected combinations were evaluated in tomato (Lycopersicon esculentum cv. New Yorker) seedlings using sequential exposures to enhanced UV-B radiation and O(3) in differential CO(2) concentrations. Ambient (7.2 kJ m(-2 )day(-1)) or enhanced (13.1 kJ m(-2) day(-1)) UV-B fluences and ambient (380 microl l(-1)) or elevated (600 microl l(-1)) CO(2) were imposed for 19 days before exposure to 3-day simulated O(3) episodes with peak concentrations of 0.00, 0.08, 0.16 or 0.24 microl l(-1) O(3) in ambient or elevated CO(2). CO(2) enrichment increased dry mass, leaf area, specific leaf weight, chlorophyll concentration and UV-absorbing compounds per unit leaf area. Exposure to enhanced UV-B increased leaf chlorophyll and UV-absorbing compounds but decreased leaf area and root/shoot ratio. O(3) exposure generally inhibited growth and leaf photosynthesis and did not affect UV-absorbing compounds. The highest dose of O(3) eliminated the stimulating effect of CO(2) enrichment after ambient UV-B pre-exposure on leaf photosynthesis. Pre-exposure to enhanced UV-B mitigated O(3) damage to leaf photosynthesis at elevated CO(2).  相似文献   

14.
The effects of CO(2) enrichment and O(3) induced stress on wheat (Triticum aestivum L.) and corn (Zea mays L.) were studied in field experiments using open-top chambers to simulate the atmospheric concentrations of these two gases that are predicted to occur during the coming century. The experiments were conducted at Beltsville, MD, during 1991 (wheat and corn) and 1992 (wheat). Crops were grown under charcoal filtered (CF) air or ambient air + 40 nl liter(-1) O(3) (7 h per day, 5 days per week) having ambient CO(2) concentration (350 microl liter(-1) CO(2)) or + 150 microl liter(-1) CO(2) (12 h per day.). Averaged over O(3) treatments, the CO(2)-enriched environment had a positive effect on wheat grain yield (26% in 1991 and 15% in 1992) and dry biomass (15% in 1991 and 9% in 1992). Averaged over CO(2) treatments, high O(3) exposure had a negative impact on wheat grain yield (-15% in 1991 and -11% in 1992) and dry biomass (-11% in 1991 and -9% in 1992). Averaged over CO(2) treatments, high O(3) exposure decreased corn grain yield by 9%. No significant interactive effects were observed for either crop. The results indicated that CO(2) enrichment had a beneficial effect in wheat (C(3) crop) but not in corn (C(4) crop). It is likely that the O(3)-induced stress will be diminished under increased atmospheric CO(2) concentrations; however, maximal benefits in crop production in wheat in response to CO(2) enrichment will not be materialized under concomitant increases in tropospheric O(3) concentration.  相似文献   

15.
This paper reports on the concentrations and geographical relationships between fluoride and total arsenic in 129 water wells of the Región Lagunera, Mexico, where arsenic has caused severe health effects. Fluoride concentrations ranged from less than 0.5 to 3.7 mg liter(-1); 25 samples (19.4%) had levels above 1.5mg liter(-1), the current WHO and Mexican drinking water standard, whereas 45 (34.9%) had levels below 0.5 mg liter(-1). The range of total arsenic concentrations was 0.008-0.624 mg liter(-1) and 64 (50%) had levels above 0.050 mg liter(-1), the current WHO standard. A linear regression analysis of arsenic and fluoride concentrations showed a highly positive correlation (r = 0.774), consistent with their geographical distribution. The highest concentrations of both elements were found in the northeastern part of the Región, mostly corresponding to rural areas, whereas the lowest concentrations were found in the southwestern part of the Región, as well as in the cities of Torreón in the state of Coahuila, and Gómez Palacio and Lerdo in the state of Durango. In consequence, people exposed to high arsenic concentrations are also exposed to fluoride at levels above the drinking water standard. The possibility of interactions between both elements is also discussed.  相似文献   

16.
A nitrogen budget of the Changjiang river catchment   总被引:1,自引:0,他引:1  
Shen Z  Liu Q  Zhang S  Miao H  Zhang P 《Ambio》2003,32(1):65-69
Based on 1997-1998 field investigations in the Changjiang river mouth, rain sampling from the river's upper reaches to the mouth, historical data, and relevant literature, the various sources of Total Nitrogen (TN) and Dissolved Inorganic Nitrogen (DIN) in the Changjiang river catchment and N transport in the Changjiang river mouth were estimated. The export fluxes of various form of N were mainly controlled by the river runoff, and the export fluxes of NO3-N, DIN and TN in 1998 (an especially heavy flood year) were 1438 10(3) tonnes (t) yr(-1) or 795.1 kg km(-2) yr(-1), 1746 10(3) t yr(-1) or 965.4 kg km(-2) yr(-1) and 2849 10(3) t yr(-1) or 1575.3 kg km(-2) yr(-1), respectively. The TN and DIN in the Changjiang river came mainly from precipitation, agricultural nonpoint sources, N lost from fertilizer and soil, and point sources of industrial waste and residential sewage discharge, which were about 56.2% and 62.3%, 15.4% and 18.5%, 17.1% and 14.4%, respectively, of the N outflow at the Changjiang river mouth; maximum transport being in the middle reaches.  相似文献   

17.
Absorption of nitrogen dioxide (NO(2)) by various broad-leaved tree species was determined by the (15)N dilution method. The tree seedlings were continuously exposed to 0.3 ppm (microl litre(-1)) NO(2) or the mixture of 0.3 ppm NO(2) and 0.1 ppm O(3) for 30 days. The total amount of NO(2)-nitrogen absorbed by a seedling during the 30-day exposure period primarily depended on the size of the seedling. Among the tested tree species, three cultivars of Populus showed the highest rate of NO(2) absorption per unit leaf area, reaching as much as 0.3 mg N per dm(2) per day. The absorption rates for Populus cultivars were more than four times greater than those for Viburnum or Cinnamomum which had the lowest rate. A highly significant correlation was recognised between the rate of NO(2) absorption and the stomatal conductance among the species. Three cultivars of Populus which had the highest rates of NO(2) absorption were most susceptible to the mixture of NO(2) and O(3). On the contrary, Cinnamomum, Viburnum and Quercus, which showed the lowest rate of NO(2) absorption, were very tolerant to the mixed gas. These results indicate that the species difference in susceptibility to the mixture of NO(2) and O(3) was mainly determined by the difference in rate of absorption of these gases. Exposure to NO(2) alone had no detrimental effect on the tested tree species.  相似文献   

18.
Concentrations of air pollutants were monitored during the May November 1999 period on a network of forested sites in Sequoia National Park, California. Measurements were conducted with: (1) active monitors for nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3); (2) honeycomb denuder/filter pack systems for nitric acid vapor (HNO3), nitrous acid vapor (HNO2), ammonia (NH3), sulfur dioxide (SO2), particulate nitrate (NO3-), ammonium (NH4+), and sulfate (SO4(2-)); and (3) passive samplers for O3, HNO3 and NO2. Elevated concentrations of O3 (seasonal means 41-71 ppb), HNO3 (seasonal means 0.4-2.9 microg/m3), NH3 (seasonal means 1.6-4.5 microg/m3), NO3 (1.1-2.0 microg/m3) and NH4+ (1.0-1.9 microg/m3) were determined. Concentrations of other pollutants were low. With increasing elevation and distance from the pollution source area of O3, NH3 and HNO3 concentrations decreased. Ammonia and NH4+ were dominant N pollutants indicating strong influence of agricultural emissions on forests and other ecosystems of the Sequoia National Park.  相似文献   

19.
The response of shrubs of Larrea tridentata (DEC) Coville (creosotebush) exposed to sulphur dioxide (SO(2)) was evaluated using in situ plants of the Majove Desert. Larrea was exposed to acute levels of 0.3 to 2.0 microl litre(-1) SO(2) for periods up to 13 days using field chambers or an open-air fumigation system. Plants exposed in the spring exhibited considerable leaf injury (necrosis and defoliation) when exposed to 2.0 microl litre(-1) SO(2), and in the autumn had leaf injury when exposed to >0.4microl litre(-1) SO(2). Injured plants had higher transpiration rates, less negative water pressure potentials, and/or lower photosynthetic rates than control plants. It is likely that Larrea would not be injured by the typically low SO(2) concentrations and dry environmental conditions of the Mojave Desert. However, if injury were to occur, it would be accompanied by changes in plant-water relations and photosynthesis, followed by recovery after the SO(2) stress was removed.  相似文献   

20.
Photosynthesis inhibition of soybean leaves by insecticides   总被引:7,自引:0,他引:7  
Field grown soybean cv. Williams-82 plants were sprayed with malathion or carbaryl formulations at 30, 60 and 90 days after planting. Net photosynthesis (PN) was measured in the control (water-sprayed) and pesticide-treated plants, 1, 3 and 7 days after treatment, with a LICOR 6200 Portable Photosynthesis System. The pesticide-treated plants showed a significant reduction (24% with malathion and 20% with carbaryl) in PN after the first application. After the 60-day spray treatment PN suppression on day 1 and day 3 after treatment was the same as after the first application; but PN reached the same level as that of the water-sprayed control 7 days after treatment. After the 90-day treatment no change in PN was observed with the pesticide-treated plants compared to the control. These data indicate that malathion and carbaryl formulations may exert a detrimental influence on soybean physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号