首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
通过对几种大孔树脂的去除水中微囊藻毒素MC效果的比较,发现BS树脂对MC-RR和MC-LR的去除效果都很好,优于其他型号的树脂,静态吸附实验的结果显示,适当减小溶液的pH有利于树脂吸附MC,在pH:5,BS树脂对MC-RR和MC-LR均有比较好的去除效果。  相似文献   

2.
金属离子和氧化剂对3,5-二氯酚光化学降解的影响   总被引:2,自引:0,他引:2  
在实验条件下 ,Fe2 +、KCl O3、KCl O4 、KBr O3、KIO4 对 3 ,5 -二氯酚光化学降解起加速作用 ,且随其浓度增大 ,加速作用也在增强。KIO4 的加速作用比较强。光照时 ,KIO4 +Mn2 +对 3 ,5 -二氯酚光化学降解的加速作用非常显著。无光照时 ,当 KMn O4 浓度增加时 ,3 ,5 -二氯酚被迅速氧化 ;KIO4 +Mn2 + /Fe2 + 能够使 3 ,5 -二氯酚发生化学降解 ,尤其是 KIO4 +Mn2 + 的作用。  相似文献   

3.
对天然水体中3种痕量微囊藻毒素(MC-RR、MC-YR、MC-LR)的淋洗、洗脱、液相色谱测定等环节进行单因素不同水平考察,结果表明:以体积分数为45%的甲醇水溶液(含0.1%的TFA)为固相萃取淋洗剂、10 mL甲醇(含01%TFA)为固相萃取洗脱剂,体积分数为70%的甲醇水溶液(含0.1%TFA)为液相色谱流动相,可在6 min内有效分离MC-RR、MC-YR、MC-LR。将优化后的方法用于实际加标水样的测定,MC-RR、MC-YR、MC-LR的方法检出限分别为0.064 μg/L、0.098 μg/L、0.095 μg/L,加标回收率为87.0%~116%,RSD为10.2%~18.8%。  相似文献   

4.
以聚丙烯腈为原料制备半碳化纤维(SCF),经化学和生物两性修饰后,再以海藻酸钠进行复配修饰,得到不同的两性复配修饰SCF,通过试验考察其对Pb2+的等温吸附和动力学特征,分析pH值、温度和离子强度对Pb2+吸附的影响。结果表明:供试材料对Pb2+的吸附等温线符合Langmuir和Freundlich模型,最大吸附量(qm)为495.09mmol/kg~770.56mmol/kg,两性和两性复配修饰后的SCF对Pb2+的吸附量提高了1.8%~55.6%。pH值升高有利于各供试材料对Pb2+的吸附,离子强度在0.01mol/L~0.5mol/L范围内,各供试材料对Pb2+的吸附量呈现先增加后减小的趋势,并在0.1mol/L时达到最大。热力学参数表明,Pb2+吸附是一个自发、吸热和熵增的过程。  相似文献   

5.
以紫外为光源,O3和H2O2作氧化剂分别对含酚废水进行光氧化去除效果的研究.结果表明,联合光氧化法能有效去除废水中的苯酚,在适宜条件下90min内苯酚去除率达到90%以上。试验表明,光氧化法是处理低浓度含酚废水的一种有效方法。  相似文献   

6.
重金属离子对斜生栅列藻毒性的研究   总被引:2,自引:0,他引:2  
应用斜生栅列藻作为生物指示物,对16种重金属化合物的单一毒性进行毒性评价,并分别从微观和宏观角度分析了重金属的致毒机理。实验结果表明:它们的毒性大小顺序为Ag+Cd2+Cu2+Zn2+Sr2+Pb2+Hg2+Sn4+Al3+Cr+Ni2+Mn2+Ba2+Fe3+Co2+Li+。  相似文献   

7.
应用磁性分散固相萃取技术对环境水体中有机磷化合物进行萃取测定,并对萃取剂的用量、萃取时间、解吸溶剂、盐度等实验影响因素进行了优化。在优化条件下,有机磷的回收率为80.1%~93.1%,相对标准偏差为4.6%~5.9%,检出限为0.000 2~0.000 4 mg/L。与传统的液液萃取及固相萃取相比,该磁性分散固相萃取方法操作更为简单、迅速,有机溶剂消耗量很少,方法环保。能很好的满足环境水体中有机磷化合物的测定。  相似文献   

8.
利用化学氧化法合成了苯胺-邻氨基酚共聚物,通过静态吸附实验研究了该材料对水中Cr(Ⅵ)的吸附性能。结果表明,该共聚物对水中Cr(Ⅵ)有良好的去除效果,25°C时其吸附容量可达200.6 mg/g;该吸附过程为自发吸热反应,吸附等温线符合Langmuir单层吸附模型;动力学过程符合准二级动力学方程。溶液pH对吸附性能影响较大,pH 2.0~5.0范围内吸附效果较好。利用1mol/L HNO_3洗脱液对吸附之后的共聚物进行脱附,脱附效率可达94.2%。  相似文献   

9.
红外光度法测定土壤中的石油类   总被引:10,自引:1,他引:10  
以CCl4为萃取剂,以Na2SO4(无水硫酸钠)或一水合硫酸镁MgSO4·H2O为干燥剂,用红外光度法(GB/T16488-1996)来测定土壤中的石油类。  相似文献   

10.
利用化学共沉淀法制备了磁性凹土复合吸附剂(ATP/Fe_3O_4),通过静态吸附实验研究了该材料对水中Pb~(2+)的吸附性能。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、红外光谱仪(FTIR)和振动样品磁强计(VSM)对复合吸附剂进行表征,并考察了吸附剂投加量、溶液初始pH值及吸附时间等因素对Pb~(2+)吸附效果的影响。结果表明,Fe_3O_4颗粒负载在凹土表面,复合吸附剂的比饱和磁化强度为29.22 emu/g,可有效实现固液分离的目标。Pb~(2+)吸附实验表明,ATP/Fe_3O_4对Pb~(2+)具有良好的吸附效果,当Pb~(2+)初始浓度为50mg/L、溶液pH为5.0、吸附剂用量为3.0 g/L时,去除率可达87.35%。ATP/Fe_3O_4对Pb~(2+)的吸附行为符合准二级动力学方程。  相似文献   

11.
宁波市饮用水源地爆发蓝藻水华时微囊藻毒素的污染分析   总被引:3,自引:1,他引:2  
通过固相萃取净化,建立了超高效液相色谱-串联四极杆质谱法测定水中微囊藻毒素MC-LR和MC-RR的方法,并用该方法监测了宁波市两个饮用水源地爆发蓝藻水华时水体中的微囊藻毒素.监测结果表明,姚江水体中的微囊藻毒素污染水平低,MC-LR和MC-RR没有被检出;梅湖水库水体中MC-RR也未被检出,采取措施后,虽MC-LR有时被检出,但最高时也低于国家标准值(1.0μg/L).  相似文献   

12.
Physicochemical and biological parameters related to water quality and microcystins (MCs) contamination in aquatic environment of the Three Gorges Reservoir were investigated in August 2004 and January 2005. A solid-phase extraction method and an HPLC equipped with photodiode array were used for MC-LR detection. A quantitative analysis showed the total MC-LR concentrations of water samples ranged from non-detectable to 0.57 μg L?1 among the seven sampling sites. The highest MC-LR concentration was found at sampling site G (Wushan), which was followed by F (Kaixian), E (Wanzhou), D (Fuling), C (Cuntan), and A (Daxigou). The correlation analysis showed the MC-LR concentration was positively correlated with chlorophyll-a concentration. This result suggests that MC concentration in water can be indirectly estimated by analyzing the chlorophyll-a concentration. Overall, the results of this study suggest that more importance should be placed on monitoring of MC contamination and water quality in the Three Gorges Reservoir to ensure drinking water safety and reduce the potential exposure of people to these health hazards.  相似文献   

13.
磁性分散固相萃取-气相色谱法测定水中氯苯类化合物   总被引:1,自引:0,他引:1  
采用磁性分散固相萃取技术富集水中氯苯类化合物,用气相色谱法测定,并对萃取剂的用量、萃取时间、解吸溶剂、氯化钠加入量等条件进行优化。试验表明,方法在0.001 mg/L~2.50 mg/L 范围内,氯苯类化合物各组分线性良好,方法检出限在0.600μg/L~5.00μg/L范围内。地表水实际水样的加标回收率为83.1%~93.4%,RSD为4.8%~7.3%。  相似文献   

14.
The adsorption of metals from aqueous solutions of Pb2+, Zn2+ and Mg2+ on naturally occurring pyrolusite have been studied. The chemical stability of the pyrolusite has been determined in NaOH, H2SO4, HNO3, HCl, NaCl and NK4Cl solutions of various concentrations. Adsorption of the metal ions followed the order Pb2+>Zn2+>Cd2+.The maximum adsorption of Pb2+ (100%) occurred at pH 7. the relation between the amount of Pb2+ adsorbed per unit weight of pyrolusite and the concentration of Pb2+ at equilibrium follows the Freundlich adsorption isotherm.The efficiency of pyrolusite has been demonstrated by removing lead from synthetic waste water. 100% and 96% removal of lead have been achieved from synthetic waste water containing 5 mg l–1 and 120 mg l–1 of Pb2+ respectively at pH 7. The results of these studies suggest that pyrolusite might provide an economical method for the removal of lead from industrial waste water.  相似文献   

15.
Three treatment media, used for the removal of arsenic from drinking water, were sequentially extracted using 10 mM MgCl2(pH 8), 10 mM NaH2PO4(pH 7) followed by 10 mM (NH4)2C2O4(pH 3). The media were extracted using an on-line automated continuous extraction system which allowed the arsenic in each of the extraction fluids to be speciated on-line using IC-ICP-MS. The 10 mM MgCl2 preferentially extracted As(III) from each of the media. The percentage of the arsenic extracted by the MgCl2, relative to a HNO3/H2O2 digestion of the media, ranged from 0.1-2.3% for the three solids. The next sequential extraction fluid, 10 mM NaH2PO4, extracted some of the residual As(III) remaining on each of the media but the predominant species extracted was As(V). The 10 mM NaH2PO4 extracted 15.3 to 42.8% of the total arsenic relative to a total digested concentration for each of the media. The As(III) and As(V) stability studies conducted in these two extraction fluids indicated that conversion between As(III) and As(V) was not significant for the short extraction fluid sample contact time associated with the on-line continuous flow extraction cell. Finally, the 10 mM (NH4)2C2O4 extraction fluid was utilized in an off-line analysis mode because the Fe and As concentrations extracted from the media were not compatible with direct ICP-MS detection. The (NH4)2C2O4 extracted 2.9-29% As(III) for all three media and caused an oxidation of As(III) to As(V) during the extraction period for one of the three media. The sum of the arsenic from each of the three extraction fluids represented 92%, 44% and 53% of the available total arsenic for the three media, respectively. The speciation results for each media were obtained by adding all the speciation results from all three extraction fluids together and the resulting distribution of As(III)/As(V) compared well with the speciation results obtained via XANES.  相似文献   

16.
Fumes from a group of gas metal arc welding (GMAW) processes used on stainless steel were generated using three different metal transfer modes and four different shield gases. The objective was to identify and measure manganese (Mn) species in the fumes, and identify processes that are minimal generators of Mn species. The robotic welding system was operated in short-circuit (SC) mode (Ar/CO2 and He/Ar), axial spray (AXS) mode (Ar/O2 and Ar/CO2), and pulsed axial-spray (PAXS) mode (Ar/O2). The fumes were analyzed for Mn by a sequential extraction process followed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis, and by X-ray diffraction (XRD). Total elemental Mn, iron (Fe), chromium (Cr) and nickel (Ni) were separately measured after aqua regia digestion and ICP-AES analysis. Soluble Mn2+, Fe2+, Fe3+, and Ni2+ in a simple biological buffer (phosphate-buffered saline) were determined at pH 7.2 and 5.0 after 2 h incubation at 37 C by ion chromatography. Results indicate that Mn was present in soluble form, acid-soluble form, and acid-soluble form after reduction by hydroxylamine, which represents soluble Mn0 and Mn2+ compounds, other Mn2+ compounds, and (Mn3+ and Mn4+) compounds, respectively. The dominant fraction was the acid-soluble Mn2+ fraction, but results varied with the process and shield gas. Soluble Mn mass percent in the fume ranged from 0.2 to 0.9%, acid-soluble Mn2+ compounds ranged from 2.6 to 9.3%, and acid plus reducing agent-soluble (Mn3+ and Mn4+) compounds ranged from 0.6 to 5.1%. Total Mn composition ranged from 7 to 15%. XRD results showed fumes had a crystalline content of 90-99% Fe3O4, and showed evidence of multiple Mn oxides, but overlaps and weak signals limited identification. Small amounts of the Mn2+ in the fume (<0.01 to ≈ 1% or <0.1 to ≈ 10 microg ml(-1)) and Ni2+ (<0.01 to ≈ 0.2% or <0.1 to ≈ 2 mg ml(-1)) ions were found in biological buffer media, but amounts were highly dependent on pH and the welding process. Mn generation rates for the fractions were tabulated, and the influence of ozone is discussed. The conclusions are that exposures to welding fumes include multiple Mn species, both soluble and insoluble, and that exposures to Mn species vary with specific processes and shield gases.  相似文献   

17.
建立了固相萃取-高效液相色谱法(SPE-HPLC)测定东湖水样中微囊藻毒素(MC)的方法,考察了不同流动相、淋洗液和洗脱液对MC-RR和MC-LR测定的影响。结果表明,MC-RR和MC-LR的方法检出限分别为0.0789μg/L和0.0234μg/L,其线性定量范围分别为0.1~10.0mg/L和0.06~10.0mg/L;样品测定回收率为78.4%~97.4%,RSD小于6.3%。该法灵敏度高,快速准确,用于实际水样测定的结果令人满意。  相似文献   

18.
A molecularly imprinted polymer (MIP) was prepared using chlorsulfuron (CS), a herbicide as a template molecule, methacrylic acid as a functional monomer, ethylene glycol dimethacrylate (EDMA) as a cross-linker, methanol and toluene as a porogen, and 2,2-azobisisobutyronitrile as an initiator. The binding behaviors of the template chlorsulfuron and its analog on MIP were evaluated by equilibrium adsorption experiments, which showed that the MIP particles had specific affinity for the template CS. Solid-phase extraction (SPE) with the chlorsulfuron molecularly imprinted polymer as an adsorbent was investigated. The optimum loading, washing, and eluting conditions for chlorsulfuron molecularly imprinted polymer solid-phase extraction (CS-MISPE) were established. The optimized CS-MISPE procedure was developed to enrich and clean up the chlorsulfuron residue in water, soils, and wheat plants. Concentrations of chlorsulfuron in the samples were analyzed by HPLC-UVD. The average recoveries of CS spiked standard at 0.05~0.2 mg L(-1) in water were 90.2~93.3%, with the relative standard deviation (RSD) being 2.0~3.9% (n=3). The average recoveries of 1.0 mL CS spiked standard at 0.1~0.5 mg L(-1) in 10 g soil were 91.1~94.7%, with the RSD being 3.1~5.6% (n=3). The average recoveries of 1.0 mL CS spiked standard at 0.1~0.5 mg L(-1) in 5 g wheat plant were 82.3~94.3%, with the RSD being 2.9~6.8% (n=3). Overall, our study provides a sensitive and cost-effective method for accurate determination of CS residues in water, soils, and plants.  相似文献   

19.
A new class of nano-scale Fe0 particles (NZVI) supported on a PAA/PVDF membrane (NZVI-PAA/PVDF) were synthesized and the feasibility of using NZVI-PAA/PVDF for reductive immobilization of Cr(VI) in water was investigated through laboratory batch tests. The results showed that the Cr(VI) removal capacity of NZVI-PAA/PVDF was 181 mg Cr/g Fe at an initial Cr(VI) concentration of 20 mg L(-1) under pH 6.5 +/- 0.1. XPS results showed that Cr(VI) was converted to nontoxic Cr(III). Interfering ions exerted various degrees of impact on NZVI-PAA/PVDF's Cr(VI) removal capacity. Specifically, Ca2+ alone showed the mildest impact while the presence of ions (Mg2+ and HCO3-) exerted the greatest impact. An advantage of NZVI-PAA/PVDF is that the nano-scale Fe0 and resultant particles were combined within a PAA/PVDF membrane, which prevents secondary pollution. Moreover, a piece of PAA/PVDF membrane (4.7 cm diameter) can still support 6.51 mg of nano-scale Fe0 particles after being renewed.  相似文献   

20.
The adsorption behavior of natural Jordanian zeolites with respect to Cd(2 + ), Cu(2 + ), Pb(2 + ), and Zn(2 + ) was studied in order to consider its application to purity metal finishing drinking and waste water samples under different conditions such as zeolite particle size, ionic strength and initial metal ion concentration. In the present work, a new method was developed to remove the heavy metal by using a glass column as the one that used in column chromatography and to make a comparative between the batch experiment and column experiment by using natural Jordanian zeolite as adsorbent and some heavy metals as adsorbate. The column method was used using different metal ions concentrations ranged from 5 to 20 mg/L with average particle size of zeolite ranged between 90 and 350 mum, and ionic strength ranged from 0.01 to 0.05. Atomic absorption spectrometry was used for analysis of these heavy metal ions, the results obtained in this study indicated that zeolitic tuff is an efficient ion exchanger for removing heavy metals, in particular the fine particle sizes of zeolite at pH 6, whereas, no clear effect of low ionic strength values is noticed on the removal process. Equilibrium modeling of the removal showed that the adsorption of Cd(2 + ), Cu(2 + ), Pb(2 + ), and Zn(2 + ) were fitted to Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich (DKR). The sorption energy E determined in the DKR equation (9.129, 10.000, 10.541, and 11.180 kJ/mol for Zn(2 + ), Cu(2 + ), Cd(2 + ) and Pb(2 + ) respectively) which revealed the nature of the ion-exchange mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号