首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photo-biodegradable polyethylene (PBD-PE) films containing starch have been developed and used in agriculture. They are better able to raise temperature, preserve moisture, and raise yield than common polyethylene films, and they can be degraded environmentally after finishing these functions. The photo-biodegradation induction periods of four kinds PBD-PE films range from 46 to 64 days, which basically satisfies the needs of agricultural cultivation. All PBD-PE films can be degraded to Stage V, in which almost no film exists on the surface of the ridges 2–3 months or so after the induction periods. The PBD-PE films buried in soil have also good degradability.  相似文献   

2.
The current paper is aimed at understanding the environmental fate of linear low density polyethylenes (LLDPE) films designed for mulching purposes and loaded with different pro-degradant additives. These were analyzed, upon exposure to natural sunlight for a period intended to mimick a general crop season in the mediterranean region. The selected samples underwent a relatively low extent of degradation as monitored by carbonyl index, molecular weight variation, extractability by solvent, changes in the onset of the decomposition temperature and crystallinity. The tendency to biodegradation of outdoor exposed LLDPE was then assessed under different environmental compartments including soil medium, aqueous medium as well as in axenic culture of white-rot fungus Phanerochaete chrysosporium. That fungus is known to be effective in the degradation of recalcitrant organic materials and plastic items. During the soil burial biodegradation test, lasted for 27?months, samples specimen were withdrawn at time intervals and characterized by means of structural and thermal analysis. These analytical assessments allowed to monitor any progress of oxidative degradation as a direct effect of the incubation in an active microbial environment. Analogous characterizations were carried out at the end of the biodegradation tests in aqueous medium and in P. chrysosporium axenic cultures. Data presented here are in keeping with the initial abiotic oxidation via a free radical chain reaction promoted by a pro-degradant additive acting on hydroperoxides and peroxide moieties present initially in the polymer bulk. This step was followed by a free radical cascade reactions leading to degradation once the oxidation started under relatively mild conditions (sunlight exposure). During the incubation step in soil, the abiotically degraded samples underwent significant variation in the level of oxidation and degradation with respect to the detected starting values. Indications were gained on the synergistic effect of a random fashion microbial metabolization coupled to biotically mediated oxidation of the original abiotically fragmented samples. Similar results were obtained in the biodegradation tests carried out in the aqueous media and in presence of P. chrysosporium axenic cultures. These evidences are suggesting the role of natural occurring microorganisms in promoting both partial oxiditation and degradation of LLDPE samples in combination with contextual mineralization process of the oxidized fragments.  相似文献   

3.
聚对苯二甲酸乙二醇酯废料的回收方法   总被引:6,自引:0,他引:6  
龚国华  朱瀛波 《化工环保》2004,24(3):199-201
介绍了聚对苯二甲酸乙二醇酯传统的化学回收方法:甲醇醇解法、水解法和醣酵解法;简述了聚酯新的回收工艺:伊斯曼乙二醇水解工艺、超临界水水解工艺和Reco-PET工艺,及有关国家聚酯回收的工业化实践,并对聚酯回收的前景及影响聚酯回收的因素进行了分析。  相似文献   

4.
The degradability of the compatible thermoplastic starch/polyethylene film was investigated by weight loss percent (WLP), Fourier Transform Infrared (FT-IR) Spectroscopy, and Scanning Electron Microscope (SEM). The compatible film was prepared by using the particles of thermoplastic starch/polyethylene blends that were produced by one-step reactive extrusion. The weight of the film after degradation reduced more than 3% for 30 days and 4% for 60 days. The FTIR results revealed that both starch and polyethylene in the film exhibited varying degrees of degradation. SEM photographs of the films after degradation showed that starch particles in the film disintegrated into smaller particles or separated out of the film surface. Degradation studies demonstrated that the compatible thermoplastic starch/polyethylene film had increased degradability at the given degradable environment. The information implies that this film could be utilized as a degradable plastic.  相似文献   

5.
Thermocatalytic degradation of high density polyethylene (HDPE) was carried out using acid activated fire clay catalyst in a semi batch reactor. Thermal pyrolysis was performed in the temperature range of 420–500 °C. The liquid and gaseous yields were increased with increase in temperature. The liquid yield was obtained 30.1 wt% with thermal pyrolysis at temperature of 450 °C, which increased to 41.4 wt% with catalytic pyrolysis using acid activated fire clay catalyst at 10 wt% of catalyst loading. The composition of liquid products obtained by thermal and catalytic pyrolysis was analyzed by gas chromatography-mass spectrometry and compounds identified for catalytic pyrolysis were mainly paraffins and olefins with carbon number range of C6–C18. The boiling point was found in the range of commercial fuels (gasoline, diesel) and the calorific value was calculated to be 42 MJ/kg.  相似文献   

6.
The thermal LDPE degradation mechanism harnessing a high-pressure autoclave surrounded by a furnace was investigated in this work. Rates of formation of gas, liquid, and solid during degradation of PE plastic wastes in cyclohexane as solvent at 400 and 425°C have been experimentally determined. Four reaction mechanisms have been proposed and tested to estimates of gas, liquid, and solid. Proposed mechanisms are based on the assumption that the reactions are pseudo-first-order with respect to the reacting species. Pseudo-first-order rate constants for each of the indicated mechanistic steps have been calculated by nonlinear regression analysis. The best fit was obtained by model 2 (pure parallel reaction mechanism), and its activation energy was determined.  相似文献   

7.
Degradation of Polyethylene and Nylon-66 by the Laccase-Mediator System   总被引:2,自引:0,他引:2  
We investigated whether the laccase-mediator system (LMS) with 1-hydroxybenzotriazole (HBT) as a mediator could degrade high-molecular-weight polyethylene and nylon-66 membranes. The LMS markedly reduced the elongation and tensile strength of these membranes. After 3 days of treatment with the LMS, the Mw of polyethylene decreased from 242,000 to 28,300, and that of nylon-66 from 79,300 to 14,700. The LMS also decreased the polydispersity (Mw/Mn) of polyethylene and nylon-66. Furthermore, these reductions in elongation, tensile strength, and molecular weight were accompanied by morphological disintegration of the polyethylene and nylon-66 membranes. These results strongly suggest that the LMS with HBT can effectively degrade polyethylene and nylon-66.  相似文献   

8.
Manufacturing composites with polymers and natural fibers has traditionally been performed using chopped fibers or a non-woven mat for reinforcement. Fibers from flax (Linum usitatissimum L.) are stiff and strong and can be processed into a yarn and then manufactured into a fabric for composite formation. Fabric directly impacts the composite because it contains various fiber types via fiber or yarn blending, fiber length is often longer due to requirements in yarn formation, and it controls the fiber alignment via weaving. Composites created with cotton and flax-containing commercial fabrics and recycled high-density polyethylene (HDPE) were evaluated for physical and mechanical properties. Flax fiber/recycled HDPE composites were easily prepared through compression molding using a textile preform. This method takes advantage of maintaining cotton and flax fiber lengths that are formed into a yarn (a continuous package of short fibers) and oriented in a bidirectional woven fabric. Fabrics were treated with maleic anhydride, silane, enzyme, or adding maleic anhydride grafted polyethylene (MAA-PE; MDEX 102-1, Exxelor® VA 1840) to promote interactions between polymer and fibers. Straight and strong flax fibers present problems because they are not bound as tightly within yarns producing weaker and less elastic yarns that contain larger diameter variations. As the blend percentage and mass of flax fibers increases the fabric strength, and elongation generally decrease in value. Compared to recycled HDPE, mechanical properties of composite materials (containing biodegradable and renewable resources) demonstrated significant increases in tensile strength (1.4–3.2 times stronger) and modulus of elasticity (1.4–2.3 times larger). Additional research is needed to improve composite binding characteristics by allowing the stronger flax fibers in fabric to carry the composites load.  相似文献   

9.
用废聚对苯二甲酸乙二醇酯制备对苯型不饱和聚酯树脂   总被引:1,自引:1,他引:0  
席国喜  孙晨 《化工环保》2004,24(6):452-454
用废聚对苯二甲酸乙二醇酯(PET)制备对苯型不饱和聚酯树脂。考察了醇解时间对醇解产物、聚合温度对反应产物的影响。该方法的主要工艺参数为:废PET:PG(摩尔比)等于1:1.5,废PET:MA(摩尔比)等于1:1,醇解温度190~200℃,醇解时间3.5~4h,聚合温度190~210℃,聚合反应时间1.5~2h。试验所得对苯型不饱和聚酯树脂产品的性能符合企业通用型不饱和聚酯树脂的标准。  相似文献   

10.
The rate and extent of deterioration of starch-plastic composites were determined over a 2-year period for samples buried in a municipal solid waste landfill. The deterioration of the starch-plastic composites following exposure was determined by measuring changes in tensile properties, weight loss, and starch content of samples retrieved from the landfill. Elongation decreases of 92 and 44% were measured for starch-plastic composite LDPE and LLDPE films, respectively, while elongation decreases of 54 and 21% were measured for their corresponding control films following 2 years of burial. Starch loss of 25% for LLDPE and 33% for LDPE starch-plastic composite films was measured following 2 years of landfill burial. Starch-plastic composites did not fragment or lose mass during the 2-year landfill burial. The limited degradation observed for the starch-plastic composites was attributed to the ineffectiveness of the prooxidant additive to catalyze the thermal oxidation of the polyethylene or polypropylene component of the starch-plastic composite under the environmental conditions present within the landfill.  相似文献   

11.
Degradation of a model polymer mixture (PVC/PS/PE) and a waste polymer mixture in the presence of HCl fixators (Red Mud, precipitated CaCO3 and dolamite) was studied using thermal gravimetric analysis (TGA) and a cycled-spheres-reactor. The experiments in cycled-spheres reactor model were performed by stepwise pyrolysis. Liquid products and HCl from each step were collected separately. For the model polymer mixture, the precipitated CaCO3 showed the best effect on the fixation of evolved HCl and the reduction of chlorine content in the liquid products whereas RM yielded the best result for the waste polymer mixture. In addition, using HCl fixator also affected the degradation of both types of polymer mixture, leading to the formation of more gaseous and less residue.  相似文献   

12.
Linear low-density polyethylene films were prepared that contained native corn starch (7, 14, or 28%), low or high molecular weight oxidized polyethylene (15%), and a prooxidant mixture (18% POLYCLEAN II) that contains manganese and vegetable oil. For each mixture all components were first mixed at high temperatures in a twin-screw extruder and pelletized. The pellets were cast into films using a single-screw extruder. Oxidized-polyethylene addition did not impair the transparency and thickness of the films and did not reduce the percentage elongation, whereas significant reductions in film mechanical properties were observed. Thermal and photodegradation properties of each film were evaluated by 70°C forced-air oven treatment (20 days), by high-temperature, high-humidity treatment in a steam chamber (20 days), and by exposure to ultraviolet light (365 nm; 4 weeks). Changes in the mechanical properties of the films were determined by an Instron Universal Test Machine; in the carbonyl index, Fourier transform infrared spectroscopy; and in molecular weight, by high-temperature gel-permeation chromatography (HT-GPC). The addition of oxidized polyethylene, especially high molecular weight oxidized polyethylene, and up to 14% starch to the films significantly increased the rate of thermal and photodegradation.Journal Paper No. J-15363 of the Iowa Agriculture and Home Economics Experiment Station, Ames. Project No. 0178 and 2889.  相似文献   

13.
Linear low-density polyethylene (LLDPE) was blended with low-density polyethylene (LDPE) at a fixed ratio (80 wt LLDPE and 20 wt %LDPE) and filled with nanoparticles of SiO2 and TiO2 at a ratio up to wt 5%, so as to develop the polymeric composites suitable to preparing the agricultural micro-irrigation pipes having good environmental adaptability. These compounds were blended using calcium stearate, polyethylene wax, and titanate coupling agent as the auxiliary dispersants, and ethylene-vinyl acetate copolymer (EVA) as the toughness improver. The LLDPE/LDPE composites filled with the nanoparticles were extruded and injected to prepare the composites specimens for the performance evaluations and micro-irrigation pipe field test. The mechanical properties, thermostability, and processibility of the injected composites were investigated. The effect of heating in an oven and irradiating by ultraviolet on the mechanical properties of the composites was explored. The environmental adaptability of the micro-irrigation pipes made of the filled LLDPE/LDPE composites was evaluated making use of long-term outdoor field test in northwest China where the arid and harsh natural conditions are of great concerns. It was found that the LLDPE/LDPE blend with the LLDPE mass fraction fixed as 80% showed balanced mechanical and thermal properties and flexibility, and was suitable to be used as the basic resin matrix. The incorporation of nano-TiO2 contributed to effectively improving the resistance to heating and ultraviolet irradiation of the composites. The composite made from 91% basic resin matrix, 6% EVA, and 3% mixed nano-SiO2 and TiO2, showed balanced comprehensive properties. The micro-irrigation pipes made of this filled LLDPE/LDPE composite had good environmental adaptability and service behavior in a three-year field test and were suitable to be used in arid area.  相似文献   

14.
Poly(vinyl alcohol) (PVA) and polyethylene (PE) were blended with a soil for cultivation, and their effects were investigated on the growth behavior of red pepper and tomato by examining the stems, the leaves, and the roots. PVA retarded the growth of red pepper significantly even at a concentration as low as 0.05%. The roots were depauperated more than the stems and the leaves. Tomato was also affected by PVA but to a lesser extent than red pepper. In contrast, the presence of both round pieces (10 mm diameter) of PE film and powdery PE influenced negligibly the growth of red pepper as well as that of tomato up to 35 wt% in soil.  相似文献   

15.
Eleven effective low-density polyethylene (LDPE)-degrading bacterial strains were isolated and identified from landfill soil containing large amounts of plastic materials. The isolates belonged to 8 genera, and included Pseudomonas (areroginosa and putida), Sphingobacterium (moltivorum), Delftia (tsuruhatansis), Stentrophomonas (humi and maltophilia), Ochrobacterum (oryzeae and humi), Micrococcus (luteus), Acinetobacter (pitti), and Citrobacter (amalonaticus). Abiotic degradation of LDPE films by artificial and natural ultraviolet (UV)-exposure was analyzed by FT-IR spectroscopy. LDPE films treated with UV-radiation were also inoculated with the isolates and biofilm production and LDPE degradation were measured. Surface changes to the LDPE induced by bacterial biofilm formation were visualized by Scanning Electron Microscopy. The most active bacterial isolate, IRN19, was able to degrade polyethylene film by 26.8?±?3.04% gravimetric weight over 4 weeks. Analysis of 16S rRNA sequence of this isolate revealed 96.97% similarity in sequence to Acinetobacter pitti, which has not previously been identified as a polyethylene-degrading bacterium. Also, most the effective biofilm forming isolate, IRN11, displayed the highest cell mass production (6.29?±?0.06 log cfu/cm2) after growth on LDPE films, showed 98.74% similarity to Sphingobacterium moltivourum.  相似文献   

16.
The molecular weight changes in abiotically and biotically degraded LDPE and LDPE modified with starch and/or prooxidant were compared with the formation of degradation products. The samples were thermooxidized for 6 days at 100°C to initiate degradation and then either inoculated with Arthobacter paraffineus or kept sterile. After 3.5 years homologous series of mono- and dicarboxylic acids and ketoacids were identified by GC-MS in abiotic samples, while complete disappearance of these acids was observed in biotic environments. The molecular weights of the biotically aged samples were slightly higher than the molecular weights of the corresponding abiotically aged samples, which is exemplified by the increase in from 5200 g/mol for a sterile sample with the highest amount of prooxidant to 6000 g/mol for the corresponding biodegraded sample. The higher molecular weight in the biotic environment is explained by the assimilation of carboxylic acids and low molecular weight polyethylene chains by microorganisms. Assimilation of the low molecular weight products is further confirmed by the absence of carboxylic acids in the biotic samples. Fewer carbonyls and more double bonds were seen by FTIR in the biodegraded samples, which is in agreement with the biodegradation mechanism of polyethylene.  相似文献   

17.
Carrageenan-based films demonstrate good performance, the raw materials for their production are abundant in nature and can be sustainably sourced from seaweeds. Similar to other naturally-derived biopolymers, however, carrageenans are relatively expensive to purify and form into useful materials. In order to potentially lower the production costs compared to pure carrageenan, semi-refined carrageenan (SRC) plasticized with 0–50% (w/w) glycerol was investigated using a solution casting method. The film color and opacity increased along with the moisture content, whereas the water vapor permeability decreased with increasing levels of glycerol. The tensile properties of the SRC films improved significantly, particularly at glycerol additions greater than 30% (w/w). Moreover, the addition of glycerol improved the thermal stability and altered the surface morphology of the films. In general, the properties of the SRC films were comparable with refined carrageenan films suggesting that SRC has potential to be furthered developed into more cost effective primary food packaging materials.  相似文献   

18.
王爽  许国根  贾瑛  王坤 《化工环保》2018,38(6):657-662
以海藻酸钠(SA)、聚乙二醇(PEG)、氧化石墨烯(GO)和零价铁(ZVI)为原料制备了氧化石墨烯-零价铁-聚乙二醇-海藻酸钠凝胶球(GZPS),用于活化过硫酸盐(PDS)降解水中的偏二甲肼(UDMH)。对GZPS进行了表征,并优化了GZPS的制备工艺。实验结果表明:对UDMH去除率影响因素的主次顺序为:w(PEG) w(SA)w(GO)w(ZVI);GZPS的最佳制备工艺为SA、PEG、GO、ZVI的质量分数分别为5%,3%,0.3%,2%;在UDMH质量浓度为100mg/L、PDS加入量为4mmol/L、GZPS加入量为60g/L、反应温度为35℃、反应时间为80 min的条件下,UDMH的去除率达85%以上。GZPS活化PDS降解UDMH的反应符合准一级动力学,Fe溶出量仅为Fe-GO-PDS体系的12.7%,重复使用4次后对UDMH的去除率仍在65%以上。  相似文献   

19.
Mining activity in SE of Spain, in the west Mediterranean coast, originated more than two millenniums ago. It has generated huge areas affected by heavy metals contamination, especially of lead, which is possibly one of the most important. Investigations related to the selection of autochthonous plant taxa from a typical Spanish Mediterranean area, useful for phytoextraction and phytostabilization purposes in these polluted areas are shown. Under these edaphoclimatic conditions 12 interesting species were considered, from them six taxa were chosen for further studies. Some plant species have been proposed either for phytoextraction or phytostabilization purposes. Recommendations for further research have been discussed.  相似文献   

20.
Different bacterial strains able to attack polyoxyethylene-type nonionic surfactants were isolated by enrichment procedure from the surface waters of the Arno River. Alkylphenol polyethoxylates and alkyl polyethoxylates, as well as polyethylene glycols, were degraded and assimilated by bacterial strains in axenic cultures. Degradative routes of polyethyleneoxide chains were investigated by matching each bacterial isolate with several types of nonionic surfactants and polyethers and by the identification of their degradation products isolated during aerobic digestion experiments. In accordance with previous reports, the first attack led to the shortening of the poly(oxyethylene) chains of the nonionic surfactants. It was found that the strains able to degrade PEG segments of nonionic surfactants possess enzymatic systems unable to degrade free PEGs, whereas those degrading the latter substrates cannot degrade PEG segments coupled to hydrophobic moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号