首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Reef habitats of the tropical Atlantic are separated by river outflows and oceanic expanses that may preclude larval dispersal or other population connections in shorefishes. To examine the impact of these habitat discontinuities on the intraspecific phylogeography of reef-associated species we conducted range-wide surveys of two amphi-Atlantic reef fishes that have dispersive pelagic larval stages. Based on 593 bp of mtDNA cytochrome b from the rock hind Epinephelus adscensionis and 682 bp from the greater soapfish Rypticus saponaceous (n=109 and 86, respectively), we found evidence of relatively ancient separations as well as recent surmounting of biogeographic barriers by dispersal or colonization. Rock hind showed slight but significant population genetic differentiation across much of the tropical Atlantic Ocean (ST=0.056), but deep divergence between the southeastern United States and seven other localities from the Bahamas to the south, central and east Atlantic (mean pairwise d=0.040, overall ST=0.867). The geographic distribution of the two rock hind lineages is highly unusual in genetic studies of Caribbean Sea reef fishes, because those lineages are separated by less than 250 km of open water within a major biogeographic region. In contrast, highly significant population genetic structure was observed among greater soapfish from the SW Caribbean, Brazil, and mid-Atlantic ridge (ST=0.372), with a deep evolutionary separation distinguishing putative R. saponaceous from West Africa (mean pairwise d=0.044, overall ST=0.929). Both species show evidence for a potential connection between the Caribbean and Brazilian provinces. While widespread haplotype sharing in rock hind indicates that larvae of this species cross oceanic expanses of as much as 2000 km, such a situation is difficult to reconcile with the isolation of populations in Florida and the Bahamas separated by only 250 km. These findings indicate that populations of some species in disjunct biogeographic zones may be isolated for long periods, perhaps sufficient for allopatric speciation, but rare gene flow between zones may preclude such evolutionary divergence in other species.Communicated by P.W. Sammarco, Chauvin  相似文献   

2.
Sporophytes of the brown algaLaminaria saccharina (L.) Lamour grown at 15°C contained significantly more chlorophylla (chla) than did similar plants grown at 5°C. The increase in chla in 15°C plants was due to increased numbers of photosystem II reaction centes, and possibly to increased photosynthetic unit size, compared with 5°C plants. These changes were associated with increased values (photosynthetic efficiencies) in 15°C-grownL. saccharina relative to 5°C-grown plants. The changes in together with reduced respiration rates allowed 15°C-grownL. saccharina to achieve net photosynthesis and light-saturated photosynthesis at a lower photon fluence rate (PFR) than 5°C plants when both groups were assayed at the same temperature (15°C). The photon fluence rates necessary to reach the compensation point and achieve light-saturated photosynthesis (I c andI k , respectively) increased with increasing incubation temperature inL. saccharina grown at both 5 and 15°C. However, acclimation responses to growth temperature compensated for the short-term effect of temperature onI c andI k . Consequently, plants grown at 5 and 15°C were able to achieve similar rates of light-limited photosynthesis, and similarI c andI k values at their respective growth temperatures. These responses are undoubtedly important for perennial seaweeds such asL. saccharina, which frequently grow in light-limited habitats and experience pronounced seasonal changes in water temperature.Please address all correspondence and requests for reprints to I.R. Davison  相似文献   

3.
We investigated heterogeneity of light acclimation of photosynthesis in sun- and shade-adapted coenosarc and polyp tissues of Pocillopora damicornis. The zooxanthellar community within P. damicornis colonies at Heron Island is genetically uniform, yet they showed a large degree of plasticity in their photo-physiological acclimation linked to light microclimates characterised by fibre-optic microprobes. Microscale scalar irradiance measurements showed higher absorption in polyp than coenosarc tissues and higher absorption in the more densely pigmented shade-adapted polyps than in sun-adapted polyps. The combination of an O2 microelectrode with a fibre-optic microprobe (combined sensor diameter 50–100 μm) enabled parallel measurements of O2 concentration, gross photosynthesis rate and photosystem II (PSII) quantum yield at the coral surface under steady-state conditions as a function of increasing irradiances. Lower O2 levels at the tissue surface and higher compensation irradiance indicated a higher respiration activity in sun-adapted polyp tissue as compared to shade-adapted polyps. Shade-adapted coenosarc and polyp tissues exhibited lower maxima of relative electron transport rates (rETRmax) (84±15 and 41±10, respectively) than sun-adapted coenosarc and polyp tissues (136±14 and 77±13, respectively). Shade-adapted tissues showed stronger decrease of rETR at high scalar irradiances as compared to sun-adapted tissues. The relationship between the relative PSII electron transport and the rate of gross photosynthesis, as well as O2 concentration, was non-linear in sun-adapted tissues over the entire irradiance range, whereas for shade-adapted tissues the relationship became non-linear at medium to high scalar irradiances >200 μmol photons m−2 s−1. This suggests that rETR measurements should be used with caution in corals as a proxy for photosynthesis rates. The apparently high rates of photosynthesis (oxygen evolution rates) suggest that there must be a considerable electron transport rate through the photosystems that is not observed by the rETR measurements. This may be accounted for by vertical heterogeneity of zooxanthellae in the tissue and the operation of an alternative electron pathway such as cyclic electron flow around PSII.  相似文献   

4.
Codium fragile ssp. tomentosoides from Caribou Harbour, an estuarine site in the southern Gulf of St. Lawrence, was extremely tolerant to stresses from desiccation and reduced salinity. Photosynthetic responses of both rhizomatous and erect growth forms were measured using pulse amplitude modulation (PAM) fluorometry of chlorophyll a fluorescence to determine effective quantum yield (ΦPSII) and relative electron transport rate (rETR). After 5 h of desiccation, thalli lost 20% of their mass, but still showed high levels of ΦPSII. Thalli survived for at least 6 h in freshwater, and showed virtually complete recovery of photosynthetic capacity within a few hours of return to full seawater. Immersion in 8 psu showed virtually complete recovery until the 24 h treatment period. Combining desiccation and salinity stresses produced a synergistic effect, but plants still showed strong recovery even after 86% dehydration and reimmersion in 16 psu. These results suggest that the photosynthetic physiology of Codium fragile is highly adapted to growth in estuarine conditions.  相似文献   

5.
Adult Acartia congeners, A. bifilosa, A. clausi, A. discaudata and A. tonsa, have distinct seasonal and spatial distribution patterns in Southampton Water (UK), reflecting patterns of temperature and salinity, respectively. The effect of these factors on other life stages, hatch success and naupliar survival was investigated by exposing the congeners to a range of salinity (15.5–33.3) and of temperature (5–20°C). A. clausi is known to prefer more saline waters, and showed highest hatch success at 33.3 salinity. A. tonsa is most tolerant to dilution, and at 15.5 salinity it had the highest hatch success of all the congeners. Hatch success in both A. bifilosa and A. discaudata was similar over the range of salinities investigated, confirming that they are intermediate species in terms of spatial distribution. The nauplii of all species survived well at the higher salinities and best at 33.3, which allows for differential transport of the poorly swimming nauplii to the mouth of the estuary until size and swimming ability increase, after which they can then return to regions of preferred salinity. The summer species, A. clausi and A. tonsa showed higher hatch success at 20°C, whereas A. discaudata, which is present in the water column all year round, showed no significant temperature-related differences in hatch success. A. bifilosa, which diapauses over summer, showed significantly higher hatch success at 10°C than at 20°C. The physiological relationship between temperature and development time was clear; naupliar survival of all species was highest at 20°C and all congeners reached the first copepodite stage (CI) significantly faster at 20°C. However, no consistent pattern was seen for salinity. It would appear that the adult Acartidae in Southampton Water remain in regions of their preferred salinity and lay eggs there which hatch well. However, because the nauplii are not good swimmers, they are swept towards the mouth of the estuary and into areas of higher salinity, where they remain and develop into more advanced stages before moving back up the estuary to take up their adult distribution pattern.Communicated by J.P. Thorpe, Port Erin  相似文献   

6.
Genetic population structure of the blacktip shark, Carcharhinus limbatus, a commercially and recreationally important species in the southeast U.S. shark fishery, was investigated using mitochondrial DNA control region sequences. Neonate blacktip sharks were sampled from three nurseries, Pine Island Sound, Terra Ceia Bay, and Yankeetown, along the Gulf of Mexico coast of Florida (Gulf) and one nursery, Bulls Bay, on the Atlantic Ocean coast of South Carolina (Atlantic). Sequencing of the complete mitochondrial control region of 169 neonates revealed 10 polymorphic sites and 13 haplotypes. Overall haplotype diversity and percent nucleotide diversity were 0.710 and 0.106%, respectively. Haplotype frequencies were compared among nurseries to determine if the high mobility and seasonal migrations of adult blacktip sharks have maintained genetic homogeneity among nurseries in the Atlantic and Gulf. Chi-square analysis and AMOVA did not detect significant structuring of haplotypes among the three Gulf nurseries, P(2)=0.294, ST=–0.005 to –0.002. All pairwise AMOVA between Gulf nurseries and the Atlantic nursery detected significant partitioning of haplotypes between the Gulf and Atlantic (ST=0.087–0.129, P<0.008), as did comparison between grouped Florida Gulf nurseries and the Atlantic, CT=0.090, P<0.001. Based upon the dispersal abilities and seasonal migrations of blacktip sharks, these results support the presence of philopatry for nursery areas among female blacktip sharks. Our data also support the treatment of Atlantic and Gulf blacktip shark nursery areas as separate management units.Communicated by P.W.Sammarco, Chauvin  相似文献   

7.
Summary The carabid beetle Notiophilus biguttatus hunts springtails and mites by visual cues. The preycapture behaviour of the beetle and the escape behaviour of the springtails were analysed by means of highspeed films. N. biguttatus has between 900 and 1250 ommatidia in each compound eye. The visual space covers ca. 200° in the horizontal plane, with a binocular overlap of no more than 74°. The fovea, the part of the eye where the pseudopupil is largest, points straight ahead of a beetle in its normal posture.The structure of the visual space was determined from measurements of the optical axes in the horizontal plane (plane of fixation) over the middle of the eye. Because of the slanted position of the ommatidia under the cornea, the optical axes point more towards the front or the back of the animal than do the anatomical axes.The optical axes were used to construct the binocular visual space in the horizontal plane. The point E , to which an estimation of distance is possible, lies on the midline 42.6 mm away from the front edges of the eyes. Resolution rapidly decreases with increasing distance, particularly depth resolution.At a distance corresponding to that from which the beetle attacks its prey, depth and width resolution correspond roughly to the dimensions of the smallest prey animals. The smallest measured directional corrections made by the beetle prior to attack (2°–3°) correspond approximately to the divergence angles in the fovea ( h=2.2°), and the smallest measured distance correction prior to attack (0.2 mm) corresponds approximately to the depth resolution at attack distance.Supported by the Deutsche Forschungsgemeinschaft (SFB 4)  相似文献   

8.
Sand shrimp, Crangon septemspinosa Say, are important to the trophic dynamics of coastal systems in the northwestern Atlantic. To evaluate predatory impacts of sand shrimp, daily energy requirements (J ind.–1 day–1) were calculated for this species from laboratory estimates of energy losses due to routine (RR), active (RA), and feeding (RSDA) oxygen consumption rates (J ind.–1 h–1), coupled with measurements of diel motile activity. Shrimp used in this study were collected biweekly from the Niantic River, Connecticut (41°33N; 72°19W) during late spring and summer of 2000 and 2001. The rates of shrimp energy loss due to RR and RA increased exponentially with increasing temperature, with the magnitude of increase greater between 6°C and 10°C (Q10=3.01) than between 10°C and 14°C (Q10=2.85). Rates of RR doubled with a twofold increase in shrimp mass, and RSDA was 0.130 J h–1+RR, irrespective of shrimp body size. Shrimp motile activity was significantly greater during dark periods relative to light periods, indicating nocturnal behavior. Nocturnal activity also increased significantly at higher temperatures, and at 20°C shifted from a unimodal to a bimodal pattern. Laboratory estimates of daily metabolic expenditures (1.7–307.4 J ind.–1 day–1 for 0.05 and 1.5 g wet weight shrimp, respectively, between 0°C and 20°C) were combined with results from previous investigations to construct a bioenergetic model and make inferences regarding the trophic positioning of C. septemspinosa. Bioenergetic model estimates indicated that juvenile and adult shrimp could meet daily energy demands via opportunistic omnivory, selectively preying upon items of high energy content (e.g. invertebrate and fish tissue) and compensating for limited prey availability by ingesting readily accessible lower energy food (e.g. detritus and plant material).Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by J.P. Grassle, New Brunswick  相似文献   

9.
Protein, lipid, phosphorus, and organic carbon contents, as well as electron transport system (ETS) activity, lactatedehydrogenase activity, and gut evacuation rate, were measured in four interzonal species of Pacific copepods:Calanus australis, C. pacificus, Eucalanus inermis, andE. elongatus f.hyalinus, collected at the upwelling areas off Peru (8°S) and California (27°N), and in the middle of the North Pacific (30°N), from February to April 1987. The two Eucalanidae species —E. inermis andE. elongatus — have distinctive biochemical and elemental body composition and rates of main physiological processes. Relative protein, lipid, phosphorus, and organic carbon contents (µg mg–1 wet weight) in these species were, respectively, ca. 1/7 to 1/10, 1/5 to 1/20, 1/5 to 1/10, and 1/5 those inCalanus spp. Likewise, oxygen uptake rate per unit of wet weight (based on ETS activity) inE. inermis andE. elongatus was 5 to 10% of that in calanids; a similar difference was found in phosphorus excretion rate. In addition, gut evacuation rates inE. inermis andE. elongatus were ca. one-fifth of those inCalanus spp. Based on these data, we considered the eucalanids as belonging to a distinctive physiological group, figuratively named jelly-body copepods. In contrast with calanids, active lactatedehydrogenase has been found in the bodies ofE. inermis andE. elongatus, apparently allowing them to survive for a long time in layers of extremely low oxygen content (<0.2 ml l–1). The adaptive value of physiological features in these eucalanids and typical calanids is compared.  相似文献   

10.
J. Stimson 《Marine Biology》1990,106(2):211-218
A mutualism exists between the xanthid crabs of the genusTrapezia and their host corals,Pocillopora damicornis. It has previously been established that these obligate coral residents benefit the coral hosts by defending them against echinoderm predators and by increasing the survival of polyps located deep between the coral branches. In turn, the corals apparently benefit the crabs by producing lipid-filled structures on which the trapezid crabs feed; these fat bodies may contain some of the lipid which in previous studies of coral metabolism has been termed excess. It was determined by experiments conducted at the Hawaii Institute of Marine Biology that the presence of crabs in colonies ofP. damicornis stimulates the polyps to produce the lipid-filled fat bodies; removal of crabs causes corals to cease producing fat bodies. A structure very similar to the fat bodies ofP. damicornis has been reported inAcropora durvillei. Both of these coral genera ordinarily possess xanthid-crab mutualists. This association between branching corals and crustaceans may have evolved because corals of these genera provide shelter among their branches and because these shallow-water corals are evidently capable of releasing lipid which is excess to the corals' metabolic needs, but which can be utilized by the crabs.  相似文献   

11.
The European seabass is an active euryhaline teleost that migrates and forages in waters of widely differing salinities. Oxygen uptake (MO2) was measured in seabass (average mass and forklength 510 g and 34 cm, respectively) during exercise at incremental swimming speeds in a tunnel respirometer in seawater (SW) at a salinity of 30 and temperature of 14°C, and their maximal sustainable (critical) swimming speed (Ucrit) determined. Cardiac output (Q) was measured via an ultrasound flow probe on their ventral aorta. The fish were then exposed to acute reductions in water salinity, to either SW (control), 10, 5, or freshwater (FW, 0), and their exercise and cardiac performance measured again, 18 h later. Seabass were also acclimated to FW for 3 weeks, and then their exercise performance measured before and at 18 h after acute exposure to SW at 30. In SW, seabass exhibited an exponential increase in MO2 and Q with increasing swimming speed, to a maximum MO2 of 339±17 mg kg–1 h–1 and maximum Q of 52.0±1.9 ml min–1 kg–1 (mean±1 SEM; n=19). Both MO2 and Q exhibited signs of a plateau as the fish approached a Ucrit of 2.25±0.08 bodylengths s–1. Increases in Q during exercise were almost exclusively due to increased heart rate rather than ventricular stroke volume. There were no significant effects of the changes in salinity upon MO2 during exercise, Ucrit or cardiac performance. This was linked to an exceptional capacity to maintain plasma osmolality and tissue water content unchanged following all salinity challenges. This extraordinary adaptation would allow the seabass to maintain skeletal and cardiac muscle function while migrating through waters of widely differing salinities.Communicated by S.A. Poulet, Roscoff  相似文献   

12.
Previous feeding studies on herbivorous marine snails rarely have focused on temperature effects on food intake. If temperature affects food intake, ectothermic snails may experience difficulty obtaining sufficient nutritional resources, limiting their ability to sustain populations at suboptimal temperatures. We hypothesized that the feeding responses of Tegula species would correspond with temperatures characteristic of their geographic distributions. We determined activity, consumption rates, and gut passage times at 11°C, 15°C, 19°C, and 23°C for three Tegula species with distinct thermal distributions: T. brunnea (cold water), T. aureotincta (warm water), and individuals from warm- and cold-water populations of T. funebralis, a broadly distributed species. Activity and consumption rates of T. aureotincta increased with increasing temperature, but were highest for T. brunnea at 19°C, a temperature rarely achieved in habitats occupied by this species, and lowest at 11°C. Warm-water T. funebralis showed significantly lower activity and consumption rates at 11°C, whereas cold-water T. funebralis consumed food fastest at 15°C and were most active at 23°C. Temperature affected gut passage time only in T. aureotincta. These data suggest that temperature might influence the northern limit of T. aureotincta by affecting activity and food consumption rates. T. brunneas activity and ability to consume food were not hindered by warmer temperatures despite the present day restriction of this species to colder waters. Also, widely separated (>300 km) T. funebralis populations may be adapted to regional conditions based on the different temperature responses of northern and southern snails.Communicated by P.W. Sammarco, Chauvin  相似文献   

13.
Intertidal organisms exposed to thermal stress normally experience other stresses simultaneously, but how these combined stresses modify tolerance to heat, especially for embryos, is poorly understood. Tolerance of fucoid algal embryos to heat, with and without acclimation to a sublethal temperature and with simultaneous exposure to hypersaline media, was examined. Embryos of Fucus vesiculosus L. (mid-intertidal zone) were less tolerant than embryos of Fucus spiralis L. (upper intertidal zone); without acclimation and with a growth temperature of 14°C, about half of the embryos survived 3 h exposure to 33°C in F. vesiculosus and of 35°C in F. spiralis. Conditions experienced by parental thalli (4°C versus 14°C storage) significantly affected the heat tolerance of embryos grown for 24 h post-fertilization at 14°C in F. vesiculosus, a result that is important for biologists using fucoid algae as model systems. Acclimation to a sublethal temperature (29°C) or exposure to the LT50 (33°C, F. vesiculosus; 35°C, F. spiralis) in 100 psu seawater (2850 mmol kg–1 osmolality) resulted in 30–50% higher levels of embryonic survival. Higher levels of HSP60s were found in embryos exposed to 29–33°C than to 14°C; lower levels of HSP60s were present in embryos exposed to the LT50 under hypersaline conditions than in normal seawater. Contemporaneous studies in 1995–1996 of substratum temperature and desiccation levels were made at Schoodic Point, Maine (USA) underneath F. spiralis and F. vesiculosus canopies and in Semibalanus balanoides patches. This study extends the bioindicator utility of heat-shock proteins in studies of intertidal organisms and demonstrates the importance of integrated stress responses in survival of a single stress factor (e.g. temperature).Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

14.
Metabolic rates of the ctenophore Beroe ovata within the length range from 0.4 mm (newly hatched larvae) to 60 mm were investigated. At 20° the respiration rates (Q, µg O2 ind.–1 h–1) of individuals with wet weights (W, mg) less than or greater than 100 mg changed according to the equations Q=0.093W0.62 and Q=0.016W0.99, respectively. The weight-specific respiration rate of the juvenile ctenophores with wet body weights of 0.021–100 mg diminished approximately 20-fold (from 0.35 to 0.017 µg O2 mg–1 h–1, respectively), but did not change within the range from 100 to 30,000 mg. The difference in the slope of the regression lines seems to be attributable to the ontogenetic changes in B. ovata metabolism. For the tested temperature range of 10–28°, the mean Q10 coefficient was equal to 2.17±0.5. The basal metabolism of B. ovata narcotised by chloral hydrate was 4.5±0.9 times lower than total metabolism. Such a metabolic range is considered to be characteristic of aquatic invertebrates with high levels of locomotory activity.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

15.
The common octopus, Octopus vulgaris Cuvier, is of great scientific and commercial importance and its culture is becoming an area of increasing interest. In this study, the combined effects of temperature (T) and body mass (M) on the routine oxygen consumption rate (R) and ammonia excretion rate (U) in O. vulgaris were quantified. The experiments were conducted in a closed seawater system, and great care was taken to reduce handling stress of the animals. Temperature, salinity, pH and ammonia, nitrite, nitrate and phosphate concentrations were monitored and controlled during the experiment. The following predictive equations were evaluated: at temperatures between 13°C and 28°C and at temperatures between 15.5°C and 26°C (Ta is degrees Kelvin and M in gram). O/N ratios showed that O. vulgaris has a protein-dominated metabolism. No significant relationship between the O/N ratio and body mass or temperature was found. Sex had no significant effect on the oxygen consumption rate or on the ammonia excretion rate. For other octopod species, the dependence of metabolic rate on temperature does not differ with that for O. vulgaris.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

16.
Laboratory 45Ca-incorporation rates in hermatypic coral skeletons have previously been used successfully as an index of physiological function. This laboratory method would become more meanigful if it also provided an absolute measure of coral growth rates. In two coral species, Porites compressa and Pocillopora damicornis, 45Ca incorporation rates were obtained from short (0.5 h) laboratory incubations using apical (determined as fast growing) portions of freshly collected coral branches. 45Ca exchange across the coenosarc was not significant and not corrected for, whereas diurnal fluctuation in 45Ca in Pocillopora damicornis was significant and a necessary correction. A calculated surface area is used to express calcification rate. Typical growth rates calculated from the 45Ca-incorporation rates were 20 and 6 mm/year for Porites compressa and Pocillopora damicornis, respectively. These rates are considerably higher than those previously obtained in the laboratory, and compare favorably with field growth rates — 24 and 14 mm/year, respectively.  相似文献   

17.
Mass coral bleaching events have occurred on a global scale throughout the worlds tropical oceans and can result in large-scale coral mortality and degradation of coral reef communities. Coral bleaching has often been attributed to periods of above normal seawater temperatures and/or calm conditions with high levels of ultraviolet radiation. Unusually high shallow-water temperature (>29°C) in Kaneohe Bay, Hawaii, USA, in late summer (20 August–9 September) and fall (1–7 October) of 1996 produced visible bleaching of two dominant corals, Porites compressa Dana, 1864 and Montipora verrucosa Dana, 1864. The present study examined chlorophyll a (chl a), total lipid concentrations, and lipid class composition in corals of both species in which the entire colony was non-bleached, moderately bleached, or bleached. Skeletal, host tissue, and algal symbiont 13C values were also measured in non-bleached and bleached colonies. In additional unevenly bleached colonies, paired samples were collected from bleached upper surfaces and non-bleached sides. Samples were collected on 20 November 1996 during the coral recovery phase, a time when seawater temperatures had been back to normal for over a month. Chl a levels were significantly lower in bleached colonies of both species compared with non-bleached specimens, and in bleached areas of unevenly bleached single colonies. Total lipid concentrations were significantly lower in bleached P. compressa compared with non-bleached colonies, whereas total lipid concentrations were the same in bleached and non-bleached M. verrucosa colonies. The proportion of triacylglycerols and wax esters was lower in bleached colonies of both species. Both bleached and non-bleached M. verrucosa had from ~17% to 35% of their lipids in the form of diacylglycerol, while this class was absent in P. compressa. 13C was not significantly different in the host tissue and algal symbiont fractions in non-bleached and bleached samples of either species. This suggests that the ratio of carbon acquired heterotrophically versus photosynthetically was the same regardless of condition. Skeletal 13C was significantly lower in bleached than in non-bleached corals. This is consistent with previous findings that lower rates of photosynthesis during bleaching results in lower skeletal 13C values. The two species in this study displayed different lipid class compositions and total lipid depletions following bleaching, suggesting that there is a difference in their metabolism of lipid reserves and/or in their temporal responses to bleaching and recovery.Communicated by J.P. Grassle, New Brunswick  相似文献   

18.
Metabolic rates provide a valuable means to assess the condition of early life stages of scleractinians, but their small biomass creates a signal-to-noise problem in a confined respirometer. To avoid this problem, measurements of the oxygen diffusion boundary layer (DBL) and Ficks first law were used to calculate the respiration rate of coenosarc tissue on recruits (i.e., colonies 5–14 mm diameter) of Porites lutea (Edwards and Haime, 1860) exposed to two temperatures at a flow speed of 0.6 cm s–1. All experiments were completed in Moorea, French Polynesia, between November and December 2003. At 26.8°C, the DBL was 565±55 µm thick, the oxygen saturation adjacent to the tissue was 80±3%, and the mean respiration of the coenosarc was 1.2±0.1 µl O2 cm–2 h–1 (all values mean ± SE, n=10). Exposure to 29.7°C for 24–48 h did not affect the DBL thickness but significantly reduced the oxygen saturation adjacent to the tissue (to 74%) and increased the mean respiration rate by 35%. As the small corals differed slightly in size, in a uniform flow speed they experienced dissimilar flow environments as characterized by the Reynolds number (Re), thereby creating the opportunity to test the flow dependency of respiration. At 26.8°C, respiration and Re were unrelated, but at 29.7°C, the relationship was positive and statistically significant. Thus, respiration of small corals may not be mass transfer limited at low temperature, but relatively small increases in temperature may result in an increased metabolic rate leading to mass transfer limitation and flow-dependent rates of respiration.Communicated by J.P. Grassle, New Brunswick  相似文献   

19.
Reports of bathymetric decrease in the total mycosporine-like amino acid (MAA) concentration of benthic invertebrates suggest that light gradients may be important determinants of MAA content. With the pronounced diel light changes, distinct temporal variations in MAA concentrations might also be expected. We examined the changes in the abundance of MAA in three shallow-water scleractinian corals, Pavona divaricata, Galaxea fascicularis and Montipora digitata from Okinawa, Japan, in relation to daily cycles in solar radiation and tested whether the species have different capabilities for protection against UVR depending on their MAA composition. The results show that symbiotic algae freshly isolated from the investigated coral species do not contain MAAs and that distribution of these compounds resided only within the animal tissue. Total MAA content in the tissue of P. divaricata, G. fascicularis and M. digitata rose rapidly at midday and significantly dropped at night. The observed variations were by a factor of two and, thus, very dramatic. For all the investigated coral species, total MAA concentrations were significantly correlated with the diurnal cycle in solar radiation, during both winter and summer seasons. Seawater temperature was significantly correlated with MAA levels only in the June experiment, but represented no more than 20% of the MAA variation in all three coral species, whereas solar radiation explained 60–70% of the MAA fluctuations. This suggests that MAAs are an integral component of the hard corals biochemical defense system against high solar irradiance stress. The diurnal increase in total MAA concentrations was due to an increase in the concentration of imino-MAA species of up to 2–2.5-fold of their pre-dawn values. In contrast, the oxocarbonyl-MAA mycosporine-glycine (Myc-Gly) showed the lowest (Tukey–Kramer HSD test: P<0.05) values at midday, compared to afternoon and night hours. Analysis of diel changes in chlorophyll fluorescence and chlorophyll a content of the investigated species revealed that P. divaricata and G. fascicularis were less sensitive to the high levels of ambient irradiance compared to M. digitata. In P. divaricata and G. fascicularis, Myc-Gly, an MAA with an antioxidant function, is the most abundant MAA, contributing about 70% to the total MAA pool, whereas the major MAA factions in M. digitata were represented by oxidatively robust imino-MAAs. We speculate that MAAs furnish scleractinian corals with protection from biologically damaging ultraviolet radiation through both the direct sunscreening activity of imino-MAAs and the antioxidant properties of oxocarbonyl-MAAs and suggest that the predominance, in the host tissue, of MAA species with an antioxidant ability may render corals more tolerant to high photosynthetically active and ultraviolet radiation.Communicated by T. Ikeda, Hakodate  相似文献   

20.
A sensitive method was developed to analyze low molecular weight thiols involved in metal homeostasis and detoxification in phytoplankton. The aims of this study were to (1) separate and measure all relevant thiols in a single HPLC run, (2) measure redox states of the thiols and (3) identify specific responses of thiols (pools, redox) to heavy metals by testing diatoms with different metal tolerances (Ditylum brightwellii, Phaeodactylum tricornutum, Skeletonema costatum andThalassiosira pseudonana). Copper or cadmium were dosed at a maximum tolerable, species-dependent level, to exponential phase cells growing in artificial medium (14 salinity). Loss of cell viability was monitored by the decrease of fluorescein fluorescence after a 24-h metal exposure. Thiols in extracts of exposed cells and controls were labeled with monobromobimane. Picomoles of cysteine, glutathione, -glutamylcysteine and phytochelatins (PCs) were detected and separated by reversed-phase high performance liquid chromatography. Cysteine increased in all species after metal exposure. The species with the largest glutathione pools in the control (P. tricornutum) synthesized the largest PC pools upon metal exposure, however, at a 40% loss of glutathione. A considerable increase of glutathione was observed inD. brightwellii upon metal exposure. However, it produced little PC (and only with Cu). In controls ( 3 pM Cu2+), PC2 was detectable inS. costatum, P. tricornutum andT. pseudonana. Oxidized thiol fractions were recovered by the reductants DTT and TCEP, both performing identically. Compared to the other thiols, cysteine had low redox ratios. InD. brightwellii glutathione and PC redox ratios were lower than inP. tricornutum, S. costatum andT. pseudonana. It was expected that Cu-induced oxidative stress would decrease the thiol redox ratios, however, this was not observed.This is Communication No. 2172 of NIOO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号