首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 748 毫秒
1.
实验将介质阻挡放电与电晕放电组合在同一个反应器内,实验废水为直接大红染料溶液,将高压电极上通人50 Hz交流高压电,介质阻挡放电系统的电极间距为30 mm、电晕放电系统电极间距为25 mm、电源电压20 kV,利用常压空气中形成的雾化水电极介质阻挡放电/电晕放电低温等离子体及其活性基团作用于难降解有机物分子.实验分析了...  相似文献   

2.
以苯、联苯和萘为模型化合物,研究了上流式厌氧污泥床反应器(UASB)在反硝化连续流运行条件下对含上述污染物废水的处理效果,并以葡萄糖为补充碳源,考察了COD/NO3^--N(简称C/N)比对有机物反硝化降解特性的影响。研究结果表明,当进水COD浓度约为900mg/L,苯、联苯和萘总浓度约为60mg/L,NO3^--N为20~60mg/L时,UASB反应器能够在硝酸盐还原条件下稳定去除废水中有机污染物,其中COD平均去除率可达到85%,苯、萘和联苯平均去除率分别为90%、81%和71%。3种芳香烃反硝化降解速率顺序为苯〉萘〉联苯。C/N比对苯的降解影响不十分显著,在C/N为5~30范围内,苯的去除率稳定在87%~92%;萘和联苯去除率受C/N影响较大,在C/N比为15时萘和联苯的去除率均达到最大,分别为82%和77%。  相似文献   

3.
为探索焦化废水深度处理新途径,采用了焦粒、活性炭负载Mn(NO3)2和Zn(NO3)2化合物粒子电极为第3极的三维电极反应器对二级生化处理后的焦化废水进行深度处理。考察了焦化废水中有机物去除的影响因素及处理效果,并探讨了有机物的降解动力学。结果表明,以焦粒为载体的粒子电极三维电极系统在pH为6.5,电导率为4 580μS/cm,电流密度为16 mA/cm2,投加量大于25 g/L时,降解20 min,COD去除率超过35%以上。焦化废水的降解的动力学研究表明,焦化废水降解符合表观一级反应动力学规律。该研究可为三维电极反应器在焦化废水深度处理工程应用中提供参数依据。  相似文献   

4.
UASB反应器对芳香族化合物反硝化降解特性研究   总被引:1,自引:0,他引:1  
以苯、联苯和萘为模型化合物,研究了上流式厌氧污泥床反应器(UASB)在反硝化连续流运行条件下对含上述污染物废水的处理效果,并以葡萄糖为补充碳源,考察了COD/NO-3-N(简称C/N)比对有机物反硝化降解特性的影响。研究结果表明,当进水COD浓度约为900 mg/L,苯、联苯和萘总浓度约为60 mg/L,NO-3-N为20~60 mg/L时,UASB反应器能够在硝酸盐还原条件下稳定去除废水中有机污染物,其中COD平均去除率可达到85%,苯、萘和联苯平均去除率分别为90%、81%和71%。3种芳香烃反硝化降解速率顺序为苯>萘>联苯。 C/N比对苯的降解影响不十分显著,在C/N为5~30范围内,苯的去除率稳定在87%~92%;萘和联苯去除率受C/N影响较大,在C/N比为15时萘和联苯的去除率均达到最大,分别为82%和77%。  相似文献   

5.
吸附-电催化氧化降解气态氯苯   总被引:2,自引:0,他引:2  
魏静  杨骥 《环境工程学报》2009,3(8):1465-1468
采用高接触面积微孔曝气的方式,以吸附性多孔导电材料活性炭纤维(ACF)为电极,吸附电催化氧化两步联动降解气态氯苯,实现了在电解质水溶液中对高浓度非水溶性气态挥发性有机废气的有效处理。正交实验和单因素分析实验结合,确立最佳实验条件并着重考虑pH值、鼓气速率、电解电压、电解质浓度等因素对去除率的影响。在最佳实验条件下,气相中氯苯去除率达到74.3%(20℃)和72.9%(10℃)  相似文献   

6.
研究了复合式膜生物反应器(HMBR)中生化反应及膜自身对船舶生活污水中浓度较高的有机物的去除作用。当进水COD浓度为1 000 mg/L左右,反应器容积负荷为2.4 kg COD/(m3·d)时,HMBR曝气池内生化反应对COD的去除率平均可达91.63%,膜本身去除率平均为5.09%。可见,曝气池内生化反应对有机物的去除起到了主要作用,而膜则维持了系统出水水质的稳定。对曝气池内有机物降解动力学模型进行了研究,曝气池内有机物降解遵循一级反应,其相应动力学参数为vmax=2.79 d-1,Ks=395 mg/L,所得动力学方程可用于指导船用膜生物反应器的设计及运行维护。  相似文献   

7.
炼化污水中污染源以难降解有机物为主,降低污水生物毒性,提高其可生化性是炼化污水达标排放的关键环节。为降低工艺运行成本及产泥量,同时为后续好氧生化处理提供优质水源,实验采用高效厌氧生物反应器处理炼化污水,探讨炼化污水厌氧处理过程中的COD去除率、能源转化效能、微生物菌群变化、可生化性及有机污染物降解效果。结果表明,该反应器对炼化污水COD平均去除率达70.01%,出水中大分子复杂难降解有机污染物转化为以小分子有机酸类为主的有机物,可生化性明显提高,为后续生物处理提供良好运行条件。  相似文献   

8.
为研究介质阻挡放电(DBD)反应器结构对低温等离子体降解甲苯的影响,设计了具有单层介质和双层介质的DBD反应器。对2种反应器的放电特征、甲苯去除率、矿化率、CO_2选择性和能量效率进行了比较,并对施加电压和初始浓度对甲苯降解效果的影响进行了分析。结果表明:在相同电压下,双介质反应器(DDBD)具有更高的电场强度,而单介质反应器(SDBD)的输入功率更高;当甲苯浓度和电压分别为616、1 027、1 848 mg·m~(-3)和14~24 kV时,双介质中的甲苯去除率为9.4%~100%、7.4%~99%、5.1%~64%,单介质为67%~98%、46%~90%、26%~59%。这说明低电压下单介质反应器的甲苯去除率更高,而高电压下则相反,并且,浓度降低、电压升高有利于甲苯的降解。单介质反应器的能量效率随电压升高而降低,双介质反应器则先升高后下降,且双介质反应器的能量效率高于单介质反应器(16~24 kV)。以上研究可为介质阻挡放电在VOCs去除方面的应用提供参考。  相似文献   

9.
介绍了利用真菌降解挥发性有机污染物的生物反应器的特性及发展状况。阐述了真菌反应器内填料的选择以及温度、湿度、pH、含氧量等条件对真菌活性的影响  相似文献   

10.
针对室内挥发性有机化合物(VOCs),搭建了带风道式反应器的模拟环境舱实验系统,选取甲醛、甲苯和苯为目标污染物,研究了光催化对各污染物的降解性能及其之间的相互影响。通过装置的优化,还对紫外光下目标VOC降解的主要副产物进行了检测。结果表明,单组分VOC的降解实验中,该净化器对3种污染物均具有良好的降解效果,其中对甲苯和苯的降解性能相似,对甲醛的降解性能更优。2组分VOCs降解实验中,目标组分会受到另一组分的不同程度影响;甲苯和苯无论是作为影响组分还是目标组分其实验结果均较接近;甲醛对甲苯、苯的降解影响明显大于两者的相互影响,即甲醛对两者的降解反应阻碍更大。甲苯的主要副产物为苯、苯甲醛和苯甲酸,苯的主要副产物为苯酚。  相似文献   

11.
With the advances made in the past decade, catalytic incineration of volatile organic compounds (VOCs) has become the technology of choice in a wide range of pollution abatement strategies. In this study, a test was undertaken for the catalytic incineration, over a chromium oxide (Cr2O3) catalyst, of n-hexane, benzene, and an emission air/vapor mixture collected from an oil/water separator of a refinery. Reactions were carried out by controlling the feed stream to constant VOC concentrations and temperatures, in the ranges of 1300-14,700 mg/m3 and 240-400 degrees C, respectively. The destruction efficiency for each of the three VOCs as a function of influent gas temperature and empty bed gas residence time was obtained. Results indicate that n-hexane and the oil vapor with a composition of straight- and branch-chain aliphatic hydrocarbons exhibited similar catalytic incineration effects, while benzene required a higher incineration temperature or longer gas retention time to achieve comparable results. In the range of the VOC concentrations studied, at a given gas residence time, increasing the operating temperature of the catalyst bed increased the destruction efficiency. However, the much higher temperatures required for a destruction efficiency of over 99% may be not cost-effective and are not suggested. A first-order kinetics with respect to VOC concentration and an Arrhenius temperature dependence of the kinetic constant appeared to be an adequate representation for the catalytic oxidation of these volatile organics. Activation energy and kinetic constants were estimated for each of the VOCs. Low-temperature destruction of the target volatile organics could be achieved by using the Cr2O3 catalyst.  相似文献   

12.
ABSTRACT

With the advances made in the past decade, catalytic incineration of volatile organic compounds (VOCs) has become the technology of choice in a wide range of pollution abatement strategies. In this study, a test was undertaken for the catalytic incineration, over a chromium oxide (Cr2O3) catalyst, of n-hexane, benzene, and an emission air/vapor mixture collected from an oil/water separator of a refinery. Reactions were carried out by controlling the feed stream to constant VOC concentrations and temperatures, in the ranges of 1300–14,700 mg/m3 and 240–400 ° C, respectively. The destruction efficiency for each of the three VOCs as a function of influent gas temperature and empty bed gas residence time was obtained.

Results indicate that n-hexane and the oil vapor with a composition of straight- and branch-chain aliphatic hydrocarbons exhibited similar catalytic incineration effects, while benzene required a higher incineration temperature or longer gas retention time to achieve comparable results.

In the range of the VOC concentrations studied, at a given gas residence time, increasing the operating temperature of the catalyst bed increased the destruction efficiency. However, the much higher temperatures required for a destruction efficiency of over 99% may be not cost-effective and are not suggested. A first-order kinetics with respect to VOC concentration and an Arrhenius temperature dependence of the kinetic constant appeared to be an adequate representation for the catalytic oxidation of these volatile organics. Activation energy and kinetic constants were estimated for each of the VOCs. Low-temperature destruction of the target volatile organics could be achieved by using the Cr2O3 catalyst.  相似文献   

13.
Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong   总被引:21,自引:0,他引:21  
Lee SC  Chiu MY  Ho KF  Zou SC  Wang X 《Chemosphere》2002,48(3):375-382
The assessment of volatile organic compounds (VOCs) has become a major issue of air quality network monitoring in Hong Kong. This study is aimed to identify, quantify and characterize volatile organic compounds (VOCs) in different urban areas in Hong Kong. The spatial distribution, temporal variation as well as correlations of VOCs at five roadside sampling sites were discussed. Twelve VOCs were routinely detected in urban areas (Mong Kok, Kwai Chung, Yuen Long and Causeway Bay). The concentrations of VOCs ranged from undetectable to 1396 microg/m3. Among all of the VOC species, toluene has the highest concentration. Benzene, toluene, ethylbenzene and xylenes (BTEX) were the major constituents (more than 60% in composition of total VOC detected), mainly contributed from mobile sources. Similar to other Asian cities, the VOC levels measured in urban areas in Hong Kong were affected both by automobile exhaust and industrial emissions. High toluene to benzene ratios (average T/B ratio = 5) was also found in Hong Kong as in other Asian cities. In general, VOC concentrations in the winter were higher than those measured in the summer (winter to summer ratio > 1). As toluene and benzene were the major pollutants from vehicle exhausts, there is a necessity to tighten automobile emission standards in Hong Kong.  相似文献   

14.
Trickle-bed air biofilters (TBABs) are suitable for treatment of hydrophilic volatile organic compounds, but they pose a challenge for hydrophobic compounds. Three laboratory-scale TBABs were used for the treatment of an airstream contaminated with different ratios of n-hexane and benzene mixtures. The ratios studied were 1:1, 2:1, and 1:3 n-hexane:benzene by volume. Each TBAB was operated at a pH of 4 and a temperature of 20 degrees C. The use of acidic-buffered nutrient solution was targeted for changing the microorganism consortium to fungi as the main biodegradation element. The experimental plan was designed to investigate the long-term performance of the TBABs with an emphasis on different mixture loading rates, removal efficiency with TBAB depth, volatile suspended solids, and carbon mass balance closure. n-Hexane loading rate was kept constant in the TBABs for comparison reasons and ranged from 4 to 22 g/(m3 x hr). Corresponding benzene loadings ranged from 4 to 43 g/(m3 x hr). Generally, benzene behavior in the TBAB was superior to that of n-hexane because of its higher solubility. n-Hexane showed improved performance in the 2:1 mixing ratio as compared with the other two ratios.  相似文献   

15.
污泥含炭吸附剂对挥发性有机废气吸附实验研究   总被引:1,自引:0,他引:1  
研究了污泥含炭吸附剂对挥发性有机污染物的吸附特性。结果表明,污泥含炭吸附剂对苯系物的吸附为典型的物理吸附,其吸附甲苯等温线的类型系优惠型吸附等温线,表明具有良好的吸附能力;在吸附反应温度为20℃,气体流量为500 mL/m in(停留时间为0.424 s),甲苯浓度为2 700 mg/m3时,甲苯的饱和吸附容量为150.0 mg/g;同时,研究表明污泥含炭吸附剂对苯系物的饱和吸附容量和吸附强弱次序为二甲苯甲苯苯。结果表明污泥含炭吸附剂适合对中低浓度有机废气的吸附净化。  相似文献   

16.
为了探索一种高效、快速处理典型挥发性有机物的方法,对微波协同作用下霍加拉特剂催化氧化苯的性能进行了研究,主要考查了微波作用模式、微波功率、苯初始浓度、气体流量、催化剂用量和气体湿度对处理苯效果的影响,并对影响规律进行总结。实验结果表明,微波功率70 W,苯初始浓度1 917 mg/m3,气体流量1.0 L/min,催化剂床层高度3.86 cm时,苯转化率可达99.2%。微波辐照条件下霍加拉特剂能够有效实现苯的催化氧化,并且比传统加热具有更高的能量利用率。  相似文献   

17.

Purpose  

The purpose of this study was to evaluate the influences of volatile organic compounds (VOCs) emissions on hazardousness and photochemical reactivity and to propose efficient VOCs abatement strategies.  相似文献   

18.
The natural attenuation of volatile organic compounds (VOCs) in the unsaturated zone can only be predicted when information about microbial biodegradation rates and kinetics are known. This study aimed at determining first-order rate coefficients for the aerobic biodegradation of 13 volatile petroleum hydrocarbons which were artificially emplaced as a liquid mixture during a field experiment in an unsaturated sandy soil. Apparent first-order biodegradation rate coefficients were estimated by comparing the spatial evolution of the resulting vapor plumes to an analytical reactive transport model. Two independent reactive numerical model approaches have been used to simulate the diffusive migration of VOC vapors and to estimate degradation rate coefficients. Supplementary laboratory column and microcosm experiments were performed with the sandy soil at room temperature under aerobic conditions. First-order kinetics adequately matched the lab column profiles for most of the compounds. Consistent compound-specific apparent first-order rate coefficients were obtained by the three models and the lab column experiment, except for benzene. Laboratory microcosm experiments lacked of sensitivity for slowly degrading compounds and underestimated degradation rates by up to a factor of 5. Addition of NH3 vapor was shown to increase the degradation rates for some VOCs in the laboratory microcosms. All field models suggested a significantly higher degradation rate for benzene than the rates measured in the lab, suggesting that the field microbial community was superior in developing benzene degrading activity.  相似文献   

19.
Environmental Science and Pollution Research - In this study, the abatement of benzene in a dielectric barrier discharge (DBD) reactor was studied. The efficiency was investigated in terms of...  相似文献   

20.
The driving conditions that were tested for the in-vehicle concentrations of selected volatile organic compounds (VOCs) included transport modes, fuel distributions, vehicle ventilation conditions, driving routes, commute seasons, car models, and driving periods. This study involved two sampling seasons (winter and summer). The in-auto/in-bus/fixed site ratio of the wintertime mean concentrations was about 6/3/1 for total VOCs and 8/3/1 for benzene. On the median, the in-auto/in-bus exposure ratio ranged from 1.5 to 2.8 for the morning commutes, and ranged from 2.4 to 4.5 for evening commutes, depending on the target compounds. The wintertime in-auto concentrations were significantly higher (p<0.05), on the average 3–5 times higher, in a carbureted engine than in the three electronic fuel-injected cars. For the summertime in-auto concentrations of the target compounds except benzene, there were no significant differences between low and high ventilation conditions on the two urban routes. The urban in-auto benzene concentration was significantly higher (p<0.05) under the low ventilation condition. For the rural commutes, the in-auto concentrations of all target compounds were significantly higher (p<0.05) under the low ventilation condition. The in-auto VOC concentrations on the two urban routes did not differ significantly, and they were greater than the rural in-auto concentrations, with the differences being significant (p<0.05) for all target compounds. The summertime in-auto concentrations of benzene and toluene were greater than the wintertime in-auto concentrations, with the difference being significant (p<0.05), while the concentrations of the other target compounds were not significantly different between the two seasons. Neither car models nor driving periods influenced the in-auto VOC concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号