首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
巢湖十五里河沉积物生物有效性氮磷分布及相关性   总被引:8,自引:0,他引:8       下载免费PDF全文
在巢湖十五里河采集15个沉积物柱样,对表层(0~10 cm)沉积物生物有效性氮、磷含量和空间分布特征及相互关系进行研究. 结果表明,十五里河表层沉积物的各形态〔IEF(离子交换态),WAEF(弱酸可提取态),SAEF(强碱可提取态)和SOEF(强氧化剂可提取态)〕生物有效性氮、磷含量存在较为明显的空间变化性. w(生物有效性氮)占w(TN)的53.4%~67.9%,且w(SOEF-N)>w(IEF-N)>w(SAEF-N)>w(WAEF-N),其中w(SOEF-N)为411.35~965.47 mg/kg,占w(TN)的33.4%~43.7%;w(生物有效性磷)占w(TP)的47.3%~89.4%,且w(SAEF-P)>w(SOEF-P)>w(WAEF-P)>w(IEF-P),其中w(SAEF-P)为311.74~960.33 mg/kg,占w(TP)的33.0%~78.0%. 不同形态生物有效性氮的相关性较差,其中w(IEF-N)与w(WAEF-N)和w(SAEF-N)呈负相关,相关系数分别为-0.042和-0.122;w(WAEF-N)和w(SAEF-N)和w(SOEF-N)的相关系数仅为0.320~0.513. 生物有效性磷的相关性相对较强,其中w(IEF-P)与w(WAEF-P)呈显著正相关,相关系数为0.527,w(WAEF-P)与w(SAEF-P)呈极显著正相关,相关系数为0.653. 不同形态生物有效性氮、磷的相关性不显著.   相似文献   

2.
滇池沉积物中氮的地球化学特征及其对水环境的影响   总被引:15,自引:1,他引:15       下载免费PDF全文
采用连续分级提取法研究了滇池外海8个典型区域表层沉积物中总氮与生物有效性氮的含量分布特征,并探讨了不同形态氮释放的影响因素及其对水环境潜在的风险.结果表明,沉积物中总氮含量变化为1888.8~3155.8mg/kg,各形态氮的相对比例为残渣态氮(Residual-N,46.2%~66.3%)>强氧化剂可提取态氮(SOEF-N,22.9%~42.9%)>离子可交换态氮(IEF-N,4.5%~7.5%)>弱酸可提取态氮(WAEF-N,2.2%~4.0%)>强碱可提取态氮(SAEF-N,2.7%~3.8%).生物有效性氮包括IEF-N、WAEF-N、SAEF-N和SOEF-N,海埂沉积物中生物有效性氮的含量最高,与该区域的富营养化程度相一致.其中, IEF-N的分布与上覆水体中氮的含量关系密切,SOEF-N是水体中氮的重要来源.另外, NH4+-N是IEF-N、WAEF-N及SAEF-N中的主要组成部分.蓝藻水华严重的海埂沉积物IEF-N中的NH4+-N含量相对较低,可能表明了富营养化湖泊中浮游生物的大量繁殖与沉积物氮循环之间的耦合关系.  相似文献   

3.
洱海沉积物中不同形态氮的时空分布特征   总被引:23,自引:5,他引:18  
为揭示沉积物中氮形态变化的影响因素及其生态效应,对洱海表层沉积物中不同形态氮的空间分布和季节性变化特征进行了研究. 结果表明:洱海表层沉积物中w(TN)在2354~6174mg/kg之间,空间分布呈湖区北部>南部>中部的趋势;w(TTN) (TTN为可交换态氮)在1158~2921mg/kg之间,占w(TN)的43%,其分布趋势与w(TN)相同;各形态TTN表现为SOEF-N(强氧化剂可提取态氮,w为974~2515mg/kg)>WAEF-N(弱酸可提取态氮,w为91~210mg/kg)>SAEF-N(强碱可提取态氮,w为38~198mg/kg)>IEF-N(离子交换态氮,w为66~130mg/kg),w(WAEF-N)和w(IEF-N)的分布趋势与w(TTN)相同,w(SAEF-N)中部较高,w(SOEF-N)南部较高. 沉积物中w(TN)和w(NTN)(NTN为非转化态氮)7月较高,TTN及其各形态氮质量分数1月较高. 不同形态氮质量分数随沉积物深度的增加均呈下降趋势,NTN的富集速率高于TN. 洱海沉积物中w(TN)高于长江中下游湖泊,表层TN富集明显. 沉积物氮释放风险较大,但其w(TTN)和w(IEF-N)占w(TN)的比例低于长江中下游湖泊,即洱海沉积物氮释放量小于长江中下游湖泊;洱海沉积物中各形态氮质量分数与w(TOM)均呈显著正相关,与水深呈负相关,显示有机态氮与有机质同步沉积且受外源输入影响较大,w(IEF-N)分布同时受水生植物等影响.   相似文献   

4.
海州湾表层沉积物中氮的赋存形态及其生态意义   总被引:8,自引:1,他引:7  
于2014年10月在海州湾采集表层沉积物,利用分级浸取分离的方法,对其中的离子交换态氮(IEF-N)、弱酸可浸取态氮(WAEF-N)、强碱可浸取态氮(SAEF-N)及强氧化剂可浸取态氮(SOEF-N)4种可转化态氮(TTN)的含量进行了分析测定,结合沉积物的有机质含量(TOC)、粒度分布,讨论了各形态氮的生态意义.结果表明:IEF-N、WAEF-N、SAEF-N、SOEF-N、非转化态氮(NTN)、总氮(TN)的平均含量分别为12.63、5.78、8.93、85.32、568.93和681.59 mg·kg-1;各形态氮在TTN中所占的比例大小顺序为SOEF-N(75.73%)IEF-N(11.21%)SAEF-N(7.93%)WAEF-N(5.13%).研究还表明,沉积物中TN与TOC和粒径具有显著的相关性(p0.01);WAEF-N与TOC具有显著的相关性(p0.01),与粒径也具有显著相关性(p0.05),其他形态氮与TOC、粒度分布均有一定程度的相关关系;各形态氮与水体中的溶解态无机氮(DIN)、叶绿素a具有相关性,说明沉积物中的氮对海洋生态环境有着重要意义.  相似文献   

5.
烟台四十里湾柱状沉积物氮形态地球化学特征   总被引:6,自引:2,他引:4  
杨玉玮  高学鲁  李培苗 《环境科学》2012,33(10):3449-3456
采用连续浸取法首次对烟台四十里湾柱状沉积物不同形态的氮进行分离,并对其垂直地球化学特征和影响因素进行分析研究.可转化态氮分为离子交换态氮(IEF-N)、弱酸浸取态氮(WAEF-N)、强碱浸取态氮(SAEF-N)、强氧化剂浸取态氮(SOEF-N).结果表明,在沉积物表层(0~10 cm)可转化态氮占总氮的26.14%,并随着深度的增加而含量降低.各形态氮占可转化态氮比例平均大小顺序为SOEF-N(89.7%)>IEF-N(7.97%)>WAEF-N(1.19%)>SAEF-N(1.14%),说明SOEF-N是可转化态氮中的绝对优势态.不同形态氮与沉积物地球化学参数之间的相关关系分析表明,沉积物含水率、总有机碳、pH值、氧化还原电位、粒度组成等因素在一定程度上影响各形态氮含量,但各站位柱状样因其沉积物特征不同受各参数影响程度也不同.  相似文献   

6.
为探究梯级水库建设对沉积物氮形态分布的影响,通过分级浸取方法得到沉积物的离子交换态氮(IEF-N)、弱酸提取态氮(WAEF-N)、强碱提取态氮(SAEF-N)以及强氧化剂提取态氮(SOEF-N),对比研究了有梯级水库建设的澜沧江和干流无水电站建设的怒江沉积物中氮形态的分布特征,分析了可转化态氮的主要影响因素.结果表明,两条流域沉积物赋存环境存在差异,进而使沉积物的理化性质呈现明显的差异,最终导致沉积物可转化态氮的含量及空间分布也不同,澜沧江沉积物可转化态氮的含量高于怒江,且澜沧江的空间变化也大于怒江,怒江IEF-N、WAEF-N、SAEF-N与SOEF-N含量范围分别为1.56~2.55,16.91~46.42,1.83~10.66,486.61~719.27mg/kg,澜沧江IEF-N、WAEF-N、SAEF-N与SOEF-N含量范围分别为1.55~14.35,20.77~83.08,1.36~92.15,562.61~1404.82mg/kg.两条河流的可转化态氮含量大小排列顺序一致,均为SOEF-N > WAEF-N > SAEF-N > IEF-N,怒江与澜沧江上游自然河段可转化态氮含量及空间分布基本一致,但在澜沧江的梯级水库段上,4种可转化态氮空间分布特征发生了较明显的变化,产生这种现象的原因主要是水库的建设导致了沉积物理化性质的改变,总有机碳、粒度、氧化还原电位对可转化态氮的影响不同.  相似文献   

7.
城市内河表层沉积物氮形态及影响因素   总被引:5,自引:0,他引:5       下载免费PDF全文
采用连续分级提取法对许昌市清潩河河道10个表层沉积物样品中氮形态含量进行测定, 分别得到离子交换态氮(IEF-N)、弱酸可提取态氮(WAEF-N)、强碱可提取态氮(SAEF-N)、强氧化剂可提取态氮(SOEF-N)和非可转化态氮(NTN), 探讨了不同形态氮分布特征、影响因素及其对河道水环境潜在的风险. 结果表明,沉积物中总氮(TN)含量为2140~9470mg/kg, 与沉积物有机质含量沿河道变化趋势基本一致; 可转化态氮(TTN)的优势形态从上游至下游逐渐由IEF-N向SAEF-N再向SOEF-N转化, 逐渐趋于稳定; IEF-N含量受沉积物有机质、pH值及上覆水体氨氮和悬浮物含量影响, 且与TN极显著相关, 说明清潩河沉积物TN含量可以作为河道内源污染风险判断的重要指标; 此外上覆水体较高的COD含量对SAEF-N和NTN的沉积、较高的氨氮含量对IEF-N和TN的释放以及总磷含量对NTN活性的增强等都产生影响.因此, 在开展清潩河水环境综合整治时, 需考虑水相与沉积物相的相互作用, 同步开展治理工作.  相似文献   

8.
采用连续分级提取法对许昌市清潩河河道10个表层沉积物样品中氮形态含量进行测定,分别得到离子交换态氮(IEF-N)、弱酸可提取态氮(WAEF-N)、强碱可提取态氮(SAEF-N)、强氧化剂可提取态氮(SOEF-N)和非可转化态氮(NTN),探讨了不同形态氮分布特征、影响因素及其对河道水环境潜在的风险.结果表明,沉积物中总氮(TN)含量为2140~9470mg/kg,与沉积物有机质含量沿河道变化趋势基本一致;可转化态氮(TTN)的优势形态从上游至下游逐渐由IEF-N向SAEF-N再向SOEF-N转化,逐渐趋于稳定;IEF-N含量受沉积物有机质、pH值及上覆水体氨氮和悬浮物含量影响,且与TN极显著相关,说明清潩河沉积物TN含量可以作为河道内源污染风险判断的重要指标;此外上覆水体较高的COD含量对SAEF-N和NTN的沉积、较高的氨氮含量对IEF-N和TN的释放以及总磷含量对NTN活性的增强等都产生影响.因此,在开展清潩河水环境综合整治时,需考虑水相与沉积物相的相互作用,同步开展治理工作.  相似文献   

9.
选取不同高程鄱阳湖表层沉积物,通过研究其总可转化态氮与各形态可转化态氮含量及分布特征,试图揭示江湖关系变化导致的水位变化对鄱阳湖沉积物氮潜在释放风险的影响.结果表明:1鄱阳湖表层沉积物总氮(TN)含量在389~3 865 mg·kg-1之间,空间分布上呈"五河"入湖尾闾区湖心区北部湖区的趋势;总可交换态氮含量在319.36~904.56 mg·kg-1之间,占TN的52%,空间分布趋势与TN相同;2鄱阳湖3个湖区沉积物各形态可转化态氮的含量大小排列次序均为:SOEF-N(强氧化剂可提取态氮)≈SAEF-N(强碱可提取态氮)WAEF-N(弱酸可提取态氮)IEF-N(离子交换态氮);3江湖关系变化致使鄱阳湖枯水期沉积物出露时间提前并且延长,进而导致不同高程沉积物可转化态氮(TTN)含量差异明显,3个湖区沉积物可转化态氮含量均表现为枯水期丰水期,高程越高,由于其沉积物出露时间较长,可转化态氮含量较高,即可转化态氮含量12 m~13 m高程沉积物11 m~12 m高程沉积物10m~11 m高程沉积物;4随着高程的增加,沉积物各形态可转化态氮含量都呈现增加的趋势,其中SAEF-N和WAEFN含量及其占总可转化态氮的比例变化幅度较小,而IEF-N和SOEF-N含量以及其占总可转化态氮比例的增幅均较为显著.如果江湖关系进一步变化,枯水期水位继续下降,势必会引起沉积物出露面积增大及出露时间延长,从而导致沉积物TN、可转化态氮以及释放风险较高的氮形态IEF-N和SOEF-N含量的增大,来年丰水期可能会增加鄱阳湖沉积物氮释放风险.  相似文献   

10.
为探究梯级水库运行对河流沉积物氮形态时空分布的影响,分别在枯水期和汛期对澜沧江和怒江沿程表层沉积物进行跟踪监测,并利用分级连续浸取分离法得到了离子可交换态氮(IEF-N),弱酸可浸取态氮(WAEF-N),强碱可浸取态氮(SAEF-N)和强氧化剂可浸取态氮(SOEF-N)等四种沉积物氮形态.结果表明:(1)怒江和澜沧江自然河流段可转化态氮(TTN)含量略低于水库段,沿程分布含量范围512.2~1548.5mg/L,同时期4种可转化态氮形态分布规律基本一致,枯水期SOEF-N>WAEF-N>SAEF-N>IEF-N,含量范围分别为486.6~1424.8,3.3~83.1,1.4~88.8和1.2~10.7mg/kg;汛期WAEF-N>SOEF-N>SAEF-N>IEF-N,含量范围分别为360.7~755.7,42.8~656.2,6.8~394.3和35.8~153.6mg/kg;(2)梯级水库运行导致有机质富集,颗粒物粒径变小,对WAEF-N的释放有抑制作用;梯级水库运行导致水库段沉积物粒径变小,而SOEF-N主要分布在细颗粒中,致使沉积物的矿化作...  相似文献   

11.
滇池水体和沉积物中营养盐的分布特征   总被引:16,自引:4,他引:12  
在滇池外海不同方位选取6个采样点,研究了水质现状,沉积物Eh,pH,总氮,总磷以及间隙水重金属的剖面分布特征。结果表明,滇池水体仍属富营养化状态。在氧化表层下,Eh随沉积深度的增加迅速降低,沉积物深层为还原状态。pH在沉积物剖面变化不大,为7 0~8 5。滇池沉积物含有丰富的营养物质,总氮和总磷最高质量分数分别为8 67和3 46g kg。剖面分布表明,沉积物表层总氮和总磷含量远高于底层,在表层0~10cm含量随深度增加而迅速降低。重金属元素在水-土界面的浓度梯度为沉积物向水体的扩散提供了条件。不同采样点相比,位于昆明市附近的S6点沉积物内负荷较大。在外源减少的情况下,沉积物内负荷可能在一定时间内成为控制滇池水质的主导因子。   相似文献   

12.
王小雷  杨浩  顾祝军  张明礼 《环境科学》2014,35(7):2565-2571
对比分析了两个不同营养湖泊抚仙湖和滇池湖中心部位沉积物柱芯放射性核素210Pbex和营养盐(TOC、TN和TP)的垂向分布特征,探讨了两个湖泊不同湖区沉积物柱芯中210Pbex与营养盐(TOC、TN和TP)之间的相关关系.结果表明,两个湖泊沉积物柱芯中210Pbex和营养盐各个指标的垂向分布存在差异,总体上滇池沉积物柱芯中210Pbex的波动变化幅度略高于抚仙湖.滇池表层沉积物中210Pbex较为紊乱的分布特征与人类活动影响下的沉积物中Pb的物理化学迁移有关.沉积物中营养盐各个指标的变化则与特定历史时期不同强度的自然演化和人类活动双重因素影响密切相关.放射性核素210Pbex和营养盐各个指标之间的相关关系与两个湖泊或同一湖泊不同湖区的营养水平高低有关,其变化关系为富营养化湖泊滇池>贫营养湖泊抚仙湖,抚仙湖北岸>南岸.就单个营养盐指标与210Pbex之间的相关关系而言,TOC最强,TP次之,TN最弱.  相似文献   

13.
滇池宝象河流域氮磷流失空间格局解析   总被引:3,自引:1,他引:2       下载免费PDF全文
有效控制氮磷流失量是水质持续改善的关键因素,定量解析流域氮磷流失量对于氮磷污染精准控制至关重要.宝象河作为滇池流域最主要的入湖河流之一,对滇池水质的影响极为重要.该研究基于第二次全国污染源普查数据,建立了宝象河流域高分辨率的氮磷排放清单,通过构建宝象河LODEST模型估算流域氮磷非点源污染入河系数,并对宝象河流域的氮磷流失量及其空间格局进行解析.结果表明:①2018年宝象河流域TN和TP的排放量分别为1 456.92、191.16 t,流域内种植业非点源是最大的污染源,其次是城镇生活点源和未收集点源.②2018年宝象河干海子断面TN和TP的径流通量分别为270.49和11.19 t,非点源入河系数分别为0.297和0.048.③2018年宝象河流域TN和TP流失量分别为432.28和18.57 t,氮磷流失空间格局呈显著的空间异质性,流域内TN和TP流失强度总体呈外高内低的分布,农业污染为主的子流域氮磷流失最为严重.该研究提出的氮磷流失量估算方法较好地揭示了流域氮磷流失空间分布规律,论证了降雨和地形的不均匀性是造成流域氮磷流失量呈显著空间异质性的重要因素.研究成果可为滇池流域入湖污染负荷控制与削减工程提供重要的科学依据,同时能够为宝象河流域水环境的精准控污和精细管理提供有效的决策支撑.   相似文献   

14.
任玮  代超  郭怀成 《中国环境科学》2015,35(8):2400-2408
本文引入降雨、地形因子(α、β)对经典的输出系数模型(ECM)进行改进,基于1999~2010年云南宝象河流域气象、水文、社会经济等数据,利用改进的输出系数模型(IECM)对该地区(位于滇池的东北部,绝大部分在官渡区内,西北部少部分在盘龙区内)的非点源污染负荷进行估算.结果显示,2008年宝象河流域非点源氮、磷污染的所占比例(分别为74.2%和68.0%)要显著高于点源氮、磷污染的所占比例(分别为25.8%和32.0%).氮污染中,不同非点源的贡献率依次为土地利用类型>大气沉降>农村生活>畜禽养殖;磷污染中,不同非点源污染的贡献率为土地利用类型>农村生活>大气沉降>畜禽养殖.宝象河流域的非点源氮污染比例要高于整个滇池流域,非点源磷污染比例与滇池流域较为接近.与实际观测值比较,IECM对TN、TP负荷的估算值的平均相对偏差分别为15%和-6%,ECM对TN、TP负荷的估算值的平均相对偏差分别为54%和17%.这表明改进的输出系数模型(IECM)提高了结果的准确性,可以为滇池流域的污染(尤其是非点源污染)负荷估算提供参考方法.  相似文献   

15.
滇池流域水环境承载力及其动态变化特征研究   总被引:7,自引:3,他引:4  
石建屏  李新 《环境科学学报》2012,32(7):1777-1784
为了定量分析人口增长、经济发展、资源短缺和环境污染等因素对流域水环境的综合影响,建立了湖泊水环境承载力多目标优化模型.同时,选取人口、灌溉面积、国民生产总值(GDP)、化学需氧量(COD)、总氮(TN)、总磷(TP)作为水资源和水质量承载力指标,运用层次分析法(AHP)确定各指标对湖区水环境承载力的权重,并运用指标体系评价法分别计算了2003—2010年滇池流域水环境承载力.结果表明,流域内人口承载度超标,经济承载压力显著增长,富营养化指标——TP、TN呈高负荷波动状态.滇池流域水环境承载力为负承载,水质量承载力影响程度更大.研究结果可为滇池流域的社会经济发展规划、生态环境保护和水资源可持续利用提供科学依据.  相似文献   

16.
巢湖周边表土中有机质、全氮和全磷空间分布及其相关性   总被引:2,自引:1,他引:2  
测定了巢湖周边3 528 km2范围内60个混合土样中的有机质(organic matter,OM)、全氮(total nitrogen,TN)和全磷(total phosphorus,TP)含量,通过GS 7.0+地统计学分析软件、Surfer 8.0及Mapinfo 8.5软件研究了这3种营养盐的空间分布,并使用SPSS 17.0软件对各指标间的相关性进行了分析.结果表明:①巢湖周边表土中ω(OM)、ω(TN)和ω(TP)平均值依次为19 500、1 027和483 mg.kg-1,东巢湖表土中ω(OM)和ω(TN)均值高于西巢湖,而磷矿的存在导致了ω(TP)均值西高东低;②位于巢湖西南的杭埠-丰乐河和白石天河周边表土中(TP)本底值较高,且水土流失十分严重,巢湖面源污染管理必须高度重视该两河的TP控制;③在线性模型下,巢湖周边表土中ω(OM)、ω(TN)和ω(TP)的块金值/基台值依次为0.015、0.202和0.128.巢湖周边表土中ω(OM)、ω(TN)和ω(TP)具有极强的空间自相关性,三者Pearson检验为两两显著相关,巢湖周边表土中ω(TN)和ω(TP)可由ω(OM)通过文中所得的公式估算,精度能满足日常管理需要.  相似文献   

17.
刘海  赵国红 《环境科学》2023,44(5):2583-2591
为阐明霍邱县城西湖和城东湖表层沉积物营养盐的空间分布及污染特征,测定了城西湖和城东湖各30个表层沉积物样中的总氮(TN)、总磷(TP)和有机质(OM)含量,分析了其污染水平和来源.结果表明,城西湖总氮(TN)、总磷(TP)、有机质(OM)含量显著高于城东湖,其含量平均值分别为746.23mg·kg-1、538.38mg·kg-1、1.17%和470.80mg·kg-1、492.08mg·kg-1、0.68%,城西湖的北部及西北部显著高于其他湖区,且大致由北向南呈递减的特点.C/N值表明城西湖和城东湖的有机质主要来源于无纤维束植物和浮游植物,相关性分析表明城西湖和城东湖TN、TP和OM具有同源性;城西湖和城东湖沉积物的TN单项指数(STN)的平均值分别为0.67和1.18,而TP单项指数(STP)平均值分别为0.42和1.08,表明两湖的TN处于清洁状态而TP处于中度污染状态,综合污染指数(FF)平均值分别为1.51和1.31,整体处于中度污染状态.有机指数...  相似文献   

18.
构建了基于正交设计-水质模拟-方案评价的污染物总量控制方案的方法体系,并应用于滇池流域.选择TN、TP作为总量控制指标,将滇池流域划分为6个子区单元,通过设计5水平(0%,5%,10%,15%,20%)6因素的正交试验表,得到25种不同削减方案;耦合EFDC模型模拟得到25种不同削减情景条件下湖泊水质的TN、TP浓度分布,计算各方案综合营养状态指数(TSI),筛选符合中度富营养化标准(60  相似文献   

19.
滇池近代富营养化加剧过程的沉积记录   总被引:4,自引:1,他引:3       下载免费PDF全文
为认识滇池内源污染特性在湖泊环境演变过程中的变化,采集滇池北部和中心2根柱状沉积物样品,分析了TOC(总有机碳)、TN(总氮)、BSi(生物硅)及磷形态含量剖面变化规律,并探讨了其与滇池富营养化历史的关系. 结果表明,滇池沉积物中w(TOC)与w(TN)自20世纪50年代后增加显著.n(TOC)/n(TN)介于7.0~13.5之间,表明滇池内源藻类和细菌等对沉积物中有机质贡献大. 滇池沉积物中w(TP)剖面变化规律反映了滇池由中营养化向富营养化过渡的过程. 沉积物中w(TP)与w(TOC)呈显著相关(R=0.91,P<0.01),表明滇池外源磷的输入与生物量的增长以及蓝藻水华暴发的一致性和外源磷污染控制的必要性. 滇池不同区域w(BSi)剖面变化及其与w(TOC)、w(TP)的关系表明,滇池在长期演变中,生态系统结构发生了变化. 滇池北部近年来富营养化加剧,蓝藻大量繁殖成为优势种群而导致生物群落结构单一化;而中部等地区硅藻仍保持大量增长趋势,表明藻类在该区域处于大量增长的过程中.   相似文献   

20.
巢湖重污染汇流湾区沉积物营养盐分布与释放风险   总被引:3,自引:0,他引:3       下载免费PDF全文
南淝河、十五里河等多条入湖河道的向心型分布使巢湖西北部湖区形成汇流湖湾,了解该水域沉积物中营养盐累积分布及其释放风险,对评估污染状况具有重要意义. 于该研究湾区设置17个采样点,对沉积物营养盐含量及形态分布进行了调查分析,并使用静态释放方法对沉积物营养盐释放风险进行了研究. 结果表明:研究湾区表层沉积物中w(TN)和w(TP)分别为1 399.3~3 739.4和607.9~1 602.3 mg/kg,均远高于巢湖沉积物中w(TN)、w(TP)的平均值;w(NH4+-N)占w(TN)的5.62%~17.60%,16个采样点的w(Al-P)占w(TP)的50%以上,由此导致沉积物中NH4+-N和PO43--P释放通量较大,分别达到14.27~128.24和0.07~13.00 mg/(m2·d),并且在各河口区域释放风险相对高于湾区其他区域;氮、磷含量垂向分析显示,营养盐污染累积始于20世纪50年代(沉积物深度为24 cm),自80年代到90年代后期营养盐积累速率急速加剧. 沉积物中高含量的氮、磷营养盐及NH4+-N和PO43--P释放通量导致该研究湾区沉积物成为巢湖水体的潜在污染源,因此亟需进行以各河口区域为重点的营养盐污染整治.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号