首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monthly samples were collected in oceanic waters off Discovery Bay, Jamaica, in 60- and 200-m vertical hauls, using 200- and 64-m mesh plankton nets, from June 1989 to July 1991. Sixty-nine species of copepods were identified: nauplii, copepodites and adults were separately enumerated. Total copepod abundances (all stages) ranged from 695 to 4120 m-3 in the upper 60 m, and from 483 to 3319 m-3 in the 200-m water column, without any clear seasonal pattern. With the exception of temperature, no seasonal variations in physico-chemical (chlorophyll a, S, particulate organic carbon, particulate protein) or biological variables were evident. Nauplii, adults and copepodites of selected taxa, and two chaetognath species, showed no significant variations in body length. Significant variantions in reproductive index were detected for several species, but without seasonal trends; many species appear to be continuous or intermittent breeders. There was no evidence of seasonal pattern in overall community composition or diversity, or evidence of changes due to water mass advection. The copepod community can be divided into a recurrent group of 13 (at 60 m) to 17 (at 200 m) perennial species, present year-round, and associated ephemeral groups of 1 to 3 species, present randomly for 1 to 4 consecutive months. The most plausible explanation of these patterns is that broad areas of the Caribbean Sea are dominated by the community of perennial species, while the ephemeral species represent the superimposed influence of local mesoscale gyres.  相似文献   

2.
The daily abundance of aloricate ciliates at Lime Cay, Jamaica, a shallow neritic site, ranged from 29 to 118 × 106 m–2 (0.97 to 3.93 × 106 m–3) between November 1985 and November 1986. Biomass was converted to kilojoules (1 kcal=4.1855 kJ) assuming 42% carbon, 20.15 kJ (g dry wt)–1, and 20% cell shrinkage. Biomass ranged from 0.40 to 3.00 kJ m–2 (13.3 to 100 J m–3; 0.28 to 2.08µg C l–1) with an annual mean of 1.11 kJ m–2 (36.8 J m–3; 0.764µg C l–1). Nanociliates (<20µm equivalent spherical diameter, ESD) dominated abundance, but microciliates (> 20µm ESD) dominated biomass.Strombidium, Strobilidium, Tontonia andLaboea species were conspicuous taxa. Annual production estimates of the aloricate assemblage, based on literature growth rates, ranged from 404 kJ m–2 yr–1 (37 J m–3 d–1) to 1614 kJ m–2 yr–1 (147 J m–3 d–1). A compromise estimate of 689 kJ m–2 yr–1 (i.e., 63 J m–3 d–1) is comparable to other estimates from tropical and subtropical regions. A model of annual energy flow through 11 planktonic compartments suggests the total ciliate assemblage (aloricates and tintinnines) to be as productive as metazoan herbivores and metazoan carnivores.  相似文献   

3.
Nine genera of neritic tropical copepods were collected near Lime Cay, Jamaica, between July 1985 and January 1987. Length-weight regressions were derived for each genus (R 2=0.74 to 0.98), for all calanoids combined (R 2=0.88), and all cyclopoids combined (R 2=0.85). Width-weight regressions were also derived for the same genera but coefficients of determination were generally lower (R 2=0.52 to 0.98) and were much lower forOithona spp. (R 2=0.21). Over a 12 mo period, biomass estimates generated from these length-weight regressions differed by only 3% from direct weight determinations. There were no significant annual variations in prosome lengths for copepodite Stages 1 to 5 inCentropages velificatus, Paracalanus aculeatus orTemora turbinata; prosome lengths in femaleT. turbinata did significantly vary seasonally. No significant seasonal differences in length-weight relationships were observed forC. velificatus. The mean ash content of mixed copepod samples was 6.4%, and the energy density was 25.0 kJ g–1 AFDW. No significant loss of weight was observed 10 mo after preservation in 10% formalin.  相似文献   

4.
Weekly samples were collected near Kingston, Jamaica in 27 m vertical hauls, using 200 and 64µm mesh plankton nets, from July 1985 to January 1987. Thirtytwo copepod species were identified; nauplii and all copepodite stages were enumerated. Total copepod abundance ranged from 2.56 to 87.3 × 104 m–2. The annual abundance cycle was bimodal with peaks in October–November and May–June corresponding to the rainy seasons. Mean annual copepodite biomass was 0.15 g AFDW m–2 ranging from 0.03 to 0.41 g AFDW m–2. Mean generation time (from egg to adult) at 28°C was 19.5 d for the common speciesCentropages velificatus, Paracalanus aculeatus, andTemora turbinata. Isochronal development was demonstrated for copepodites ofP. aculeatus andT. turbinata, but not forC. velificatus. Mean daily specific growth rates (G) were 0.63, 0.63, and 0.48 d–1 forC. velificatus, P. aculeatus, andT. turbinata, respectively. In general, daily specific growth rates decreased in the later copepodite stages. Thus, it is postulated that growth of later stages and egg production may be food limited. Annual copepodite production was estimated as 419 kJ m–2 yr–1, while annual exuvial production and naupliar production were 35 and 50 kJ m–2 yr–1, respectively. Egg production was estimated as 44% (184 kJ m–2 yr–1) of the total copepodite production. Thus, mean total annual copepod production was 688 kJ m–2 yr–1. This estimate is within the range of copepod production estimates in coastal temperate regions.  相似文献   

5.
The fecundity of nine species of adult female calanoid copepods, and molting rates for copepodite stages of Calanus marshallae were measured in 24 h shipboard incubations from samples taken during the upwelling season off the Oregon coast. Hydrographic and chlorophyll measurements were made at approximately 300 stations, and living zooplankton were collected at 36 stations on the continental shelf (<150 m depth) and 37 stations offshore of the shelf (>150 m depth) for experimental work. In our experiments, maximum egg production rates (EPR) were observed only for Calanus pacificus and Pseudocalanus mimus, 65.7 and 3.9 eggs fem-1 day-1 respectively, about 95% of the maximum rates known from published laboratory observations. EPR of all other copepod species (e.g., C. marshallae, Acartia longiremis and Eucalanus californicus) ranged from 3% to 65% of maximum published rates. Fecundity was not significantly related to body weight or temperature, but was significantly correlated with chlorophyll a concentration for all species except Paracalanus parvus and A. longiremis. Copepod biomass and production in on-shelf waters was dominated by female P. mimus and C. marshallae, accounting for 93% of the adult biomass (3.1 mg C m-3) and 81% of the adult production (0.19 mg C m-3 day-1). Biomass in the off-shelf environment was dominated by female E. californicus, P. mimus, and C. pacificus, accounting for 95% of the adult biomass (2.2 mg C m-3) and 95% of the adult production (0.08 mg C m-3 day-1). Copepodite (C1-C5) production was estimated to be 2.1 mg C m-3 day-1 (on-shelf waters) and 1.2 mg C m-3 day-1 (off-shelf water). Total adult + juvenile production averaged 2.3 mg C m-3 day-1 (on-shelf waters) and 1.3 mg C m-3 day-1 (off-shelf waters). We compared our measured female weight-specific growth rates to those predicted from the empirical models of copepod growth rates of Huntley and Lopez [Am Nat (1992) 140:201-242] and Hirst and Lampitt [Mar Biol (1998) 132:247-257]. Most of our measured values were lower than those predicted from the equation of Huntley and Lopez. We found good agreement with Hirst and Lampitt for growth rates <0.10 day-1 but found that their empirical equations underestimated growth at rates >0.10 day-1. The mismatch with Hirst and Lampitt resulted because some of our species were growing at maximum rates whereas their composite empirical equations predict "global" averages that do not represent maximum growth rates.  相似文献   

6.
The population of small copepod species (approximately <1 mm) were investigated during an annual cycle in Disko Bay, western Greenland. The small species considered were Acartia longiremis, Pseudocalanus spp., Oithona spp., Oncaea spp., Microsetella spp., and Microcalanus spp. Most of the small species were present in the surface waters year round and numerically dominated the community, and in biomass from late summer and throughout winter. Oithona spp. was numerically the main contributor, while Pseudocalanus spp. dominated in terms of biomass. In the uppermost 50 m, maximum abundance, biomass and secondary production were observed in late September after the phytoplankton production practically had terminated and the winter initiated. The free spawning Acartia longiremis showed a strong seasonal fluctuation in biomass and egg production, in contrast to the egg carrying species Pseudocalanus spp. and Oithona spp. These had a long spawning season and maintained a more stable biomass year round. Secondary production was estimated by three different ways: (1) based on the obtained specific egg production rates, (2) a temperature dependent equation, and (3) a multilinear regression taking temperature, body weight and chlorophyll into consideration. The contribution of the small species was insignificant when compared to the large Calanus species during the spring- and post-bloom. However, during late summer and winter, where Calanus had left the upper water strata for hibernation, the small species played a crucial role in the pelagic carbon cycling.  相似文献   

7.
J. M. Lacson 《Marine Biology》1992,112(2):327-331
Intraspecific genetic variation among samples of six species of reef fishes,Chromis cyanea, Stegastes partitus, S. planifrons, S. leucostictus, S. dorsopunicans, andThalassoma bifasciatum collected over a 2 wk period in 1990 at La Parguera, Puerto Rico, USA and Discovery Bay, Jamaica, was evaluated using starch-gel electrophoresis. On average, products of 33 protein-coding loci were resolved in each species. Levels of polymorphism (0.95 criterion) ranged from 3.1% inS. dorsopunicans to 42.4% inC. cyanea. Estimates of genetic divergence among samples and indices of genetic subdivision were small in all six study species: mean genetic distances ranged from 0.000 to 0.002 and mean fixation indices ranged from 0.004 to 0.035. Estimates of numbers of migrants per generation (mN e) ranged from 5.1 to 11.6, indicating that substantial genetic exchange probably occurs over the relatively large geographic distance (ca. 1000 km) separating coral reef communities of La Parguera and Discovery Bay. The estimates ofmN e may be biased by a sampling strategy involving only two localities, and should therefore be interpreted with caution. With inferences based solely on allozyme frequency data under a primary assumption of neutrality, genetic substructuring of populations of the six study species on a macrogeographic scale appears virtually nonexistent.  相似文献   

8.
 As part of an ongoing study of changes in the trophic pathways of Florida Bay's pelagic ecosystem, the nutritional environment (seston protein, lipid and carbohydrate levels), diet (taxon-specific microplankton ingestion rates) and egg production rate of the important planktonic copepod Acartia tonsa were measured off Rankin and Duck Keys in July and September 1997 and in January, March and May 1998. Rankin Key has been the site of extensive sea grass mortality and persistent ultraplankton blooms since 1987. Duck Key has experienced neither of these perturbations. Protist (auto-plus heterotroph) biomass was approximately twice as high off Rankin as off Duck Key. Diatoms, dinoflagellates and heterotrophic protists dominated the food environment off Rankin Key, while cells <5 μm diam often predominated off Duck Key. Protein and carbohydrate concentrations were higher off Rankin Key than Duck Key, while average lipid levels were usually low at both stations. Ingestion rates at both stations frequently approached temperature- and food-dependent maxima for the species, exceeding 100% of estimated body C d−1 on 3 of 5 occasions off Rankin Key. Egg production rates, however, were consistently low (Rankin: 3 to 16 eggs copepod−1 d−1; Duck: 1 to 12 eggs copepod−1 d−1), and gross egg production efficiencies (100% × egg production C/ingested C) averaged <10%. At Duck Key, egg production rate varied with temperature and food concentration, while off Rankin Key, egg production was strongly correlated with seston protein content. The efficiency with which lipids (which were scarce in the seston) were transferred from the diet to the eggs increased exponentially with decreasing seston lipid content. Egg production efficiencies based on protein, however, were independent of seston protein content and never exceeded 10%. Received: 23 December 1998 / Accepted: 23 March 2000  相似文献   

9.
The present study addresses the ecology of two dominant copepod species in the Bay of Morbihan, Kerguelen Archipelago. The biomass of the herbivore Drepanopus pectinatus (from 2 mg m?3 in winter up to 500 mg m?3 in summer) is tightly coupled to seasonal changes in chlorophyll a concentration in the region, whereas the biomass of the predatory euchaetiid Paraeuchaeta antarctica increases during two distinct periods over the year: 250 mg m?3 in early summer, with the recruitment of the annual generation, and 100 mg m?3 in autumn, with the deposition of lipids as energy reserves in C5 stages and adults. The juvenile growth rates predicted by temperature-dependent models (0.09 day?1) closely approximate those observed in D. pectinatusin summer, but are much greater than those observed in P. antarctica (from 0.001 to 0.04 day?1 depending on developmental stages). This difference can be explained by the reproductive strategies and trophic positions of the two species and may also result from the dependence of larval growth on energy reserves in P. antarctica. The production rates are five- and tenfold greater in juvenile stages than in adults, respectively, for D. pectinatus and P. antarctica. The secondary production by D. pectinatusis insufficient to support P. antarcticaduring winter, when the predatory species probably shifts to alternate prey. In summer the predation by P. antarctica accounts for only a minor part of the mortality estimated for D. pectinatus (from 20% to 60% depending on the examined station). At two of the three stations examined in the Bay of Morbihan, the production of P. antarctica could potentially support the dietary requirements of planktivorous seabirds in the region (~2,000 kg prey day?1 for common diving petrels, Pelecanoides urinatrix, and ~90 kg prey day?1 for rockhopper penguins, Eudyptes chysocome filholi).  相似文献   

10.
The southwest monsoon on the west coast of India brings about dynamic changes in estuaries and coastal waters. The response of the meiofauna to monsoonal rain is obvious, but the impact of such environmental changes on the community structure of harpacticoid copepod species and their seasonality in the estuaries influenced by the tropical monsoon is poorly understood. In this study the spatial and temporal variability in abundance and community structure of meiobenthic copepods was investigated over an annual cycle (June 1983 to June 1984), in an estuary influenced by the tropical monsoon. Total meiofaunal abundance showed wide variations in space and time. Minimum and maximum densities were observed in the monsoon and pre-monsoon seasons, respectively. Quick recovery of harpacticoid populations in the early post-monsoon season indicated their recuperative power under adverse conditions. Of the 25 species recorded from lower, middle and upper reaches, eight comprised over 70% of the total copepod population. The peak and low occurrence of dominant species displayed striking correlations with the summer and rainy seasons, respectively. While other species were restricted in distribution, Stenhelia longifurca was recorded from all salinity regimes. The harpacticoid community was greatly influenced by the onset of the monsoon period, and their spatial and temporal variabilities were related with physico-chemical parameters and the variability of these parameters in the estuary.  相似文献   

11.
Weis JJ  Cardinale BJ  Forshay KJ  Ives AR 《Ecology》2007,88(4):929-939
Over the past decade an increasing number of studies have experimentally manipulated the number of species in a community and examined how this alters the aggregate production of species biomass. Many of these studies have shown that the effects of richness on biomass change through time, but we have limited understanding of the mechanisms that produce these dynamic trends. Here we report the results of an experiment in which we manipulated the richness of freshwater algae in laboratory microcosms. We used two experimental designs (additive and substitutive) that make different assumptions about how patches are initially colonized, and then tracked the development of community biomass from the point of initial colonization through a period of 6-12 generations of the focal species. We found that the effect of initial species richness on biomass production qualitatively shifted twice over the course of the experiment. The first shift occurred as species transitioned from density-independent to dependent phases of population growth. At this time, intraspecific competition caused monocultures to approach their respective carrying capacities more slowly than polycultures. As a consequence, species tended to over-yield for a brief time, generating a positive, but transient effect of diversity on community biomass. The second shift occurred as communities approached carrying capacity. At this time, strong interspecific interactions caused biomass to be dominated by the competitively superior species in polycultures. As this species had the lowest carrying capacity, a negative effect of diversity on biomass resulted in late succession. Although these two shifts produced dynamics that appeared complex, we show that the patterns can be fit to a simple Lotka-Volterra model of competition. Our results suggest that the effects of algal diversity on primary production change in a predictable sequence through successional time.  相似文献   

12.
This paper examines the long-term variation in zooplankton biomass in response to climatic and oceanic changes, using a neural network as a nonlinear multivariate analysis method. Zooplankton data collected from 1951 to 1990 off the shore of northeastern Japan were analyzed. We considered patterns of the Kuroshio and the Oyashio, sea surface temperature, and meteorological parameters as environmental factors that affect zooplankton biomass. Back propagation neural networks were trained to generate mapping functions between environmental variables and zooplankton biomass. The performance of the network models was tested by varying the numbers of input and hidden units. Changes in zooplankton biomass could be predicted from environmental conditions. The neural network yielded predictions with smaller errors than those of predictions determined by linear multiple regression. The sensitivity analysis of networks was used to extract predictive knowledge. The air pressure, sea surface temperature, and some indices of atmospheric circulation were the primary factors for predictions. The patterns of the Kuroshio and the Oyashio demonstrated different effects among sea areas.  相似文献   

13.
The populations of the copepod species Calanus finmarchicus, C. glacialis and C. hyperboreus were investigated in Disko Bay during a 14-month period in 1996-1997. The three species were predominant in the copepod community. The biomass reached a maximum at the beginning of June (127 mg C m-3). From the end of July until the end of April the following year, the biomass was <1-6 mg C m-3. All three species showed seasonal ontogenetic migration. The spring ascent for all three species was just prior to or in association with the break-up of sea ice and the development of the spring bloom, whereas descent occurred over a larger time span during summer. The main overwintering stages were CV for C. finmarchicus, CIV and CV for C. glacialis and C. hyperboreus. Peak abundance of juvenile copepodites, representing the new generation, was in August for C. finmarchicus, in July for C. glacialis and in May/June for C. hyperboreus. From the timing of reproduction and the population development, the life cycles were deduced to be 1 year for C. finmarchicus and at least 2 years for C. glacialis and C. hyperboreus. Secondary production and potential grazing impact of the Calanus community were estimated by two methods based on specific egg-production rates and temperature-dependent production. The Calanus community was not able to control the primary producers during the spring bloom but probably did during post-bloom. The estimates also indicated that grazing on ciliates and heterotrophic dinoflagellates contributes as an essential food source in the post-bloom period.  相似文献   

14.
A highly diverse soft-bottom community in Kingston Harbour, Jamaica is described to provide additional information on the structure of tropical benthic communities. It is shown that the community has a level of diversity unique to stable tropical environments, that dominance by a few species is greatly reduced,and that there are no true parallels to this community in similar environments. The community described seems to fit Sanders' stability-time hypothesis. The density and standing crop of the community are low, and possible explanations for this are discussed. Continuous year-round breeding, short life-spans, and fast turnover rates are suggested as the most important factors regulating biomass in the community described.  相似文献   

15.
Regions of high primary production along the oligotrophic west coast of Australia between 34 and 22°S in May–June 2007 (midway through the annual phytoplankton bloom) were found around mesoscale features of the Leeuwin Current. At 31°S, an anticyclonic eddy-forming meander of the Leeuwin Current had a mixed layer depth of >160 m, a depth-integrated chlorophyll a (Chl a)-normalised primary production of 24 mg C mg Chl a ?1 day?1 compared to the surrounding values of <18 mg C mg Chl a ?1 day?1. In the north between 27 and 24°S, there were several stations in >1,000 m of water with a shallow (<100 m) and relatively thin layer of high nitrate below the mixed layer but within the euphotic zone. These stations had high primary production at depths of ~100 m (up to 7.5 mg C m?3 day?1) with very high rates of production per unit Chl a (up to 150 mg C mg Chl a ?1 day?1). At 27–24°S, the majority of the phytoplankton community was the ubiquitous tropical picoplankters, Synechococcus and Prochlorococcus. There was a decline in the dominance of the picoplankters and a shift towards a more diverse community with more diatoms, chlorophytes, prasinophytes and cryptophytes at stations with elevated production. Photosynthetic dinoflagellates were negligible, but heterotrophic dinoflagellate taxa were common. Haptophytes and pelagophytes were also common, but seemed to contribute little to the geographical variation in primary production. The mesoscale features in the Leeuwin Current may have enhanced horizontal exchange and vertical mixing, which introduced nitrate into the euphotic zone, increasing primary production and causing a shift in phytoplankton community composition in association with the annual winter bloom.  相似文献   

16.
H. Auel  W. Hagen 《Marine Biology》2002,140(5):1013-1021
During the "International Arctic Ocean Expedition 1991" (20 August-21 September 1991) mesozooplankton was sampled at six stations in the Nansen, Amundsen and Makarov Basins of the central Arctic Ocean from 1,500 m depth to the surface by multiple opening/closing net hauls. Total mesozooplankton abundance decreased from 268 ind. m-3 in the surface layer (0-50 m) to <25 ind. m-3 below 200 m depth. The small copepods Oithona similis and Microcalanus pygmaeus, as well as copepod nauplii, were most abundant close to the surface, while Oncaea borealis and Spinocalanus spp. frequently occurred at greater depth. Mesozooplankton dry mass (DM) integrated over the upper 1,500 m of the water column was surprisingly stable throughout the investigation area and measured 2.0ǂ.3 g DM m-2. Dry mass in the upper 50 m measured 20.9 mg m-3 and was dominated by Calanus hyperboreus (57.4%) and C. glacialis (21.1%). C. finmarchicus was very abundant only in the Nansen Basin. Below 200 m the calanoid copepods Metridia longa, Microcalanus pygmaeus and Pareuchaeta spp., the decapod Hymenodora glacialis and chaetognaths of the genus Eukrohnia were the principal contributors to biomass values of <1 mg DM m-3. Hence, vertical changes in abundance, biomass and species composition were much more pronounced than regional differences between the basins. Three different mesozooplankton communities were differentiated according to their faunistic composition and are discussed in context with the major water masses: Polar Surface Water, Atlantic Layer and Arctic Deep Water.  相似文献   

17.
Over 60 species of reef fishes were observed from submersibles between 50 and 305 m depth, and 25 species were collected from the same depth range using fish traps and submersibles. Short transects gave relative abundance of some species with depth. Many shallow-water coral-reef fishes reach depths far below the lower growth limits of reef-building corals. A true “deep-reef” fauna exists, but the juveniles of some of these species are found at depths of less than 50 m.  相似文献   

18.
Seasonal sampling was carried out based on day/night, vertically stratified tows (100 or 125 m strata) in the upper 900 m of the water column over the mid-slope commercial fishing grounds south of Tasmania. A large midwater trawl (105 m2 mouth area) was used with an opening/closing cod-end. Subtropical convergence and subtropical species dominated the fauna, but many less abundant, more widely-distributed species were also present. Fishes, which contributed 89% of micronekton biomass and 135 of 178 species, were dominated by the Myctophidae (48% biomass and 48 species). Twenty micronekton species made up 80% of the total biomass. Overall, the micronekton fish biomass in this region was 2.2 g m−2 wet weight. A pronounced day/night shift in the distribution of biomass was attributable to diel migratory species. During the day, <0.2% of the total micronekton biomass was found in 0 to 300 m; most biomass was below 400 m, with peaks at 400 to 525 m and 775 to 900 m. At night, 53% of the biomass was found in 0 to 300 m, with progressively less in each deeper stratum. The vertical ranges of individual species typically exceeded 400 to 500 m during the day and night and were non-coincident, although nyctoepipelagic migrators were concentrated in the surface 200 m at night. Distinct epipelagic, lower and upper mesopelagic assemblages were identified, and patterns of epipelagic migration, limited migration and non-migration were categorised for species from each of the lower and upper mesopelagic assemblages. The vertical distribution of these assemblages was coincident with the primary water masses: subantarctic mode water (∼250 to 600 m) and antarctic intermediate water (below ∼700 m). The flux of migrating micronekton, estimated at 0.94 to 3.36 g C m−2 yr−1 to the lower mesopelagic and 1.14 to 4.06 g C m−2 yr−1 to the upper mesopelagic, appeared to be considerably outweighed by the consumption needs of aggregated mid-slope benthopelagic predators. We suggest that advection of mesopelagic prey in antarctic intermediate water may sustain aggregated populations of orange roughy (Hoplostethus atlanticus) and other predators on the micronekton in mid-slope depths at this site. Received: 2 April 1997 / Accepted: 21 August 1997  相似文献   

19.
Diurnal changes in abundance caused by vertical migrations have been examined in populations of copepods, ostracods, euphausiids, amphipods, decapods, chaetognaths, siphonophores and fish. The animals were taken in a series of hauls made over a 24 h period with an opening-closing midwater trawl system (RMT 1+8), consisting of a net of 1 m2 mouth area combined in the same frame as one of 8 m2 mouth area. The samples were taken at 250 m depth in a position 30°N; 23°W on 7/8 April 1972. The specific composition of the community and the numbers of individuals changed continuously with time. The numbers of fish, decapods and chaetognaths increased at night, but those of copepods, ostracods and euphausiids decreased. More species of fish, decapods and copepods were present by night than by day, whereas the numbers of species per haul for other groups remained fairly constant. The relative abundances of groups caught by the RMT 1 have been analysed, but similar treatment of the RMT 8 samples was impossible as only 3 groups were taken from this net. Non-migrants were a minority in every group except chaetognaths. Migrant species have been put into one of 6 transitory categories according to their patterns of abundance and hence migrations. Within each category, migratory behaviour varied both inter- and intraspecifically. The patterns of abundance of many species were smooth and continuous, suggesting slow migratory cycles of small amplitude. Conversely, extensive migrants had discontinuous patterns and presumably more rapid movements. Few migrants had a steady numerical plateau between their upward and downward migrations, and most apparently moved up or down continuously. The presence of migratory species in the sampled layer depended upon the time of day or night. It is concluded that, in a vertical series of hauls, the depths of occurrence of migrants will vary with the sampling time. Further-more, a vertical series will show a species minimum migration range but not necessarily its maximum. Individuals of some species were out of phase with the migrations of their main populations. There is evidence that the distributions and migrations of some species of decapods, euphausiids, copepods and fish could be related to the distribution of underwater light. Three pairs of congeneric copepod species were both spatially and temporally segregated for at least part of their diurnal cycles. Such an orderly arrangement could provide a means of reducing competition between species. Some species, however, overtook others on their migrations and the pattern of underwater light cannot, therefore, regulate the distribution of all species in the same way.  相似文献   

20.
H. -J. Hirche 《Marine Biology》1989,103(3):311-318
Egg production of single female Calanus glacialis Jaschnov fed with Thalassiosira antarctica at super-abundant concentrations (>300 g C l-1) was determined over several weeks. Experiments were performed directly after collection from the East Greeland Current in June 1987 and 1988, and during resumed feeding after long-term starvation over 4 (October 1988), 4.5 (October 1987) and 6.5 (January 1988) mo. In addition, in June 1987, short-term starvation experiments of 5 and 15 d were conducted. Egg production was closely related to feeding in all experiments. While directly after collection eggs were produced within a few days, it took 2 wk (October 1987 and 1988) and 10 d (January 1988), respectively, to resume egg production after long-term starvation. During long-term starvation periods eggs were not laid. The decrease in total egg production with duration of starvation was due to decreasing clutch size and increasing spawning interval. In contrast, short-term starvation experiments only affected spawning interval. Interannual variability in egg production was high, with much higher clutch sizes in 1988. Average production rates in June 1988 correponded to 5% body C female-1 d-1, the maximum was 7.4% (1 274 eggs in 23 d). Carbon content of eggs was 0.40 g egg-1. C. glacialis is well adapted to pulsed food events in the Arctic by its longevity; its ability to preserve its reproductive potential over several months; its rapid mobilization of ovaries; and by its high egg production rates. The implication of prolonged spawning capacity on life cycle studies is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号