首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zovi D  Stastny M  Battisti A  Larsson S 《Ecology》2008,89(5):1388-1398
Herbivore populations may become adapted to the defenses of their local hosts, but the traits that maximize host exploitation may also carry ecological costs. We investigated the patterns and costs of local adaptation in the pine processionary moth, Thaumetopoea pityocampa, to its host plants, Pinus nigra and P. sylvestris. The two hosts differ in needle toughness, a major feeding impediment for leaf-eating insects. We observed a west-to-east gradient of increasing progeny size in the Italian Alps, matching the pattern in toughness of their respective local host plant. Eastern populations that feed on the native P. nigra with tough needles had larger eggs, and neonate larvae with larger head capsules, than western populations that feed on the native P. sylvestris and the introduced P. nigra with softer foliage. In a reciprocal transfer experiment that involved the eastern-most and the western-most populations of T. pityocampa from this region, and excluded natural enemies, we found evidence for local adaptation to the host plant. Specifically, larvae from the western population only performed well when raised on their local hosts with soft needles, and they suffered near-complete mortality on the tough foliage at the eastern site. In contrast, larvae from the eastern population survived equally well at both sites. Local adaptation involved a trade-off between progeny size and the number of offspring. We hypothesized that an additional cost, imposed by natural enemies, may be associated with increased egg size: we also observed a west-to-east gradient of increased egg parasitism. We tested this hypothesis in a common garden by exposing eggs of both populations to parasitism by two native egg parasitoids, Ooencyrtus pityocampae and Baryscapus servadeii. The eastern population suffered a higher level of parasitoid attack by O. pityocampae than the western population, and performance of hatched adults of both parasitoids was enhanced in large eggs. Thus, increased neonate quality (larger eggs yielding larger larvae) confers an advantage on tough foliage but incurs the ecological cost of increased parasitism, which may constrain further adaptation by this herbivore.  相似文献   

2.
Freestone AL 《Ecology》2006,87(11):2728-2735
The importance of facilitation to local community dynamics is becoming increasingly recognized. However, the predictability of positive interactions in stressful environments, the balance of competition and facilitation along environmental gradients, and the scaling of local positive interactions to regional distributions are aspects of facilitation that remain unresolved. I explored these questions in a habitat specialist, Delphinium uliginosum, and a moss, Didymodon tophaceus, both found in small serpentine wetlands. I tested three hypotheses: (1) moss facilitates germination, growth, and/or fecundity of D. uliginosum; (2) facilitation is stronger at the harsher ends of gradients in soil moisture, toxicity, and/or biomass; and (3) facilitation is reflected in positive associations at the levels of local abundance and regional occurrence. Although considerable competitive interactions occurred in later life stages, moss strongly facilitated D. uliginosum seedling emergence. There was no evidence that this facilitative effect weakened, or switched to competition, in benign environments. D. uliginosum was more locally abundant and more frequently present, across a large portion of its range, with than without moss, indicating a net facilitative effect in the face of competitive influences. Facilitated recruitment, possibly by seed retention, was found to be an important control on abundance and distribution in this rare species.  相似文献   

3.
Evolutionary theory suggests that divergent natural selection in heterogeneous environments can result in locally adapted plant genotypes. To understand local adaptation it is important to study the ecological factors responsible for divergent selection. At a continental scale, variation in climate can be important while at a local scale soil properties could also play a role. We designed an experiment aimed to disentangle the role of climate and (abiotic and biotic) soil properties in local adaptation of two common plant species. A grass (Holcus lanatus) and a legume (Lotus corniculatus), as well as their local soils, were reciprocally transplanted between three sites across an Atlantic-Continental gradient in Europe and grown in common gardens in either their home soil or foreign soils. Growth and reproductive traits were measured over two growing seasons. In both species, we found significant environmental and genetic effects on most of the growth and reproductive traits and a significant interaction between the two environmental effects of soil and climate. The grass species showed significant home site advantage in most of the fitness components, which indicated adaptation to climate. We found no indication that the grass was adapted to local soil conditions. The legume showed a significant home soil advantage for number of fruits only and thus a weak indication of adaptation to soil and no adaptation to climate. Our results show that the importance of climate and soil factors as drivers of local adaptation is species-dependent. This could be related to differences in interactions between plant species and soil biota.  相似文献   

4.
There is increasing evidence that populations may not be well adapted to their local environments, and as a result, recent interest has focused on understanding factors that constrain adaptive evolution. This study presents data suggesting gene flow may constrain the ability of larvae of the streamside salamander Ambystoma barbouri to avoid predation by fish via escape behavior and life history tactics. Streamside salamander larvae face conflicting selection pressures in different streams. Some streams are ephemeral, where larvae should be active to feed, grow, and reach metamorphosis before stream drying. Other streams contain predatory fish, where larvae should be generally inactive to avoid predation. Previous work has shown that streamside salamander larvae exhibit ineffective antipredator behavior by having inappropriately high activity levels with fish, resulting in high predation in laboratory and field experiments. This study investigated the possibility that gene flow from larvae in ephemeral habitats may reduce the escape performance of larvae from populations with fish and alter their life history characteristics to increase their susceptibility to fish predation. I assayed escape behavior (speed, acceleration, and duration of escape) and life history characteristics (hatching date, size, stage) associated with predator avoidance among laboratory-reared larvae from four populations. As predicted, two populations (one with fish and the other fishless and ephemeral) connected by gene flow were not significantly different in almost all assays. In contrast, larvae from an isolated population with fish had significantly stronger escape behaviors and delayed hatching than both an isolated population that lacked a history of fish co-occurrence and the population with fish but gene flow from a fishless population. These results support theory suggesting that gene flow can constrain adaptive evolution. Received: 22 February 1999 / Received in revised form: 4 April 1999 / Accepted: 26 April 1999  相似文献   

5.
Cronin JT 《Ecology》2007,88(12):2977-2990
The interaction between species, mediated by a shared natural enemy (i.e., apparent competition), has been the subject of much theoretical and empirical investigation. However, we lack field experiments that assess the importance of apparent competition to metacommunity structure. Here, I conducted a series of field experiments to test whether apparent competition, mediated by shared egg parasitoids (Anagrus nigriventris and A. columbi), occurs between two abundant planthopper species (Delphacodes scolochloa and Prokelisia crocea) of the North American Great Plains. The two planthoppers feed on different plant species within prairie potholes (wet depressions) and, thus, do not interact directly. At the scale of individual potholes, a five-fold pulse increase in D. scolochloa density (relative to control potholes) resulted in a steady decline in P. crocea density over two generations. As expected in cases of apparent competition, P. crocea eggs in these potholes suffered twice the level of parasitism as P. crocea eggs in control potholes. In contrast, a sixfold increase in P. crocea density had no effect on D. scolochloa density or parasitism in those potholes. The superiority of D. scolochloa over P. crocea likely can be attributed to a larger source population size, greater amount of host habitat, and/or the presence of a phenological refuge from parasitism for D. scolochloa. In another experiment, in which small populations of P. crocea were established either in close proximity to D. scolochloa or in isolation, I found that the likelihood of P. crocea persistence was 36% lower in the former than the latter populations. This difference was attributable to very high rates of parasitism of P. crocea when adjacent to D. scolochloa. These two experiments provide clear evidence that the two planthopper species engage in apparent competition and that the shared parasitoids may play a significant role in limiting membership in a local community. Based on these findings, I argue that metacommunity studies must be broadened to include higher trophic levels.  相似文献   

6.
Glucosinolates (GSs) are part of a two-component defence system, characteristic for the Brassicales, including the model species Arabidopsis thaliana (L.) Heynh. The defence activity of GSs is associated with different side chain structures. The AOP genes are central in side-chain modification. AOP2 mediates formation of alkenyl GS from a methylsulfinyl precursor, whereas AOP3 catalyzes production of hydroxy-alkyl GSs from the same precursor. Although several studies have assessed the role of GSs in plant defence, the function of specific aliphatic GSs in plant defence is still not clarified. Structural different GSs may influence insect herbivores differentially. We created a set of plant lines derived of a cross between two A. thaliana accessions, Gie-0 × Sap-0, which dominantly accumulate either 3-methylsulfinylpropyl GS or 3-hydroxypropyl GS. The generalist Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) and the crucifer-specialist Pieris brassicae (L.) (Lepidoptera: Pieridae) were used as model insects, to study effects of individual aliphatic GSs on lepidopteran herbivores with a different feeding specialization. However, the experiments revealed that weight gain of S. exigua and P. brassicae third and fourth-larval instars was similar on both chemotypes. But leaf consumption of the generalist was higher on 3-methylsulfinylpropyl-producing lines with low GS levels (23.2 μmol g−1) than on 3-hydroxypropyl-producing lines that contained a more than twofold higher amount of GSs (60 μmol g−1). In contrast, no differential effects of non-hydroxylated and hydroxylated GSs were found on the specialist P. brassicae. Our study indicates that there is no simple relationship between GS content and insect responses.  相似文献   

7.
Facilitation across stress gradients: the importance of local adaptation   总被引:2,自引:0,他引:2  
Espeland EK  Rice KJ 《Ecology》2007,88(9):2404-2409
While there is some information on genetic variation in response to competition in plants, we know nothing about intraspecific variation in facilitation. Previous studies suggest that facilitation should increase fitness in stressful environments. However, whether a plant experiences an environment as stressful may depend on prior adaptive responses to stressors at a site. Local adaptation to stress at a site may reduce the likelihood of facilitation. Seeds of Plantago erecta from stressful (serpentine soil) and non-stressful (non-serpentine soil) edaphic environments were reciprocally planted into these two soil types. Although competition did not differ significantly among seed sources, there was evidence for a local adaptation effect on facilitation. Non-serpentine seeds planted into serpentine soil exhibited greater individual plant biomass at higher densities. The interaction between population source and growth environment indicates a role for evolutionary processes such as local adaptation in the expression of facilitation in plants.  相似文献   

8.
Johnson BL  Haddad NM 《Ecology》2011,92(8):1551-1558
Using a model plant-pathogen system in a large-scale habitat corridor experiment, we found that corridors do not facilitate the movement of wind-dispersed plant pathogens, that connectivity of patches does not enhance levels of foliar fungal plant disease, and that edge effects are the key drivers of plant disease dynamics. Increased spread of infectious disease is often cited as a potential negative effect of habitat corridors used in conservation, but the impacts of corridors on pathogen movement have never been tested empirically. Using sweet corn (Zea mays) and southern corn leaf blight (Cochliobolus heterostrophus) as a model plant-pathogen system, we tested the impacts of connectivity and habitat fragmentation on pathogen movement and disease development at the Savannah River Site, South Carolina, USA. Over time, less edgy patches had higher proportions of diseased plants, and distance of host plants to habitat edges was the greatest determinant of disease development. Variation in average daytime temperatures provided a possible mechanism for these disease patterns. Our results show that worries over the potentially harmful effects of conservation corridors on disease dynamics are misplaced, and that, in a conservation context, many diseases can be better managed by mitigating edge effects.  相似文献   

9.
Joern A  Provin T  Behmer ST 《Ecology》2012,93(5):1002-1015
The relationship between plant nutrient content and insect herbivore populations and community structure has long interested ecologists. Insect herbivores require multiple nutrients, but ecologists have focused mostly on nitrogen (an estimate of plant protein content), and more recently phosphorus (P); other nutrients have received little attention. Here we document nutrient variation in grass and forb samples from grassland habitats in central Nebraska using an elemental approach; in total we measured foliar concentrations of 12 elements (N and P, plus S, B, Ca, Mg, Na, K, Zn, Fe, Mn, and Cu). We detected significant variability among sites for N, P, Mg, Na, K, and Cu. We next used a model selection approach to explore how this nutritional variation and plant biomass correlate with grasshopper densities (collectively and at the feeding-guild level), and principal component analysis to explore nutrient correlations with grasshopper community species composition. When all grasshoppers were pooled, densities varied among sites, but only P was associated with abundance of the elements shown to vary between sites. Different responses occurred at the feeding-guild level. For grass specialists, densities were associated with N, plus P, Mg, and Na. For forb specialists, N and P were often associated with density, but associations with Na and K were also observed. Finally, mixed-feeder abundance was strongly associated with biomass, and to a lesser extent P, Mg, Na, and Cu. At the community level, B, Ca, Zn, and Cu, plus biomass, explained > 30% of species composition variation. Our results confirm the positive association of N and P with insect herbivore populations, while suggesting a potential role for Mg, Na, and K. They also demonstrate the importance of exploring effects at the feeding-guild level. We hope our data motivate ecologists to think beyond N and P when considering plant nutrient effects on insect herbivores, and make a call for studies to examine functional responses of insect herbivores to dietary manipulation of Mg, Na, and K. Finally, our results demonstrate correlations between variation in nutrients and species assemblages, but factors not linked to plant nutrient quality or biomass likely explain most of the observed variation.  相似文献   

10.
Summary During foraging, natural enemies of herbivores may employ volatile allelochemicals that originate from an interaction of the herbivore and its host plant. The composition of allelochemical blends emitted by herbivore-infested plants is known to be affected by both the herbivore and the plant. Our chemical data add new evidence to the recent notion that the plants are more important than the herbivore in affecting the composition of the volatile blends. Blends emitted by apple leaves infested with spider mites of 2 different species,T. urticae andP. ulmi, differed less in composition (principally quantitative differences for some compounds) than blends emitted by leaves of two apple cultivars infested by the same spider-mite species,T. urticae (many quantitative and a few qualitative differences). Comparison between three plant species — apple, cucumber and Lima bean — reveals even larger differences between volatile blends emitted upon spider-mite damage (many quantitative differences and several qualitative differences).  相似文献   

11.
Chemical defenses are thought to contribute to the invasion success and impacts of many introduced plants; however, for most of these species, little is known about these compounds and how they vary in natural environments. Plant allelochemical concentrations may be affected by a variety of abiotic and biotic factors, including soil nutrients and herbivores. Moreover, such quantitative variation is likely to play an important role in species interactions involving these invasive plants. The purpose of this study was to examine patterns of variation in iridoid glycoside concentrations of the invasive plant Linaria dalmatica (Plantaginaceae). We conducted a greenhouse experiment to investigate the effect of soil nitrogen availability on iridoid glycoside concentrations. Results from this experiment showed that plant iridoid glycoside concentrations decreased with increased nitrogen availability. Additionally, plants were collected from multiple field sites in order to characterize the influence of population, soil nitrogen availability, and herbivore attack on iridoid glycoside variation. Results from field studies indicated that plants demonstrated considerable seasonal variation, as well as variation within and among populations, with iridoid glycoside concentrations ranging from approximately 1 to 15% dry weight. The relationship between soil nitrogen and plant iridoid glycosides varied among populations, with a strong negative correlation in one population, a marginally significant negative relationship in a second population, and no relationship in the remaining two populations. Additionally, we found a negative relationship between iridoid glycoside concentrations and plant injury by an introduced biocontrol agent, the stem-mining weevil Mecinus janthinus (Cucurlionidae). These results show that plant allelochemical concentrations can vary widely in natural environments and suggest that levels of plant defense may be reduced by increased soil nitrogen availability and herbivore attack in this invasive plant species.  相似文献   

12.
Summary Latex is a widespread defence in plants against natural enemies and a literature-based summary of latex-producing angiosperms shows records in 40 families, and more than 20,000 species are estimated to bear laticiferous structures of some kind. This is considerably higher than the usually quoted figure of 12,500 species. There are more tropical than temperate latex-bearing families, both in absolute numbers and proportionally. Proportions of latex-bearing families are similar both in tropical and in more widespread or cosmopolitan families. Significantly more latex-bearing species belong to tropical than either to temperate or to widespread taxa, both in absolute and in relative terms. These differences may be related to the higher diversity of natural enemy species and to higher rates of herbivory in the tropics.  相似文献   

13.
The relationship between individual performance and nonrandom use of habitat is fundamental to ecology; however, empirical tests of this relationship remain limited, especially for higher orders of selection like that of the home range. We quantified the association between lifetime reproductive success (LRS) and variables describing lifetime home ranges during the period of maternal care (spring to autumn) for 77 female roe deer (Capreolus capreolus) at Trois-Fontaines, Champagne-Ardenne, France (1976-2000). We maintained population growth rate (adjusted to account for removals of non-focal animals) near rmax, which enabled us to define the fitness-habitat relationship in the absence of density effects. Using a negative binomial model, we showed that a roe deer's incorporation into its home range of habitat components important to food, cover, and edge (meadows, thickets, and increased density of road allowances) was significantly related to LRS. Further, LRS decreased with increasing age of naturally reclaimed meadows at the time of a deer's birth, which may have reflected a cohort effect related to, but not entirely explained by, a decline in quality of meadows through time. Predictive capacity of the selected model, estimated as the median correlation (rs) between predicted and observed LRS among deer of cross-validation samples, was 0.55. The strength of this relationship suggests that processes like selection of the site of a home range during dispersal may play a more important role in determining fitness of individuals than previously thought. Individual fitness of highly sedentary income breeders with high reproductive output such as roe deer should be more dependent on home range quality during the period of maternal care compared to capital breeders with low reproductive output. Identification of the most important habitat attributes to survival and reproduction at low density (low levels of intraspecific competition) may prove useful for defining habitat value ("intrinsic habitat value").  相似文献   

14.
Studies of biogeographic variation in species abundances are fundamental to understanding and predicting the impacts of invasive exotic species. We quantified the abundance of the introduced and now invasive biocontrol weevil, Rhinocyllus conicus, on a newly adopted native host plant, Cirsium canescens (Platte thistle), across the plant's distributional range. We used regression and structural equation analyses to examine variation in weevil abundance at 92-108 sites over three years in relation to variation in abiotic and biotic parameters hypothesized to be important in insect or plant dynamics and distribution. We found that R. conicus now occurs throughout the majority of the range of C. canescens, even in the center of the native plant's distribution where its coevolved, targeted weed host (Carduus nutans, musk thistle) is absent. In fact, weevil densities were greater in the center of the native plant's distribution in the Sand Hills formation than in peripheral sand patches closer to areas where the targeted 'exotic thistle is common. None of the macroclimatic variables examined were consistent predictors of the large-scale variation in weevil abundance on C. canescens. In addition to biogeographic position, the only other consistent predictor of weevil densities across sites was the number of flower heads per C. canescens plant. These results exclude the "spillover" hypothesis to explain nontarget feeding on this newly adopted native host species. Instead, the results are consistent with the alternative hypothesis that exotic weevil abundance on C. canescens is related to the local availability of native floral resources. Because C. canescens densities have declined with increases in R. conicus at sites central in the plant's distribution, these results suggest that isolated, peripheral populations of C. canescens are likely to be critical for persistence of Platte thistle. More generally, this study suggests that the persistence of a native species that is impacted by an exotic natural enemy may require preservation of populations in habitats outside the optimal portion of the native species' distribution.  相似文献   

15.
For modeling the distribution of plant species in terms of climate covariates, we consider an autologistic regression model for spatial binary data on a regularly spaced lattice. This model belongs to the class of autologistic models introduced by Besag (1974). Three estimation methods, the coding method, maximum pseudolikelihood method and Markov chain Monte Carlo method are studied and comparedvia simulation and real data examples. As examples, we use the proposed methodology to model the distributions of two plant species in the state of Florida.  相似文献   

16.
Plants have different strategies to cope with herbivory, including induction of chemical defences and compensatory growth. The most favourable strategy for an individual plant may depend on the density at which the plants are growing and on the availability of nutrients, but this has not been tested previously for marine plant–herbivore interactions. We investigated the separate and interactive effects of plant density, nutrient availability, and herbivore grazing on the phlorotannin (polyphenolic) production in the brown seaweed Ascophyllum nodosum. Seaweed plants grown at low or high densities were exposed either to nutrient enrichment, herbivorous littorinid gastropods (Littorina obtusata), or a combination of nutrients and herbivores in an outdoor mesocosm experiment for 2 weeks. Seaweeds grown at a low density tended to have higher tissue nitrogen content compared to plants grown at a high density when exposed to elevated nutrient levels, indicating that there was a density dependent competition for nitrogen. Herbivore grazing induced a higher phlorotannin content in plants grown under ambient, but not enriched, nutrient levels, indicting either that phlorotannin plasticity is more costly when nutrients are abundant or that plants responded to herbivory by compensatory growth. However, there were no significant interactive or main effects of plant density on the seaweed phlorotannin content. The results indicate that plants in both high and low densities induce chemical defence, and that eutrophication may have indirect effects on marine plant–herbivore interactions through alterations of plant chemical defence allocation.  相似文献   

17.
Although diet is one of the most important parameters affecting the fitness of terrestrial and marine herbivores, host plant choice and subsequent fitness on that host are not always correlated. This study investigated the effect of diet on fitness of the sea urchin Holopneustes purpurascens, which show an ontogenetic change in host plant use subsequent to recruitment. To test whether fitness on host plant mirrored host plant choice, small and large individuals were collected from both hosts and fed either host plant (Ecklonia radiata or Delisea pulchra). Small urchins survived better than large individuals. Those fed E. radiata produced fewer test lesions, grew faster and were more fecund than those fed D. pulchra, irrespective of size. This pattern was enhanced when the host plant the urchin previously inhabited was assessed. Our results show that diet is driving the previously recorded ontogenetic change in host plant use associated with increasing size in H. purpurascens, where medium-sized individuals switch from D. pulchra to E. radiata.  相似文献   

18.
Experimental evidence for herbivore limitation of the treeline   总被引:1,自引:0,他引:1  
Speed JD  Austrheim G  Hester AJ  Mysterud A 《Ecology》2010,91(11):3414-3420
The treeline ecotone divides forest from open alpine or arctic vegetation states. Treelines are generally perceived to be temperature limited. The role of herbivores in limiting the treeline is more controversial, as experimental evidence from relevant large scales is lacking. Here we quantify the impact of different experimentally controlled herbivore densities on the recruitment and survival of birch Betula pubescens tortuosa along an altitudinal gradient in the mountains of southern Norway. After eight years of summer grazing in large-scale enclosures at densities of 0, 25, and 80 sheep/km2, birch recruited within the whole altitudinal range of ungrazed enclosures, but recruitment was rarer in enclosures with low-density sheep and was largely limited to within the treeline in enclosures with high-density sheep. In contrast, the distribution of saplings (birch older than the experiment) did not differ between grazing treatments, suggesting that grazing sheep primarily limit the establishment of new tree recruits rather than decrease the survival of existing individuals. This study provides direct experimental evidence that herbivores can limit the treeline below its potential at the landscape scale and even at low herbivore densities in this climatic zone. Land use changes should thus be considered in addition to climatic changes as potential drivers of ecotone shifts.  相似文献   

19.
Summary Adults of the seed bug, Neacoryphus bicrucis, are most numerous in large host plant patches and where host plants are most dense within patches. Males patrol small territories composed of host plants and expel other males and unreceptive females. Larger males aggressively exclude smaller males from high quality territories where both host plants and females are most dense. Consequently, large males mate more frequently than small males. Males remain for longer time in areas where host plants are more dense. However, mating experience influences tenure within a host plant patch such that males tend to remain where they have recently mated. Courtship is aggressive and male territorial behavior is similar to courtship behavior. Preference for territories in areas of high host plant density appears to have been selected to increase the rate of encounter with females which preferentially oviposit in areas of high host plant density.  相似文献   

20.
铝对茶叶叶片主要化学成分的影响   总被引:1,自引:0,他引:1  
以茶树2个品种(雁荡毛峰和知仁早茶)为研究材料,采用溶液培养法,研究了铝对茶叶叶片主要化学成分(茶多酚、咖啡碱、氨基酸和维生素C)的影响。结果表明,水培下,10~100mg·L-1质量浓度的铝可显著提高茶多酚的质量分数,与对照相比,50mg·L-1质量浓度下雁荡毛峰茶多酚的质量分数提高了180%,知仁早茶提高了100.6%;10~50mg·L-1质量浓度的铝可提高咖啡碱、氨基酸的质量分数,但100mg·L-1质量浓度下显著降低了咖啡碱和氨基酸的质量分数,雁荡毛峰降低了5.3%、25.8%,知仁早茶降低了2%、7.2%;不同质量浓度的铝对维生素C的质量分数影响不大;低质量浓度的铝处理降低茶树的丙二醛质量分数,而高质量浓度的铝处理(100mg·L-1)提高了丙二醛质量分数。结果证明水培条件下,10~50mg·L-1铝可明显提高茶叶品质,100mg·L-1质量浓度会降低茶叶品质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号