首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为探索孔隙压力对煤岩渗透特性的影响和瓦斯运移规律,以贵州六盘水矿区的煤样为研究对象,利用自带能量扩散X射线(EDX)扫描电镜(SEM)、比表面微孔分析仪,分析煤岩的孔隙特征,同时利用自主加工的三轴渗流装置,进行不同压差下孔隙压力变化的渗流试验研究。结果表明,煤岩孔隙特征、氮气吸附量与孔裂隙发育程度成正相关关系,且与孔径的孔连通率有关。压差一定时,随着孔隙压力增加,煤岩渗透率下降,呈指数函数规律;压差小时,煤岩渗透率的减小率随孔隙压力的增大而减小。煤岩渗透率随试件两端压差的增大呈指数函数减小。  相似文献   

2.
为了研究不同饱水度煤体在液态CO2冻融作用下孔隙裂隙的演化特性,利用自主研发的液态CO2冻融试验系统预处理煤样,采用核磁共振仪(NMR)探究液态CO2冻融前后煤样的t2谱分布、孔隙体积、孔隙度及t2截止值演化特性。结果表明:液态CO2冻融作用能促进煤样内部孔隙结构发育,使煤样中微小孔、中孔和大孔数量均增多;煤样饱水度对液态CO2冻融煤致裂效果影响显著,随煤样饱水度增大,煤样总孔隙体积增大幅度呈直线增长趋势,煤样总孔隙度及有效孔隙度增长幅度呈直线形增长,而残余孔隙度增长幅度呈直线形下降,且完全饱水煤样总孔隙体积、总孔隙度和有效孔隙度分别是干燥煤样的2.48倍、2.49倍和2.56倍,t2截止值从0.38 ms逐渐减小至0.30 ms,煤体内流体流动的自由空间增大,即有效孔隙体积逐渐增大,液态CO2冻融有利于提高煤体的渗透性。  相似文献   

3.
研究孔裂隙特征对煤层中甲烷的产出及运移具有重要的意义。为了得到高阶煤的孔裂隙特征信息,采用低场核磁共振仪对高阶煤样做低场核磁共振实验,测得煤样的T2图谱,进一步分析得到了煤样的核磁渗透率、核磁孔隙度、可动流体饱和度、束缚流体饱和度以及孔径分布等参数的实验结果,并测出煤样的工业分析参数。分析结果得出:原煤中孔隙体积与煤的挥发分含量呈正比的关系;高阶煤孔隙发育而裂隙不发育,并且在孔隙中微孔和小孔占有较大的比例而中孔和大孔占有较少的比例;煤样渗透率与煤样内小孔和大孔所占的比例成正比,与煤样内微孔所占的比例成反比等结论。  相似文献   

4.
为探究煤岩孔隙结构与渗透特性的内在关系,以贵州六盘水3个矿区煤岩为研究对象,利用ASAP2020型比表面微孔分析仪和自主研制的含瓦斯煤三轴渗流装置,研究了其内部孔隙发育情况,并进行了不同孔隙压力下的三轴渗流试验。采用FHH表面分形计算分形维数,建立考虑分形维数的渗透率模型,通过试验结果与模型对比验证其合理性。结果表明:1)煤岩的吸附等温线具有Ⅳ型等温吸附线的特征,四角田煤矿7#煤层微孔到大孔均发育较好,松河煤矿3#煤层存在大量的"墨水瓶"形微孔,木冲沟煤矿8#煤层微孔和中孔较为发育; 2)煤样FHH分形维数介于2.4~2.8,与孔容、平均孔径和孔隙率均呈负相关关系,煤岩孔体积变化在20~40 nm阶段最为明显,累计孔隙容积迅速增加,煤层具有大量的微孔和过渡孔,孔隙发育良好; 3)煤岩渗透率均随孔隙压力升高而降低,四角田煤矿7#煤岩渗透率最大; 4)模型曲线与试验值吻合度较高,能很好地反映孔隙压力与渗透率的变化关系。  相似文献   

5.
为深入探讨煤层注水的防突机理,采用压汞法测试阳泉3号煤干燥煤样和高压注水后煤样的孔隙特性,通过试验发现:注水后煤样孔容、平均孔径、孔隙率及渗透率比注水前分别增加45.17%,48.88%,46.26%和122.95%;而且试验煤样孔隙发育,裂隙和大孔占总孔容的90%以上,过渡孔和微孔占总比表面积的99%以上。试验结果表明,注水前后试验煤样孔隙特性的发生明显变化,说明高压注水对阳泉3号煤的孔隙特性影响显著。通过分析认为,阳泉3号煤具备注水防突的条件,在孔容方面,裂隙和大孔发育,有利于煤层注水水分充分运移;在比表面积方面,以微孔为主,有利于水分在大孔通道中封堵吸附瓦斯,在毛细管力作用下形成抑制解吸效应。  相似文献   

6.
为研究井下卸压抽采时瓦斯流动规律,建立煤层渗透率演化模型。为建该模型将煤体简化为有2组相互垂直节理发育的等效连续介质,假定瓦斯在煤体裂隙中的流动符合立方定律,考虑煤基质对吸附性气体的吸附膨胀作用和外荷载对煤的压缩变形作用,不考虑孔隙压力对裂隙张开的影响。从应力条件和孔隙压力2个方面,结合煤样渗透率试验,对该模型进行有效性验证。结果表明,渗透率模型能反映应力和低孔隙压力对煤样渗透率的影响,但不能体现高孔隙压力对煤样损伤导致的渗透率增大作用。  相似文献   

7.
为揭示突出煤孔隙结构对瓦斯吸附能力与放散性能影响,通过贵州北部3个典型煤矿煤样的低温液氮吸附试验,研究突出煤比表面积、孔容、孔隙平均孔径、最可几孔径、分形维数等5种孔隙结构参数,以及突出煤孔隙的瓦斯扩散模式,分析突出煤孔隙特征参数对吸附能力和放散初性能的影响特征。结果表明:突出煤的孔隙结构较为发育,孔隙通透性较差;孔隙中气体以过渡型和菲克型扩散为主;相比温度,压力和孔径对努森数影响更明显;突出煤孔隙特征参数与瓦斯放散初速度呈较好的线性关系,且分形特征明显,吸附能力随分形维数呈二次函数递增,瓦斯放散初速度随分形维数线性增大。  相似文献   

8.
针对循环采动过程中煤层不同方向渗透特征的演化规律问题,以平顶山十二矿己15煤层煤样为研究对象,利用自行研制的应力-渗流-解吸煤体变形试验装置,开展了循环围压加载下煤样不同方向渗透试验。研究结果表明:在相同的轴压、围压和平均孔隙压力下,试样平行层理面方向的渗透率大于垂直层理,平行层理面内的渗透率相差不大。在围压恒定的情况下,通过试样的流量随着渗透压差的增大而增大,且二者之间的关系可以用二次函数描述;围压增加,导致裂隙闭合,渗透率减小,当循环围压大于煤屈服强度和抗压强度时,裂隙扩展,渗透率增加;循环围压加载可以改变煤样原有不同方向渗透率大小顺序,渗透率与原初始渗透率比值随循环加载次数的增加而增大。  相似文献   

9.
为探究瓦斯压力、围岩应力变化引起煤体变形规律,利用自行研制的应力-渗流-解吸煤体变形试验装置,以铁新煤矿9号煤为研究对象,开展应力、渗流作用下煤体变形试验,根据试验结果分析围压和孔隙压力对煤体变形影响的显著程度。结果表明:围压自15 MPa起,在以2 MPa/次梯度递减至5 MPa的过程中,煤体的径向应变呈线性减小,纵向应变呈线性增加趋势;围压为定值时,煤体变形与孔隙压力的关系满足二次函数;煤体径向变形和孔隙压力、围压的关系满足二元二次函数,且围压对煤体变形的影响比孔隙压力更显著。  相似文献   

10.
为研究冲击载荷作用下煤岩的孔隙与裂隙演化特征,以贵州马场矿的突出煤岩为研究对象,利用分离式霍普金森压杆(SHPB)试验系统、核磁共振(NMR)试验系统和扫描电镜(SEM)试验系统对不同冲击载荷作用下的煤岩孔隙与裂隙的演化特征进行试验研究,分析煤岩在冲击载荷的作用下的孔隙、裂隙的演化规律与煤岩冲击对煤与瓦斯突出的影响。研究表明:随着冲击气压的增加,煤岩的微小孔峰值信号量与孔径占比先增大后减小,孔隙与裂隙的连通性增强,中大孔峰值孔径占比先减小后增大;马场矿煤样微小孔的孔喉分布占总孔喉的38. 85%~56. 14%,中大孔的孔喉分布占总孔喉的43. 86%~61. 15%;在冲击载荷作用下,煤体中孔隙与裂隙演化是以孔隙扩展、裂隙扩张与延伸和次生裂隙的产生等形式进行的,冲击载荷增强了孔隙与裂隙的连通性,瓦斯的吸附/解吸平衡被打破,瓦斯压力升高,煤体中产生了应力集中和能量积聚,使得煤与瓦斯突出发生的可能大大增加。  相似文献   

11.
为深入了解煤层注水过程中水分在高阶煤煤体中的运移特征,以焦作中马村矿高阶煤为研究对象,利用低场核磁共振(LNMR)设备,测试煤样在负压浸水试验、等温浸润试验过程中不同浸水时间时的核磁谱图,结合煤样负压浸水过程的质量变化,获得制备饱水煤样所需的试验条件;结合煤样等温浸润过程质量变化,从微观层面定量分析煤样润湿过程中水分进入煤体的分布特征、煤样含水率和含水饱和度的变化规律。结果表明:水分在毛细管力作用下,可以浸润到煤体的最小孔径对应的核磁弛豫时间为0.014 ms;水分按照较大孔→小孔→微孔的路径依次进入到煤体中,按照微孔→小孔→较大孔的路径依次达到饱和状态,试验煤样在相同的润湿时间时,虽然含水率不同,但整体含水饱和度几乎一致,且煤样整体含水饱和度与润湿时间的0.5次方之间存在定量关系。  相似文献   

12.
为分析低阶煤孔隙结构特征及其对瓦斯(甲烷)吸附特性的影响,采用高压容量吸附装置对3个低阶煤煤样和一个高阶煤煤样进行等温吸附试验和低温液氮吸附试验,并对比分析不同变质程度煤的吸附性能和孔隙结构。结果表明:低阶煤的吸附特性符合朗缪尔(Langmuir)方程;不同变质程度煤孔的结构存在明显差异,不同低阶煤的孔隙结构基本相近,在高压段均出现微小的滞后环,其孔形以两端开口的楔形孔为主,其对瓦斯的吸附主要集中于中孔和微孔中,中孔占比更大;煤体孔隙比表面积决定瓦斯吸附能力,中孔的比表面积与煤样的Langmuir体积线性相关,对吸附起决定性作用,而微孔的比表面积与Langmuir体积没有明显的正相关关系。  相似文献   

13.
为探索同一应力加卸载路径下2种典型煤样(原生结构煤及构造煤)的瓦斯渗透规律,用3轴应力瓦斯渗流模拟装置,对2种原煤试件不同瓦斯压力承压时的瓦斯渗透特性进行试验研究。结果表明,加载阶段,随着加载应力的增大,2种煤样的渗透率均呈下降趋势,且初期降幅最急剧,当围压从0升到3 MPa时,2种煤样的渗透率分别下降64%和70%;卸载阶段,渗透率随着应力的减小而增大,围压完全卸载后,2种煤体的渗透率分别恢复到初始值的25%和50%;在同样的应力条件下,有效应力的增加对原生结构煤的影响作用大于煤基质收缩,渗透率随着瓦斯压力的增加而增大,而对构造煤则相反,渗透率随着瓦斯压力的降低而增大。  相似文献   

14.
为研究不同质量分数水分对煤体瓦斯放散特征的影响规律,选取3种不同变质程度的典型煤样,测试了水分作用下的煤体瓦斯放散初速度,并结合扫描电镜和压汞法研究了煤体孔裂隙分布特征,阐明了水分对煤体瓦斯放散初速度的微观影响机理.结果表明:水分对煤体瓦斯放散初速度起到了明显的抑制作用,煤阶越高,水分的影响程度越大;水分对褐煤、烟煤和无烟煤瓦斯放散初速度影响规律的差异性与煤体孔隙分布有关;随水分质量分数增加,褐煤瓦斯放散初速度表现为先快速降低后缓慢减小,烟煤△p呈线性衰减,无烟煤则表现为先小幅降低后急剧下降.  相似文献   

15.
热力耦合作用下深部煤层渗流规律试验研究   总被引:2,自引:0,他引:2  
为了进一步揭示深部煤岩渗透率的变化规律,进行了高有效应力和高温条件下煤体渗透规律测定试验.结果表明:随着有效应力的增大,煤层渗透率呈现递减趋势;温度升高,煤体出现膨胀现象,渗透率减小.初步提出了热力耦合作用下含瓦斯煤渗透率影响机理,即温度升高,煤固体骨架膨胀,试件内部孔隙裂隙体积减小,瓦斯渗流通道减小,渗透率减小;有效应力增大,煤体孔隙裂隙被压缩,导致渗透率逐渐减小.  相似文献   

16.
为进一步认清压力水影响煤层瓦斯解吸的作用机理,采用实验室试验和理论分析相结合的方法,研究压力水对山西阳泉新景煤矿3号煤层瓦斯解吸特性的影响。在实验室,按照压力水与瓦斯进入煤体的先后顺序,设计出煤样吸附瓦斯前注水和吸附瓦斯后注水2种试验。吸附前注水试验结果表明,注水煤样的瓦斯解吸等温线与吸附等温线之间分叉明显,吸附量最大相差约4 m3/t;而吸附后注水试验结果表明,注水煤样的解吸等温线明显处于干燥煤样解吸等温线上方,吸附量相差最大约5 m3/t,该结果直观表明压力水对瓦斯解吸有抑制效应。经理论分析提出抑制解吸效应的机理,认为煤体孔隙发育是先天条件,压力水的浸入是后天条件,而毛管力和贾敏效应是抑制解吸效应的根本原因。  相似文献   

17.
为了研究水力冲孔周围煤体瓦斯运移规律,研究了水力冲孔周围煤体的应力、体积应变和孔径变化规律,建立了蠕变-渗流耦合作用下的水力冲孔周围煤体渗透率动态演化模型,揭示了水力冲孔周围煤体渗透率的时空演化规律,阐明了蠕变变形和基质收缩对渗透率的控制作用机理。研究结果表明:水力冲孔措施可以大幅度提高钻孔周围煤体的渗透率,在空间上煤体渗透率随距离呈负幂函数关系迅速降低(K=2×10-16 r -2.4);在时间上煤体渗透率随抽采时间的延长而逐渐增大,但是增加梯度会逐渐降低;水力冲孔周围煤体渗透率的增加主要受到煤的蠕变变形控制,基质收缩效应虽然有利于渗透率的增加,但对渗透率的贡献远小于煤体的蠕变变形;钻孔由于蠕变变形会产生缩孔现象,很容易堵塞抽采通道,此时即使渗透率大幅度的提高,也很难保证抽采效果,因此迫切需要制定相应的防堵孔措施。  相似文献   

18.
当前煤体孔隙结构研究普遍基于液氮吸附实验,而实验所测结果因选取煤样粒径的不同而变动。利用不同煤阶的5种煤样分别选取不同目数的煤样进行实验,测得了在不同粒径条件下的比表面积、平均孔径、吸附曲线等数据。研究表明,焦煤孔隙结构测试数据受实验样品粒径影响较大,褐煤平均孔径较大,孔隙发育程度高且测试数据受实验样品粒径影响较小。  相似文献   

19.
为研究随采深增加煤岩的渗流变化趋势,利用含瓦斯煤热-流-固耦合三轴伺服渗流装置,进行不同温度下孔隙压力改变的渗流试验,建立力热耦合作用下考虑滑脱效应的煤岩渗透率模型,采用试验数据验证模型的有效性。研究结果表明:在孔隙压力增大过程中,瓦斯流量逐渐增加,随温度升高体积应变、径向应变均呈降低趋势,轴向应变呈先降低后升高趋势;随孔隙压力增大,煤岩渗透率先逐渐减小后趋于平缓,且随温度升高,煤岩渗透率呈增大趋势;考虑力热耦合作用下煤岩渗透率模型计算出的渗透率与试验所测结果吻合较好;在低孔隙压力下滑脱效应较明显,随着孔隙压力增大,滑脱效应逐渐减弱。  相似文献   

20.
为揭示冲击煤样渗透率的变化规律,通过立式分离式霍普金森(SHPB)冲击装置对不同层理方向煤样进行动态冲击,进而采用渗透仪对冲击后的煤样进行渗透率测试,分析不同冲击荷载下煤岩的渗透率及应力敏感性。结果表明:冲击煤样的渗透率远大于原煤样品,冲击载荷越大,渗透率越大;在相同的冲击载荷和气体压力下,平行于层理方向的煤样渗透率最大,其次是斜交45°层理方向的煤样渗透率,垂直于层理方向的煤样渗透率最小;渗透率受有效应力影响显著;在冲击荷载的作用下,垂直于层理方向煤样渗透率的变化率对孔隙压力更为敏感。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号