首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

A time-dependent, 3-dimensional mesoscale model, version 5 (MM5), developed by the Penn State University and the National Center for Atmospheric Research, was applied to study the meteorology over complex terrain of the El Paso-Juarez area. MM5 meteorological output data were compared against experimental data from the Texas Natural Resource Conservation Commission on days of reported high ozone concentrations. Model runs were conducted for a 36-, 12-, 4-km grid arrangement. Results indicate that the dispersion of pollutants by wind plays a significant role on days of low peak ozone concentration.  相似文献   

2.
This paper presents the first attempt to apply the Mesoscale Meteorological Model (MM5)-Community Multi-Scale Air Quality Model (CMAQ) model system to simulate ground-level ozone (O3) over the continental Southeast Asia (CSEA) region for both hindcast and forecast purposes. Hindcast simulation was done over the CSEA domain for two historical O3 episodes, January 26-29, 2004 (January episode, northeast monsoon) and March 24-26, 2004 (March episode, southwest monsoon). Experimental forecast was done for next-day hourly O3 during January 2006 over the central part of Thailand (CENTHAI). Available data from 20 ambient monitoring stations in Thailand and 3 stations in Ho Chi Minh City, Vietnam, were used for the episode analysis and for the model performance evaluation. The year 2000 anthropogenic emission inventory prepared by the Center for Global and Regional Environmental Research at the University of Iowa was projected to the simulation year on the basis of the regional average economic growth rate. Hourly emission in urban areas was prepared using ambient carbon monoxide concentration as a surrogate for the emission intensity. Biogenic emissions were estimated based on data from the Global Emissions Inventory Activity. Hindcast simulations (CSEA) were performed with 0.5 degree x 0.5 degree resolution, whereas forecast simulations (CENTHAI) were done with 0.1 degree x 0.1 degree hourly emission input data. MM5-CMAQ model system performance during the selected episodes satisfactorily met U.S. Environmental Protection Agency criteria for O3 for most simulated days. The experiment forecast for next-day hourly O3 in January 2006 yielded promising results. Modeled plumes of ozone in both hindcast and forecast cases agreed with the main wind fields and extended over considerable downwind distances from large urban areas.  相似文献   

3.
This study focuses on synoptic-scale transport of ozone as it affects Southern Ontario. This process has been analyzed for the summer in 2001, as an example period of a frequent event that usually occurs during summer in this region. The work was carried out using the mesoscale modeling system generation 5 (MM5)/sparse matrix operator kernel emission modeling system (SMOKE)/community multiscale air quality (CMAQ) regional air quality modeling system, together with observational data from monitoring stations located throughout the modeling domain. Other different analyses have been carried out to supply more information apart from that obtained by the modeling system. A back-trajectory cluster methodology was used to evaluate the magnitude of the effects studied and an analysis of wind direction and cloud cover revealed a significant correlation with ozone concentration (R2=0.5–0.6). Synoptic sea-surface level pressure (SLP) patterns were also analyzed to examine other meteorological aspects. The contribution of natural background ozone to the total amount within the region was compared with that from synoptic-scale transport. The influence of emission of pollutants from selected areas on ozone concentrations in Southern Ontario was also analyzed. As relevant results of these analyses, the model predicts that background ozone is the largest contribution to the ground-level ozone concentration during days in which low values were recorded. However, when smog episodes occurred, the model predicts that around 60% of the ozone formed by anthropogenic emissions of pollutants is due to releases from nearby US states.  相似文献   

4.
This analysis represents the first characterization of the photochemistry and transport of ozone in the Detroit metropolitan area and provides a basis for comparing data for Detroit to that for other cities. The characterization is based on a comprehensive set of meteorological and chemical measurements obtained at a site in the urban core of Detroit during the summer of 1981, together with measurements of O3, nitrogen oxides (NO X ), and nonmethane organic compounds (NMOC) from rural, suburban, and urban areas in southeastern Michigan and adjacent areas of Ontario.

For the quartile (23 days) with highest ozone maxima (97-180 ppb), the maxima occurred 10-70 km north-northeast of the city on days that were warm and hazy with light southsouthwest winds. On such days there was a marked accumulation of ozone precursors (NMOC and NOX) in the early morning, as well as a rapid chemical removal of NO X (NO X half-life of ~5 h) from morning to midday. The timing of the daily ozone increase across the study region suggests that local photochemical generation in a moving plume was responsible for more than half of the ozone measured downwind. However, there was also evidence that ozone transported into Detroit as part of the regional background was a significant part of the O3 maxima on high ozone days. The average contributions of photochemistry and transport for the 23 days with the highest ozone maxima were estimated to be 57 ppb and 47 ppb, respectively.  相似文献   

5.
A modeling system consisting of MM5, Calmet, and Calgrid was used to investigate the sensitivity of anthropogenic volatile organic compound (VOC) and oxides of nitrogen (NOx) reductions on ozone formation within the Cascadia airshed of the Pacific Northwest. An ozone episode that occurred on July 11-14, 1996, was evaluated. During this event, high ozone levels were recorded at monitors downwind of Seattle, WA, and Portland, OR, with one monitor exceeding the 1 hr/120 ppb National Ambient Air Quality Standard (at 148 ppb), and six monitors above the proposed 8 hr/80 ppb standard (at 82-130 ppb). For this particular case, significant emissions reductions, between 25 and 75%, would be required to decrease peak ozone concentrations to desired levels. Reductions in VOC emissions alone, or a combination of reduced VOC and NOx emissions, were generally found to be most effective; reducing NOx emissions alone resulted in increased ozone in the Seattle area. When only VOC emissions were curtailed, ozone reductions occurred in the immediate vicinity of densely populated areas, while NOx reductions resulted in more widespread ozone reductions.  相似文献   

6.
European Holly (Ilex aquifolium) received either charcoal-filtered air (CFA) or CFA with 70 nl l(-1) ozone added for 7 h day(-1) over a 28 day period. Plants were then transferred into cooling incubators for hardening (4 degrees C day/2 degrees C night; day length 12 h) for 7 days and then to the frosting stage (2 degrees C day and -5, -10 or -15 degrees C night) for 4 days. The plants were then placed in ambient conditions. Treatment produced significant differences in chlorophyll fluorescence data. Stomatal conductance was significantly higher for the ozone treatments though both showed a general decline over all temperature regimes. Ozone also significantly increased electrolyte leakage and reduced winter survival. These results show that ambient concentrations of ozone can reduce the tolerance of I. aquifolium to freezing stress, which may have serious implications for its establishment and survival.  相似文献   

7.
Tropospheric ozone adversely affects human health and vegetation, and biogenic volatile organic compound (BVOC) emission has potential to influence ozone concentration in summer season. In this research, the standard emissions of isoprene and monoterpene from the vegetation of the Kinki region of Japan, estimated from growth chamber experiments, were converted into hourly emissions for July 2002 using the temperature and light intensity data obtained from results of MM5 meteorological model. To investigate the effect of BVOC emissions on ozone production, two ozone simulations for one-month period of July 2002 were carried out. In one simulation, hourly BVOC emissions were included (BIO), while in the other one, BVOC emissions were not considered (NOBIO). The quantitative analyses of the ozone results clearly indicate that the use of spatio-temporally varying BVOC emission improves the prediction of ozone concentration. The hourly differences of monthly-averaged ozone concentrations between BIO and NOBIO had the maximum value of 6 ppb at 1400 JST. The explicit difference appeared in urban area, though the place where the maximum difference occurred changed with time. Overall, BVOC emissions from the forest vegetation strongly affected the ozone generation in the urban area.  相似文献   

8.
ABSTRACT

A modeling system consisting of MM5, Calmet, and Calgrid was used to investigate the sensitivity of anthropogenic volatile organic compound (VOC) and oxides of nitrogen (NOx) reductions on ozone formation within the Cascadia airshed of the Pacific Northwest. An ozone episode that occurred on July 11-14, 1996, was evaluated. During this event, high ozone levels were recorded at monitors downwind of Seattle, WA, and Portland, OR, with one monitor exceeding the 1 hr/120 ppb National Ambient Air Quality Standard (at 148 ppb), and six monitors above the proposed 8 hr/80 ppb standard (at 82-130 ppb). For this particular case, significant emissions reductions, between 25 and 75%, would be required to decrease peak ozone concentrations to desired levels. Reductions in VOC emissions alone, or a combination of reduced VOC and NOx emissions, were generally found to be most effective; reducing NOx emissions alone resulted in increased ozone in the Seattle area. When only VOC emissions were curtailed, ozone reductions occurred in the immediate vicinity of densely populated areas, while NOx reductions resulted in more widespread ozone reductions.  相似文献   

9.
In 71 adults residing in Florence, Italy, enrolled in a prospective study, we investigated the correlation between individual levels of oxidative DNA damage detected by the Comet assay in circulating lymphocytes, and a specific ozone exposure score calculated in 10 different time-windows (0-5 to 0-90 days) before blood drawing, based on daily measurements provided by the local environmental monitoring system.Overall, statistically significant positive correlations between average ozone concentrations and DNA damage emerged in almost all time-windows considered; correlations were more evident among males, non-smokers, and traffic-exposed workers. Multivariate regression analyses taking into account selected individual characteristics, showed an independent effect on DNA damage of average ozone concentrations in the last 60-90 days before blood drawing. Local residents showed a divergent pattern with correlations restricted to shorter time-windows.Our results suggest that ozone concentrations at ground levels modulate oxidative DNA damage in circulating lymphocytes of residents of polluted areas.  相似文献   

10.
The main purpose of this study is to evaluate the photochemical pollution over the Metropolitan Area of Porto Alegre (MAPA), Brazil, where high concentrations of ozone have been registered during the past years. Due to the restricted spatial coverage of the monitoring air quality network, a numerical modelling technique was selected and applied to this assessment exercise. Two different chemistry-transport models – CAMx and CALGRID – were applied for a summer period, driven by the MM5 meteorological model. The meteorological model performance was evaluated comparing its results to available monitoring data measured at the Porto Alegre airport. Validation results point out a good model performance. It was not possible to evaluate the chemistry models performance due to the lack of adequate monitoring data. Nevertheless, the model intercomparison between CAMx and CALGRID shows a similar behaviour in what concerns the simulation of nitrogen dioxide, but some discrepancies concerning ozone. Regarding the fulfilment of the Brazilian air quality targets, the simulated ozone concentrations surpass the legislated value in specific periods, mainly outside the urban area of Porto Alegre. The ozone formation is influenced by the emission of pollutants that act as precursors (like the nitrogen oxides emitted at Porto Alegre urban area and coming from a large refinery complex) and by the meteorological conditions.  相似文献   

11.
12.
An enhanced ozone forecasting model using nonlinear regression and an air mass trajectory parameter has been developed and field tested. The model performed significantly better in predicting daily maximum 1-h ozone concentrations during a five-year model calibration period (1993–1997) than did a previously reported regression model. This was particularly true on the 28 “high ozone” days ([O3]>120 ppb) during the period, for which the mean absolute error (MAE) improved from 21.7 to 12.1 ppb. On the 77 days meteorologically conducive to high ozone, the MAE improved from 12.2 to 9.1 ppb, and for all 580 calibration days the MAE improved from 9.5 to 8.35 ppb. The model was field-tested during the 1998 ozone season, and performed about as expected. Using actual meteorological data as input for the ozone predictions, the MAE for the season was 11.0 ppb. For the daily ozone forecasts, which used meteorological forecast data as input, the MAE was 13.4 ppb. The high ozone days were all anticipated by the ozone forecasters when the model was used for next day forecasts.  相似文献   

13.
We used tobacco Bel-W3 biomonitoring data and ozone flux modelling (WINDEP model) with the aim of developing the absorbed dose-response relationship, and comparing this approach with the most commonly used AOT40 (the sum of hourly ozone concentrations above a cut-off of 40 ppb during daylight hours, when global radiation exceeds 50 W m(-2)) in the estimation of exposure-damage curves. Leaf damage values were more related to OAD(15 days, potential) (potential ozone absorbed dose calculated over 15 consecutive days) than to AOT40 in all the studied stations. An OAD(15 days, potential) of 180 mg m(-2) was found to be the threshold for damage to the most sensitive species in this region under well watered conditions. The results show the applicability of the flux approach for risk assessment at the local scale, the improvement of the ozone damage estimation when the potential absorbed dose is modelled and used instead of just the ozone exposure, and finally, the possibilities opened by the use of biomonitoring networks.  相似文献   

14.
Loblolly pine (Pinus taeda L.) seedlings were exposed to 0.120 micromol mol(-1) (ppm) ozone for 7 h per day, 5 days per week for 12 weeks. No visible damage resulted from this regime. A short-lived radioisotope of carbon ((11)C) was used to characterize changes in plant physiology caused by ozone, the first time this technique has been used for ozone exposure studies. In comparison to plants kept in charcoal-filtered air, pines exposed to ozone exhibited reductions in photosynthesis (16%), speed of phloem transport (11%), phloem photosynthate concentration (40%) and total carbon transport toward roots (45%). Photosynthate not transported to the roots appeared to accumulate in the stems. Primary branches of pines exposed to ozone were some 50-60% heavier than those of control pines. Ozone was thus shown to have a significant short-term impact on phloem transport processes that results in a shift in allocation of photosynthate favoring stems.  相似文献   

15.
ABSTRACT

Using the Community Multiscale Air Quality (CMAQ) model and the Benefits Mapping and Analysis Program – Community Edition (BenMAP-CE) tool, we estimate the benefits of anthropogenic emission reductions between 2002 and 2011 in the Eastern United States (US) with respect to surface ozone concentrations and ozone-related health and economic impacts, during a month of extreme heat, July 2011. Based on CMAQ simulations using emissions appropriate for 2002 and 2011, we estimate that emission reductions since 2002 likely prevented 10– 15 ozone exceedance days (using the 2011 maximum 8-hr average ozone standard of 75 ppbv) throughout the Ohio River Valley and 5– 10 ozone exceedance days throughout the Washington, DC – Baltimore, MD metropolitan area during this extremely hot month. CMAQ results were fed into the BenMAP-CE tool to determine the health and health-related economic benefits of anthropogenic emission reductions between 2002 and 2011. We estimate that the concomitant health benefits from the ozone reductions were significant for this anomalous month: 160–800 mortalities (95% confidence interval (CI): 70–1,010) were avoided in July 2011 in the Eastern U.S, saving an estimated $1.3–$6.6 billion (CI: $174 million–$15.5 billion). Additionally, we estimate that emission reductions resulted in 950 (CI: 90–2,350) less hospital admissions from respiratory symptoms, 370 (CI: 180–580) less hospital admissions for pneumonia, 570 (CI: 0–1650) less Emergency Room (ER) visits from asthma symptoms, 922,020 (CI: 469,960–1,370,050) less minor restricted activity days (MRADs), and 430,240 (CI: ?280,350–963,190) less symptoms of asthma exacerbation during July 2011.

Implications: We estimate the benefits of air pollution emission reductions on surface ozone concentrations and ozone-related impacts on human health and the economy between 2002 and 2011 during an extremely hot month, July 2011, in the eastern United States (US) using the CMAQ and BenMAP-CE models. Results suggest that, during July 2011, emission reductions prevented 10-15 ozone exceedance days in the Ohio River Valley and 5-10 ozone exceedance days in the Mid Atlantic; saved 160-800 lives in the Eastern US, saving $1.3 - $6.5 billion; and resulted in 950 less hospital admissions for respiratory symptoms, 370 less hospital admissions for pneumonia, 570 less Emergency Room visits for asthma symptoms, 922,020 less minor restricted activity days, and 430,240 less symptoms of asthma exacerbation.  相似文献   

16.
We have assessed the contributions of individual physical and chemical atmospheric processes on ozone formation under different weather conditions during a typical summer month (August 2005) using the MM5/CMAQ modelling system. We found that the ozone episodes in the Kanto region are dominated by three major patterns, of which Patterns I and II are regular summertime pressure patterns with a 26% and 16% frequency of occurrence, respectively. A process analysis at two typical sites in the Kanto region – one located in the central region of Tokyo and the other located in the rural areas of Kanto – indicates that ozone formation is mainly controlled by advection, vertical diffusion, dry deposition, and chemical processes. The ground-level ozone concentrations are enhanced mainly by the vertical mixing of ozone-rich air from aloft, whereas the dry deposition and chemical processes mainly deplete ozone. By investigating the effects of each process under different weather conditions, we found that the significant decrease in ozone removal due to the chemical and advection processes under conditions of high stagnation is the most important cause of the enhanced levels of ozone in the central region of Tokyo. The results of this study can contribute to a better understanding of ozone formation in the Kanto region, and they may be valuable for local policy makers for further development planning.  相似文献   

17.
Spring wheat (Triticum aestivum L. cv. Turbo) was grown from seedling emergence to maturity (129 days) in chambers simulating the physical climate and ozone pollution of a field site in Northern Germany from 1 April to 31 July with a mean 1-h daily maximum of 61.5-62.4 nl l(-1) ozone compared to a constant low level of 21.5-22.8 nl l(-1) ozone. The two ozone levels were combined with either a current (374.1-380.2 microl l(-1)) or enriched (610.6-615.0 microl l(-1)) CO(2) atmosphere. Additionally, a leaf rust epidemic (Puccinia recondita f. sp. tritici) was induced at tillering stage by repeated re-inoculations with the inoculum formed on the plants. Leaf rust disease was strongly inhibited by ozone, but largely unaffected by elevated CO(2). Ozone damage on leaves was strongly affected by CO(2) and infection. On infected plants, ozone lesions appeared 2-4 weeks earlier and were up to fourfold more severe compared to non-infected plants. Elevated CO(2) did not delay the onset of ozone lesions but it significantly reduced the severity of leaf damage. It also enhanced the photosynthetic rate of flag leaves and increased the water use efficiency, biomass formation and grain yield. The relative increases in growth and yield induced by CO(2) were much larger on ozone-stressed than on non-stressed plants. Both ozone and fungal infection reduced biomass formation, number of grains per plant, thousand grain weight and grain yield; however, adverse effects of leaf rust infection were more severe. Elevated CO(2) largely equalized the negative effects of ozone on the photosynthetic rate, growth and yield parameters, but was not capable of compensating for the detrimental effects of fungal infection. The data imply that the impact of ozone in the field cannot be estimated without considering the predisposing effects deriving from fungal infections and the compensating effects deriving from elevated CO(2).  相似文献   

18.
Young wheat plants were fumigated with 170 microg m(-3) ozone for 3 days, or with 210 microg m(-3) ozone for 7 days, for 7 hours a day. At the end of the fumigation period the plants were inoculated with brown rust (Puccinia recondita f. sp. tritici) uredospores. The development of new uredospore pustules on fumigated and control plants was evaluated as a measure of rust disease potential. The number of pustules on the ozone fumigated plants was greatly reduced in comparison with the number of plants treated with charcoal-filtered air.  相似文献   

19.
This study focuses on a new emissions model, Numerical Emissions Model for Air Quality (MNEQA), to be used in photochemical simulations and emission control strategies relating to tropospheric ozone pollutants. MNEQA processes available local information from external files and is easily adaptable to any desired spatial resolution. Top-down and bottom-up methodologies are combined to calculate emissions at the required resolution for photochemical simulations. It was used in conjunction with the MM5-CMAQ air quality modelling system and was applied to an episode of high ozone levels in June 2003. Emission results are widely analysed showing a difference of ?8.8% with EMEP NOx emissions, and ?18.7% with EMEP VOC emissions. Related to ozone simulations, comparative results between measurements and simulations indicated good behaviour of the model in reproducing diurnal ozone concentrations, as statistical values fall within the EPA and EU regulatory frameworks.  相似文献   

20.
An episode selection procedure was developed and applied to select sets of days representing characteristic meteorological conditions leading to high ozone episodes over the Swiss Plateau. The selection procedure was applied to data extending from January 1991 through December 1998, and is comprised of two steps: First, days were classified according to observed air quality and meteorological characteristics using classification and regression trees analysis (CART). Second, the CART results were used in conjunction with observed air quality data to identify sets of days characteristic of those leading to elevated ozone. These sets of days were selected to optimise how well a limited number of days represented seasonal air quality, and that formed longer episodes for use in the air quality modelling. CART analysis was performed for three zones of the Swiss Plateau that have different air quality and meteorological characteristics. The results for two zones were used together in the episode selection procedure in order to identify days representative for the whole Plateau. Meteorological analysis for a third zone suggested that it would be strongly impacted by pollutants transported in from outside the country. One thousand and eight hundred optimisation runs were performed to minimise the likelihood that the set of days was a local optimum, increasing the robustness for use in air quality modelling analysis. Fifteen days, grouped in four episodes ranging from 3 to 5 days were selected along with their calculated representativeness (or weight) to recreate a seasonal metric. The variety of local as well as regional meteorological characteristics showed that the episode selection procedure chose days representing a diverse set of meteorological situations which are associated with elevated ozone. This set of episodes can now be used to test air quality strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号