首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chen CS 《Chemosphere》2005,61(8):1142-1158
An ecological risk assessment was conducted for Keelung River in northern Taiwan. The objective of this study was to assess the risk to fish, aquatic insects, and benthic macroinvertebrates associated with chemical-of-potential-concern (COPC) in the river and to rank ecological risk for these chemicals. The protection of at least 95% of the species 90% of the time from acute and chronic COPC exposures was the defined assessment endpoint. Nine inorganic and organic contaminants were selected to evaluate the impact to aquatic community in the Keelung River. The quotient method served as screen level estimation of risk. The Aquatic Ecological Risk Assessment model was used to analyze exposure and ecological effects and to estimate community level risk. The logarithmic regression model between probability and lethal concentration was established. The combined risks of multiple chemicals were evaluated under assumption of additive risk. The results indicated that zinc and copper pose higher risk among metals. Ammonia, copper, and zinc posed virtually all of the risk, while organic COPCs posed a negligible risk. Potential ecological risk from ammonia exposure was greatest. The probability of more than 5% of the species being affected by acute or chronic toxicity of COPCs is about 100%. In average (50% of the time), 99% of the species would be affected by acute toxicity of COPCs, and about all the species would be affected by chronic toxicity of COPCs. Uncertainties in this assessment were associated with variability in ecosystem stressors, exposure data, ecological effect data, and risk characterization.  相似文献   

2.
Surrogate species are used in standard toxicity tests for the environmental risk assessment of chemicals. Test results are then extrapolated to the situation in the field, which is often associated with a large degree of uncertainty. Since a vulnerable species in the field is not only characterised by its intrinsic sensitivity to a stressor but also by its potential for exposure and its population resilience, the identification of focal species based on these three components of vulnerability is needed for a more ecologically relevant risk assessment. This study listed European fish species that are susceptible to pesticide exposure in the field and thus achieved the first step towards identifying focal species for the risk assessment of pesticides for fish in Europe. A step-wise filtering approach was applied to list freshwater fish species that are native to Europe and widespread in the European Union, which inhabit streams, ditches or ponds in agricultural landscapes and therefore, are at an elevated risk of being exposed to pesticides. Out of the 579 fish species occurring in European freshwater, 27 species met the filtering criteria. The resulting list was verified based on monitoring studies that were conducted in agricultural landscapes over the past 20 years. Focal fish species that can be used for a more ecologically relevant environmental risk assessment of pesticides in Europe can be identified from the produced list of species by further assessing their ecological (life history and dispersal characteristics) and intrinsic sensitivities.  相似文献   

3.
Three different risk assessment procedures are described that aim to protect freshwater habitats from risks of the photosynthesis-inhibiting herbicides metribuzin and metamitron. These procedures are (1) the first-tier approach, based on standard toxicity tests and the application of an assessment factor, (2) the Species Sensitivity Distribution (SSD) approach, based on laboratory tests with a wider array of species and the application of a statistical model to calculate the HCx (the Hazardous Concentration for x% of the species), and (3) the model ecosystem approach, based on the evaluation of treatment-related effects in field enclosures. A comparison of the risk assessment procedures reveals that the first-tier approach is the most conservative for metamitron and metribuzin, and that HC5 values (and even HC10 values) based on acute EC50 values of algae and aquatic vascular plants may be used to derive maximum permissible concentrations for single applications. For both compounds these HC5 values were very similar to the ecological threshold concentrations in the enclosure studies. In contrast to model ecosystem experiments, however, HCx values based on lab toxicity tests do not provide information on the recovery potential of sensitive endpoints and on indirect effects, which may be important for regulatory decision-making. In the enclosure study, indirect effects of metribuzin on invertebrate populations were observed at an exposure concentration that was approximately 20 times lower than the corresponding HC5 value based on lab toxicity data for aquatic invertebrates.  相似文献   

4.
Pesticide effects on freshwater zooplankton: an ecological perspective   总被引:10,自引:0,他引:10  
The effects of pesticides on zooplankton are reviewed and their ecological significance is discussed. Toxicity is shown to vary depending on animal species, genotype, life stage, and size at birth. Natural stresses such as food shortage, oxygen depletion and odors of potential predators can also affect toxicity. Populations in the growth phase are vulnerable to pesticides but have the potential to recover rapidly from the damage. Pesticides may affect the population dynamics by controlling individual survival and reproduction, and by altering the sex ratio. Furthermore, toxic chemicals may control predation risk by changing swimming behavior and body morphology, and this in turn influences the population dynamics. Many zooplankton display morphological and behavioral responses to predators when exposed to their odor-producing chemicals. However, pesticides induce a maladaptive response to predator odor, and this poses an ecological risk. The following patterns are recognized as effects of pesticides at the community and ecosystem levels: (1) induction of dominance by small species; (2) an increase of species richness and diversity; and (3) elongation of the food chain and reduction of energy transfer efficiency from primary producers to top predators.  相似文献   

5.
In ecotoxicology, derivation of a "safe" environmental concentration is usually achieved by the use of extrapolation factors or by statistical extrapolation from a set of single species toxicity data. These approaches ignore ecological interactions between species in the field. An ecology-based alternative to this pragmatic approach can be ecosystem modelling, which can account for ecological interactions. However, it is largely unexplored how well the predictions of these models quantitatively agree with large-scale experimental studies. Therefore, we evaluated the capacity of a flexible ecosystem model to predict population and ecosystem-level no observed effect concentrations (NOECs) of 7 organic toxicants. These NOECs were compared with population and ecosystem-NOECs observed in 11 micro- and mesocosm studies. For each of the latter studies, the model was customized to account for the specific ecological interactions within these systems and combined with appropriate single-species toxicity data from literature. Population-NOEC predictions were accurate, or at least protective, for 60, and 85% of all considered model populations, respectively. For all 11 studies, a protective ecosystem-NOEC could be derived, being accurate in 7 cases, and conservative in 4 cases. In general, it can be stated that this type of models can serve as an ecology-based alternative to current extrapolation techniques in EEAs and water quality standard setting.  相似文献   

6.
BACKGROUND, AIM, AND SCOPE: The use of fish embryos is not regulated by current legislations on animal welfare and is therefore considered as a refinement, if not replacement of animal experiments. Fish embryos represent an attractive model for environmental risk assessment of chemicals since they offer the possibility to perform small-scale, high-throughput analyses. MAIN FEATURES: Beyond their application for determining the acute toxicity, fish embryos are also excellent models for studies aimed at the understanding of toxic mechanisms and the indication of possible adverse and long-term effects. Therefore, we have reviewed the scientific literature in order to indicate alternative applications of the fish embryo model with focus on embryos of the zebrafish. RESULTS AND DISCUSSIONS: The analysis of the mode of action is important for the risk assessment of environmental chemicals and can assist in indicating adverse and long-term effects. Toxicogenomics present a promising approach to unravel the potential mechanisms. Therefore, we present examples of the use of zebrafish embryos to study the effect of chemicals on gene and protein patterns, and the potential implications of differential expression for toxicity. The possible application of other methods, such as kinase arrays or metabolomic profiling, is also highlighted. Furthermore, we show examples of toxicokinetic studies (bioconcentration, ABC transporters) and discuss limitations that might be caused by the potential barrier function of the chorion. Finally, we demonstrate that biomarkers of endocrine disruption, immune modulation, genotoxicity or chronic toxicity could be used as indicators or predictors of sub-acute and long-term effects. CONCLUSIONS: The zebrafish embryo represents a model with an impressive range of possible applications in environmental sciences. Particularly, the adaptation of molecular, system-wide approaches from biomedical research is likely to extend its use in ecotoxicology. RECOMMENDATIONS AND PERSPECTIVES: Challenges for future research are (1) the identification of further suitable molecular markers as indicators of the mode of action, (2) the establishment of strong links between (molecular) effects in short-term assays in embryos and long-term (toxic) effects on individuals, (3) the definition of limitations of the model and (4) the development of tests that can be used for regulatory purposes.  相似文献   

7.
This study reports the effects of two model toxicants, copper and diazinon, on two characteristic riverine insect species, the caddisfly Cyrnus trimaculatus and the mayfly Ephoron virgo. It was demonstrated that these species are very sensitive to both compounds in comparison with aquatic insects traditionally used in ecotoxicity tests. For diazinon, the 96-h LC(50) value of Cyrnus trimaculatus (1.1 microg/l) is lower than for any other insect species known from the literature and for copper it was demonstrated that Ephoron virgo is among the most sensitive aquatic insect species. The observed low LC(50) values stress the importance of using these indigenous species in assessing the risk of environmental contaminants in large European rivers and in defining conditions for ecological recovery.  相似文献   

8.
Since chemicals’ ecotoxic effects depend for most soil species on the dissolved concentration in pore water, the equilibrium partitioning (EP) method is generally used to estimate hazardous concentrations (HC50) in the soil from aquatic toxicity tests. The present study analyzes the statistical uncertainty in terrestrial HC50s derived by the EP-method. For 47 organic chemicals, we compared freshwater HC50s derived from standard aquatic ecotoxicity tests with porewater HC50s derived from terrestrial ecotoxicity tests. Statistical uncertainty in the HC50s due to limited species sample size and in organic carbon–water partitioning coefficients due to predictive error was treated with probability distributions propagated by Monte Carlo simulations. Particularly for specifically acting chemicals, it is very important to base the HC50 on a representative sample of species, composed of both target and non-target species. For most chemical groups, porewater HC50 values were approximately a factor of 3 higher than freshwater HC50 values. The ratio of the porewater HC50/freshwater HC50 was typically 3.0 for narcotic chemicals (2.8 for nonpolar and 3.4 for polar narcotics), 0.8 for reactive chemicals, 2.9 for neurotoxic chemicals (4.3 for AChE agents and 0.1 for the cyclodiene type), and 2.5 for herbicides–fungicides. However, the statistical uncertainty associated with this ratio was large (typically 2.3 orders of magnitude). For 81% of the organic chemicals studied, there was no statistical difference between the hazardous concentration of aquatic and terrestrial species. We conclude that possible systematic deviations between the HC50s of aquatic and terrestrial species appear to be less prominent than the overall statistical uncertainty.  相似文献   

9.
Goal, Scope and Background One of the advantages of long-term mesocosm experiments as compared to short-term standard toxicity tests in the laboratory is the potential for detecting secondary effects due to the interaction of species and recovery with biomass of macrophytes being an important endpoint. However, generating biomass data by harvesting is often laborious, time-consuming, costly and restricted to the end of the experiment. Moreover, valuable information may get lost, in particular in single application studies, since maximal primary effects and secondary effects or recovery occur per se at different times. Potamogeton natans was used as an example in order to test whether number and area of floating leaves can be reliably measured and be used as intermediate and final endpoints in mesocosm effect studies. Methods Digital photos, which were taken of the water surface in the course of an indoor pond mesocosm study on herbicide effects, were subjected to image analysis. The results were compared to wet weight and ash-free dry weight of Potamogeton at the end of the herbicide study. Results and Discussion Both number and area of floating leaves indicated the same herbicide effects as wet weight and ash-free dry weight of Potamogeton. Error introduced by the different work steps is small and can be further minimised by a number of method improvements. Recommendations and Perspectives In indoor mesocosm studies, errors due to the perspective adjustment may be circumvented by taking the photos perpendicular to the water surface. Correction for lens aberration, identical light conditions and the use of fluorescence images are considered promising. Field applications are proposed.  相似文献   

10.
Predicted no-effect concentration (PNEC) is often used in ecological risk assessment to determine low-risk concentrations for chemicals. In the present study, native marine species were selected for toxicity testing. The PNECs for three polycyclic aromatic hydrocarbons (PAHs), specifically phenanthrene (Phe), pyrene (Pyr), and benzo[a]pyrene (BaP), were derived from chronic and acute toxicity data with log-normal statistical methods. The achieved PNECs for Phe, Pyr, and BaP were 2.33, 1.09, and 0.011 μg/L, respectively. In Jinzhou Bay and the Shuangtaizi River Estuary of Liaodong Bay in the Bohai Sea, China, the surface water concentrations of the three PAHs were analyzed by gas chromatography–mass spectrometry. Based on two probabilistic ecological risk assessment (PERA) methods, namely probabilistic risk quotient and joint probability curve, the potential risk of Phe, Pyr, and BaP in Jinzhou Bay and Shuangtaizi River Estuary was assessed. The same order of ecological risk (BaP > Phe > Pyr) was found by both models. Our study considered regional characteristics of marine biota during the calculation of PNECs, and the PERA methods provided probabilities of potential ecological risks of chemicals. Within the study area, further research on BaP is required due to its high potential ecological risk.  相似文献   

11.
As an integral part of our continued development of water quality assessment approaches, we combined integrative sampling, instrumental analysis of widely occurring anthropogenic contaminants, and the application of a suite of bioindicator tests as a specific part of a broader survey of ecological conditions, species diversity, and habitat quality in the Santa Cruz River in Arizona, USA. Lipid-containing semipermeable membrane devices (SPMDs) were employed to sequester waterborne hydrophobic chemicals. Instrumental analysis and a suite of bioindicator tests were used to determine the presence and potential toxicological relevance of mixtures of bioavailable chemicals in two major water sources of the Santa Cruz River. The SPMDs were deployed at two sites; the effluent weir of the International Wastewater Treatment Plant (IWWTP) and the Nogales Wash. Both of these systems empty into the Santa Cruz River and the IWWTP effluent is a potential source of water for a constructed wetland complex. Analysis of the SPMD sample extracts revealed the presence of organochlorine pesticides (OCs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). The bioindicator tests demonstrated increased liver enzyme activity, perturbation of neurotransmitter systems and potential endocrine disrupting effects (vitellogenin induction) in fish exposed to the extracts. With increasing global demands on limited water resources, the approach described herein provides an assessment paradigm applicable to determining the quality of water in a broad range of aquatic systems.  相似文献   

12.
Fish acute toxicity tests play an important role in environmental risk assessment and hazard classification because they allow for first estimates of the relative toxicity of various chemicals in various species. However, such tests need to be carefully interpreted. Here we shortly summarize the main issues which are linked to the genetics and the condition of the test animals, the standardized test situations, the uncertainty about whether a given test species can be seen as representative to a given fish fauna, the often missing knowledge about possible interaction effects, especially with micropathogens, and statistical problems like small sample sizes and, in some cases, pseudoreplication. We suggest that multi-factorial embryo tests on ecologically relevant species solve many of these issues, and we shortly explain how such tests could be done to avoid the weaker points of fish acute toxicity tests.  相似文献   

13.
Dang Z  Traas T  Vermeire T 《Chemosphere》2011,85(10):1592-1603
In a fish testing strategy, positive results of the fish short term reproduction assay (FSTR), often trigger a definitive test like the fish sexual development test (FSDT) or the fish full life cycle test (FFLC), entailing ethical and economic problems. This study analysed 137 studies encompassing 35 chemicals with different modes of actions (MOAs). Variability is quantified for MOA endpoints vitellogenin (VTG) and secondary sex characteristics (SSCs) as well as for apical endpoints. Two MOA endpoints could indicate estrogenic, anti-estrogenic, androgenic, anti-androgenic and steroidogenesis activities. Great variability, however, has been observed for chemicals with anti-androgenic and steroidogenesis activities, suggesting that TG229/230 may not be sensitive enough to detect these types of chemicals and may produce false negatives. Changes in apical endpoints like fecundity are not limited to endocrine disrupting chemicals (EDCs). Non-EDCs could induce the similar effects on these apical endpoints. If elucidating MOA is needed, targeted in vitro MOA tests are suggested. Positive in vitro MOA results trigger a definitive test, which could be used for confirmation of the MOA in vivo and for deriving a no observed effect concentration (NOEC). Based on positive MOA results of TG229, a definitive test such as the FSDT or the FFLC is still needed, because the current TG229 has limitation on the derivation of a NOEC. An extended TG229 with more power to detect reproduction effects, as recently proposed in the OECD test guideline program, would improve the possibility to derive a NOEC and increase its usefulness in risk assessment.  相似文献   

14.
Tanaka Y 《Chemosphere》2003,53(4):421-425
The extinction probability is one of the most useful endpoints that are utilized in conservation biology. A parallel approach is advocated for the ecological risk assessment of chemical pollutants. The presented framework estimates extinction probability induced by pollutant chemicals in order to evaluate ecological hazards of pollution, and is applicable to any biological community (aquatic or terrestrial). The analytical framework, which is based on stochastic population dynamics theory, is briefly explained. The extinction risk estimation is feasible if ecotoxicological data concerning pollutant effects on population growth rate of organisms (the intrinsic rate of natural increase), and if environmental exposure concentration is provided. Tentative risk estimation was made for some agrochemicals and surfactants on zooplankton populations (Daphnia) as target organisms.  相似文献   

15.
Başer S  Erkoç F  Selvi M  Koçak O 《Chemosphere》2003,51(6):469-474
Permethrin, a synthetic pyrethroid pesticide and potential toxic pollutant contaminating aquatic ecosystems, was investigated in the present study for acute toxicity. Guppy fish (Poecilia reticulata) were selected for the bioassay experiments. The experiments were repeated 3 times and the 48-h LC(50) was determined for the guppies. The static test method of acute toxicity test was used. Water temperature was regulated at 20+/-1 degrees C. In addition, behavioral changes at each permethrin concentration were observed for the individual fish. Data obtained from the permethrin acute toxicity tests were evaluated using the probit analysis statistical method. The 48-h LC(50) value for guppy was estimated as 245.7 microg/l. Values in the range of 0.05-97.0 microg/l have been reported for various other fish species.  相似文献   

16.
Peter Gode 《Chemosphere》1984,13(8):933-938
The loss of chemicals in static fish tests due to biodegradation has been studied with eight model surfactants whose biodegradabilities in the OECD Screening Test range from 0 to 99 % BiAS removal. There was a good correlation between biodegradation in the fish test and in the OECD Screening Test. Only surfactants with a very high BiAS removal of above 93 % were also degraded quickly in the fish test. Surfactants with less than 80 % BiAS removal incurred losses of less than 20 % in the fish test. These results indicate that those substances which are not lost by volatility or adsorption will be maintained to at least 80 % of their nominal concentration during a 96 hour static fish test.  相似文献   

17.
In this study, we compared the sensitivity of freshwater and marine organisms to two structurally similar substances, acrylic acid and methacrylic acid. Reported acute toxicity data (L(E)C50-values) for freshwater organisms range from 0.1 to 222 mg/l and 85 to >130 mg/l for acrylic acid and methacrylic acid, respectively. The large variation in toxicity data for acrylic acid is due to a specific toxicity to certain species of freshwater microalgae, with algae EC50-values being two to three orders of magnitude lower than L(E)C50-values reported for fish and invertebrates. To evaluate the sensitivity of marine organisms, ecotoxicity data was generated for ten species of microalgae, one invertebrate species and one fish species. For methacrylic acid, we found a marine acute toxicity that ranged from 110 to >1260 mg/l, which is comparable to reported data on freshwater organisms. In strong contrast, the resulting L(E)C50-values for acrylic acid ranged from 50 to >1000 mg/l, and there was no specific sensitivity of marine algae when compared to marine invertebrates and fish. For acrylic acid, therefore, use of the available freshwater toxicity data for an effects assessment for the marine environment is likely to overestimate the hazard and risk from this substance. Overall, the results of the study suggest that ecotoxicity data generated on freshwater species may not always be appropriate for the effects assessments of organic chemicals in the marine environment, thus emphasising the importance of using ecologically relevant data to assess environmental risk.  相似文献   

18.
19.
Numerous environmental chemicals, both long-known toxicants such as persistent organic pollutants as well as emerging contaminants such as pharmaceuticals, are known to modulate immune parameters of wildlife species, what can have adverse consequences for the fitness of individuals including their capability to resist pathogen infections. Despite frequent field observations of impaired immunocompetence and increased disease incidence in contaminant-exposed wildlife populations, the potential relevance of immunotoxic effects for the ecological impact of chemicals is rarely considered in ecotoxicological risk assessment. A limiting factor in the assessment of immunotoxic effects might be the complexity of the immune system what makes it difficult (1) to select appropriate exposure and effect parameters out of the many immune parameters which could be measured, and (2) to evaluate the significance of the selected parameters for the overall fitness and immunocompetence of the organism. Here, we present - on the example of teleost fishes - a brief discussion of how to assess chemical impact on the immune system using parameters at different levels of complexity and integration: immune mediators, humoral immune effectors, cellular immune defenses, macroscopical and microscopical responses of lymphoid tissues and organs, and host resistance to pathogens. Importantly, adverse effects of chemicals on immunocompetence may be detectable only after immune system activation, e.g., after pathogen challenge, but not in the resting immune system of non-infected fish. Current limitations to further development and implementation of immunotoxicity assays and parameters in ecotoxicological risk assessment are not primarily due to technological constraints, but are related from insufficient knowledge of (1) possible modes of action in the immune system, (2) the importance of intra- and inter-species immune system variability for the response against chemical stressors, and (3) deficits in conceptual and mechanistic assessment of combination effects of chemicals and pathogens.  相似文献   

20.
Toxicity of textile wastewaters (untreated and treated) and their ingredient chemicals was quantified in terms of their chemical characteristics, fish (Gambusia affinis) mortality and end point growth responses of duckweed (Lemna aequinoctialis) in short-term bioassays. Other parameters of fish bioassay were erythrocyte morphology and its counts. Despite of a definite correlation between data of biological tests (LC/EC(50) values) with that of chemical tests, biological tests were found to be relatively more sensitive to both wastewaters and ingredient chemicals. Amongst all the examined parameters of test organisms, fish RBCs (morphology and counts) sensitivity to pollutants in the wastewaters was usually maximum and therefore, their study should be included in the routine fish bioassay. Other advantage of biological test such as on Lemna is even detection of eutrophic potential of wastewaters, as noted at their higher dilutions. The ingredient chemicals (major) contributing maximum toxicity to textile dye wastewater were, acids (HCl and H(2)SO(4)), alkali (Na(2)O SiO(2)), salt (NaNO(2)) and heavy metal (Cu), whereas dyes (4) were relatively less toxic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号