首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seventeen Longhurst Hardy Plankton Recorder profiles were taken over a diel cycle in January 1990 to study the feeding of four major copepods over the South Georgia shelf. Ontogenetic changes in vertical migration were followed and feeding cycles determined by gut fluorometry for Calanoides acutus Stage CV, Calanus sinillimus CV and CVI, C. propinquus CV and Rhincalanus gigas CV and CVI. In common with a neighbouring oceanic site visited two weeks later and reported elsewhere, all four species had a diel cycle of feeding and migration. The vertical distributions of C. simillimus (all stages), R. gigas (nauplii) and Euphausia frigida (postlarvae) were similar at both sites, the night being spent within the chlorophyll maximum at 15 to 30 m. However, the biomass dominants, C. acutus and R. gigas, dwelt below the chlorophyll maximum, about 30 m deeper than their oceanic counterparts. Unlike the oceanic site, feeding at the shelf site was not restricted to darkness, but increased 6 to 10 h before nightfall and finished at dawn; the intervening period coincided with sinking and digestion. Daylight feeding may have been induced by the shorter night, lower light levels or greater food requirements at the shelf site, despite planktonic predators being over three times more abundant. Daily ration estimates for R. gigas at both sites were only 2% body carbon per day. These low values contrast with its smaller competirors, whose rations were in the range 5.6 to 27%.  相似文献   

2.
C. Huang  S. Uye  T. Onbé 《Marine Biology》1993,117(2):289-299
The ontogenetic diel vertical migration of the planktonic copepod Calanus sinicus was investigated in the Inland Sea of Japan in June 1989, when the water column was thermally weakly stratified. Because of fewer eggs and less variation in their abundance, nocturnal spawning was not apparent. A pronounced upward migration occurred in NIII. NIII to CIII resided in the upper 20 m layer throughout the day, and from CIV on their median depths descended. CV and adult females underwent significant diel vertical migration, whereas adult males did not migrate. By integrating the results from the present study and those from our previous investigations (in August–September 1988, November 1988 and March 1989), we review seasonal variation in the ontogenetic diel vertical migration of C. sinicus. Spawning was largely nocturnal, reaching its maximum level around dawn, but spawning depth and fecundity changed seasonally. The distribution of pre-feeding stages, NI and NII, was similar to that of eggs. A pronounced upward migration always occurred in the first feeding stage, NIII, and late nauplii and early copepodites always resided in the food-rich upper layer, indicating that upward migration by NIII is feeding migration. As the stages progressed, they extended their vertical distribution range, and CV and adult females usually underwent diel vertical migration. However, the pattern and strength of this migration differed seasonally. Their day depths increased with the increase of relative biomass of planktivorous fish, indicating that predator avoidance induces their diurnal downward migration. High chlorophyll a concentrations in the upper layer (<15 m deep) relative to the lower layer (>20 m deep) amplified their diel vertical migrations. Diel vertical migration of C. sinicus is a phenotypic behavior.  相似文献   

3.
Vertical distributions and nocturnal migrations of the developmental stages of Nyctiphanes couchi (Bell) in relation to the summer thermocline in the Celtic Sea, 25 to 26 August 1982, have been investigated using the Longhurst-Hardy Plankton Recorder (LHPR). The vertical distributions of the metanauplii and adult females suggest that N. couchi liberates its young within the euphotic zone as mature metanauplii which, in a matter of hours, moult into the first feeding stage (Calyptopis I). The ascent migration by adult females took a maximum of 3 h (17.10 to 20.05 hrs) and had an amplitude of 50m (54 to 4 m) from below to above the thermocline. A 7C° thermocline occurred between 20 to 30 m in these profiles. The nocturnal migrations by the females were for the purpose of breeding as well as feeding within the euphotic zone and were not influenced by the presence of the thermocline. The majority of the calyptopes and furciliae remained above the thermocline over the sampling period. The post-larval males and females migrated; their vertical distributions showed a pattern similar to those of the adult females. The larger the developmental stage, the deeper was the mode of its vertical distribution. The zooplankton dry weight in the profiles ranged from 3.74 to 6.91 g per haul (=1.85 to 3.45 g C m-2, 0 to 100 m). The euphausiids represented 35% of total zooplankton dry weight and their migrations removed a large percentage of the total zooplankton biomass from the euphotic zone for 18 h d-1. Such a large displacement of biomass would have a major impact on the biological interactions within the ecosystem.  相似文献   

4.
The vertical distributions of Calanoides acutus, Calanus propinquus and Rhinicalanus gigas have been studied during Cruises I and II of the R.V. Ob in the Indian sector of the Southern Ocean. During the spawning period, all 3 species reveal the highest concentrations, and occupy the highest positions in the water column. During the period of feeding and growth, they begin slowly to disperse and to descend to greater depths. In spring, the populations ascend again to the water surface. In both seasons, later stages migrate first. Pronounced temperature gradients may prevent the ascent, and result in the breeding and subsequent growth of the new generation occurring in subsurface waters. Details of the vertical distributions of populations depend on their seasonal state and the local hydrology.  相似文献   

5.
The life cycles and distribution of three dominant copepods,Calanoides acutus, Calanus simillimus andRhincalanus gigas were studied from the Discovery collections in the Scotia Sea earlier this century.C. simillimus is a sub-Antarctic species which mates in the top 250 m mainly in spring. The rapid development of the summer generation may allow a second mating period and a smaller second generation to appear in late summer.C. simillimus remains in the surface layers for a longer period thanCalanoides acutus orR. gigas, and its depth distribution is bimodal throughout the winter.R. gigas is most abundant in sub-Antarctic waters to the north of the Polar Front. It mates within the top 750 m later in spring, and development seems less synchronised than that of the other two species, with egg laying and the growth season being more protracted. Stages CIII and CIV are reached by the first autumn and further development resumes very early the following spring. It is not clear whether the majority then spawn or whether a further year may be needed to complete the life cycle. The predominantly Antarctic species,C. acutus mates below 750 m in middle to late winter and the summer generation develops rapidly to either CIV or CV. Its lifespan seems typically 1 yr, but some of the CVs which fail to moult and spawn in winter survive into their second summer, and their subsequent fate is uncertain. The cold-water speciesCalanus propinquus is comparatively rare in the Scotia Sea and aspects of its distribution and life cycle are briefly described for comparison. Regional variations in the timing of these events were apparent forC. simillimus and possiblyCalanoides acutus, but were not seen inR. gigas. Their geographic and vertical separation, together with their asynchronous life cycles support the concept of habitat-partitioning of these dominant herbivores.  相似文献   

6.
Vertical distributions of the abundant larger copepods, both adults and late copepodites, were observed day and night in the upper 500 m of the North Pacific central gyre in early November, 1971. Densities of the copepodites usually equalled or exceeded those of the adults. Copepod species with maximum densities at or above 100 m (Calanus spp., Nannocalanus minor f. major, Undinula darwini, and Euchaeta rimana) usually had no ontogenetic or diel migration. Neocalanus spp. and Haloptilus longicornis exhibited ontogenetic but not diel migrations. Nannocalanus minor f. minor, Aetideus acutus, Euchaeta media, Scolecithrix spp. and Pleuromamma spp., had both ontogenetic and diel migrations. Adults and copepodites of E. media and Pleuromamma spp. usually had their night modes at the same depth, but the daytime modes were at progressively deeper depths for progressively older stages. Daytime modes for adults and copepodites of A. acutus and Scolecithrix bradyi were at the same depth, but the nighttime modes were at shallower depths for progressively older stages. Night modes of all these migrators were usually in the mixed layer (75 m), where primary production rates were maximal. Congeners usually had similar migratory behavior, but competition probably has been a significant determinant of vertical distribution, since congeners, particularly sibling species, consistently had different depths of maximum occurrence during both day and night.  相似文献   

7.
C. Roger 《Marine Biology》1973,19(1):66-68
The role of euphausiids in the food webs of the Intertropical Pacific Ocean is defined through analysis of their nutrition, vertical distributions and migrations, and their utilization by pelagic predators. It is suggested that the abundance of the group, the extensive vertical migrations of many species and the fact that feeding takes place mainly in subsurface layers, result in a leading role of euphausiids in energy transfer between different bathymetric levels. For night-time feeding predators, they represent a noticeable food source only in the 0 to 300 m water layer, as 97% of the euphausiid biomass concentrates in this layer at night. In the daytime, only the smaller specimens (chiefly genus Stylocheiron), accounting for 10 to 15% of the whole biomass of the group, remain available for epipelagic (0 to 400 m) predators, larger individuals dwelling deeper. Euphausiids account for 8 to 10% of the food ingested by micronektonic fishes, but the species are not the same for different categories of fishes. Migrating fishes caught by pelagic trawls, more or less connected with the deep scattering layer, feed on migrating species in subsurface layers at night as well as in deeper layers during the daytime, and on non-migrating species inhabiting shallower and intermediate layers. On the other hand, fishes which comprise the prey of large long-line tunas, which are not caught by trawls because they are fast swimmers, feed almost solely on species which remain above 400 m in the daytime. These results suggest a certain degree of independance between the trophic webs which concern, on the one hand, epipelagic ichthyofauna (including tuna), and, on the other hand, migrating and deep-living faunas. Migrating populations are able to feed at night upon subsurface organisms, a part of this resource being then transmitted during the day to the deep-living fauna; but the epipelagic ichthyofauna, with a feeding activity restricted to light hours, has few possibilities to benefit from the migrating or deepliving biomass. Therefore, energy transfers seem to be intense only from subsurface (0 to 400 m) to deeper layers. From a more general point of view, these investigations suggest that, in the pelagic system, vertical distributions and migrations, and feeding rhythms, are the main factors determining the structure of the food webs.  相似文献   

8.
S. Uye  C. Huang  T. Onbe 《Marine Biology》1990,104(3):389-396
The ontogenetic diel vertical migration of the planktonic copepodCalanus sinicus was investigated in the Inland Sea of Japan in summer 1988, when the water was thermally stratified with a thermocline of ca 5 °C between 35 and 45 m. Stage-specific differences in the diel vertical migration behavior ofC. sinicus were found. Eggs were spawned primarily within the surface-waters between midnight and dawn by ascending females, and sank gradually to deeper waters until they hatched into nauplii. Non-feeding nauplius stages (NI and II) were distributed throughout the water column, but the first feeding stage (NIII) performed an ontogenetic upward migration. NIV to VI and copepodite (C) stages I to III continuously aggregated in the phytoplankton-rich euphotic layer. However, the depth of the median CI to III populations descended as stage progressed. The onset of prominent diel vertical migration took place in CIV, and the amplitude of vertical migration increased with age, being maximal in adult females (CVI). Adult males (CVI), however, remained in the layer below 20 m, and did not migrate dielly. The ecological significance of ontogenetic diel vertical migration is discussed.  相似文献   

9.
In 1991/1992, we studied the sand disposal behavior of the painted ghost crabs Ocypode gaudichaudii on the Pacific coast of Panamá. O. gaudichaudii either kick, dump or tamp sand they excavate from their burrows. Here we relate these three kinds of sand disposal to burrow structure and distribution, as well as to crab size and sex. Our objective was to determine whether tamping may be a male courtship signal. Burrows whose owners tamped sand were on average longer, deeper, and higher on the beach than were burrows whose owners kicked or dumped sand. Five burrow shapes were distinguished, with half-spiral and spiral shapes being most common among tamped burrows. All crabs excavated from tamped burrows were males. Tamped burrows peaked in abundance around full and new moons. These observations, together with what is known about mating and breeding behavior of other ghost crabs, suggest that tamping may be involved in O. gaudichaudii courtship.  相似文献   

10.
Grazing rates of larger (Calanus finmarchicus) and smaller (Acartia clausii Pseudocalanus elongatus etc.) copepods on naturally occurring phytoplankton populations were measured during a declining spring phytoplankton bloom. During the initial period, dominated by Chaetoceros spp. diatoms, constant ingestion rates were observed in Calanus finmarchicus at suspended particulate concentrations above 300 g carbon l-1. Average daily intake during this time amounted to 35 to 40% of body carbon and reached a maximum of 50%. The feeding response of the smaller copepods was not so well defined, although a maximum daily intake of 56% body carbon was recorded. In both groups, feeding thresholds were at particulate concentrations around 50 g C l-1. The feeding response of C. finmarchicus was correlated with both a change in their own population and in the food cell type. Linear regressions describing the concentration-dependent feeding response were: ingestion rate (IR)=1.16 total particulate volume (TPV)-36.15 during the initial part of the period compared with IR=0.41 TPV-12.18 for the latter period. C. finmarchicus filtered out slightly larger (x 1.2 diameter) particles than the small copepods and, in both groups, some filtering adjustment was made to accomodate to modal changes in the phytoplankton population from 20–30 m to 10 m diameter cells. Particle production during feeding was frequently evident in the smallest size ranges of particles and the ratio of particle production to ingestion rate was greater at low feeding rates.  相似文献   

11.
The vertical zonation of the three common rocky shore neritids at Mkomani, Mombasa, Kenya, Nerita plicata Linnaeus, N. undata Linnaeus, and N. textilis Dillwyn, as a function of feeding migrations and of size, was studied from 28 February to 24 March 1983. These snails perform feeding migrations at night starting at around mid-ebb tide and return to their resting positions with the flood tide. They remain in their resting positions throughout the day until the next nocturnal ebb tide. The direction of migration is sizerelated, with the larger snails of each species moving in the opposite vertical direction to the smaller ones, so that the populations as a whole exhibit no statistically significant net vertical displacement. The larger individuals of two of the species, N. plicata and N. undata, invariably move downwards to their feeding levels, while the smaller individuals move upwards; the larger individuals of N. textilis display a different pattern of migration, moving downwards on and around spring-tide days and upwards on and around neap tide days, while the smaller individuals move in the opposite directions. N. textilis rest above their feeding level around spring tides, and below that level around neap tides. It is demonstrated how these nocturnal migratory feeding rhythms are integrated into the spring-neap and seasonal cycles of the snails' daytime resting positions. The adaptive significance of these migrations is also discussed.  相似文献   

12.
Lipid compositions of the dominant Antarctic copepods Calanoides acutus, Rhincalanus gigas and Calanus propinquus from the Weddell Sea have been investigated in great detail. Copepods were collected during summer in 1985 and late spring/early winter in 1986. The analyses revealed specific adaptations in the lipid biochemistry of these species which result in very different lipid components. The various copepodite stages of C. acutus synthesize wax esters with long-chain monounsaturated moieties and especially the alcohols consisted mainly of 20:1(n-9) and 22:1(n-11). R. gigas also generates wax esters, but with moieties of shorter chain length. The fatty alcohols consisted mainly of 14:0 and 16:0 components, while the major fatty acids were 20:5, 18:4 and 22:6, of which 18:4 probably originated from dietary input. In contrast, C. propinquus accumulates triacylglycerols, a very unusual depot lipid in polar calanoid copepods. Major fatty acids in C. propinquus were the long-chain monounsaturates 22:1(n-9) and 22:1(n-11), which may comprise up to 50% of total fatty acids. In C. acutus and C. propinquus there was a clear increase of long-chain fatty acids with increasing developmental stage. In contrast, the fatty acid and alcohol composition of the R. gigas copepodite stages were characterized by the dominance of the polyunsaturated fatty acids as well as high amounts of the monounsaturates 18:1(n-9) and 16:1(n-7). There was a considerable decrease of the dietary fatty acid 18:4(n-3) towards the older stages during summer; in late winter/early spring 18:4 was only detected in very low amounts. This tendency was also found in the other two species, but was less pronounced. In all three species dry weight and lipid content increased exponentially from younger to older stages. The highest portion of wax esters, or of triacylglycerols in C. propinquus, was found in the adults. Dry weight and lipid content were generally higher during summer. In late winter/early spring the variability was more pronounced and lipid-rich specimens showed a selective retention of long-chain monounsaturated fatty acids, whereas in lipid-poor specimens these fatty acids were very much depleted.  相似文献   

13.
Hilbish  T. J. 《Marine Biology》1985,85(2):163-169
Feeding rates, patterns of prey selection, and starvation tolerance were investigated for adult males and females of the cyclopoid copepod Corycaeus anglicus collected from the waters of Friday Harbor, Washington, USA. Selection by C. anglicus was determined largely by prey body-size, but was also affected by species and developmental stage. Small developmental stages of all prey species were fed upon at relatively low rates. The small calanoid species Acartia clausii was increasingly vulnerable to predation by C. anglicus as it progressed through successive developmental stages. Larger prey species, Pseudocalanus sp. and Calanus pacificus, were more vulnerable in intermediate stages, the C3 and N6 stages, respectively. Larger and smaller prey were characteristically attacked at different sites on their bodies; however, attack sites fell within a similar range of body widths, 130 to 170 m. Males of Corycaeus anglicus killed a maximum of 1.4 prey d-1 when feeding on the optimally-sized adult females of Acartia clausii, which are approximately equivalent to its own body length. Males fed at approximately double the rates of females. Despite its small size and apparent lack of metabolic stores, this cyclopoid is highly tolerant of starvation conditions. Median survival time without food is at least 2 wk for both males and females. In its predatory behavior, C. anglicus employs an ambush-type strategy and seems to be adapted for infrequent encounters with relatively large prey.Contribution No. 1412 from the School of Oceanography, University of Washington, Seattle  相似文献   

14.
Three species of phytoplankton grown at high (HL) or low light (LL) were fed as saturating rations to laboratory-reared larval Crassostrea gigas. Larval C. gigas fed diets of HL grown Chaetoceros gracilis and HL grown Isochrysis aff. galbana grew faster than those fed LL grown cells of the same phytoplankton species. Faster growth of C. gigas larvae was consistently associated with increases in the percent composition of short chain saturated fatty acids (FA) 14:0+16:0 in the HL grown cells. There were no consistent and significant differences between HL and LL grown phytoplankton cells in their content of carbon, nitrogen, protein, lipid or carbohydrate. Intraspecific increases in percent composition of essential fatty acids (EFAs), 20:53 and 22:63, in the phytoplankton were not associated with improvements in the growth or survival of the oyster larvae. Oyster larvae fed diets of Phaeodactylum tricornutum with a relatively high proportion of EFAs grew more slowly than those fed C. gracilis. In this experiment the proportion of dietary EFA 20:53 was negatively correlated with oyster growth rates. The faster growing oyster larvae contained relatively more of the FAs 14:0+16:0 which may be useful as measures of larval oyster condition. After a diet of one phytoplankton species for ca. 10 d, oyster larvae acquired distinctive FA profiles resembling that of their phytoplankton prey.  相似文献   

15.
C. Huang  S. Uye  T. Onbé 《Marine Biology》1992,113(3):391-400
The ontogenetic diel vertical migration of the planktonic copepod Calanus sinicus was investigated in the Inland Sea of Japan in November 1988 and March 1989, when the water temperature was weakly stratified in a reversed manner. In both investigations a pronounced ontogenetic difference in vertical distribution was found. Spawning always occurred during nighttime, being confined to the upper 40 m water column in November but to the layer below 35 m in March. The distribution of pre-feeding nauplius stages, NI and NII, was more or less similar to that of the eggs. The first-feeding NIII performed a marked upward migration, and late nauplius stages (NIV to NVI) and early copepodite stages (CI and CII) continuously aggregated in the upper water column where phytoplankton was abundant. CIII to CVI (adult female and male) tended to disperse in the whole water column. In November, however, they avoided the upper 10 m strate during daytime and some individuals migrated upward to the surface during nighttime. In March, CV and CVI aggregated in the layer between 5 and 15 m deep in the daytime and migrated both upward and downward at dusk, resulting in homogeneous distributions during the nighttime.  相似文献   

16.
The vertical distribution and migration (seasonal, diel and ontogenetic) of Calanus helgolandicus are described from the shallow (100 m) shelf-seas to the south-west of the British Isles. In 1978 and 1979, the overwintering population of C. helgolandicus consisted primarily of Stage V copepodites and adults. By late winter/early spring the copepodites had moulted to adult females (>90%), which matured and bred the first cohorts of the year, prior to onset of the spring phytoplankton bloom in April/May. C. helgolandicus reached a peak of numerical abundance in August of 20x103 copepodites m-2 (over the depth range sampled -0 to 70 m), which was 200 times the population in winter. The seasonal peak of abundance occurred 4 mo after the peak of the bloom of phytoplankton in spring. The yearly development of the copepod was not always out of phase with the diatom bloom, as seen when the data from 1978 was placed in the context of a longer time-series collected at 10 m over 22 yr (1960–1981, inclusive). Large vertical migrations were observed in the younger copepodites (CI and II) in May from below to above the thermocline. In the remainder of the year, the CI and CII stages behaved differently and were located above the thermocline within the euphotic zone. The largest vertical displacements of biomass were seen in the summer months due to the migrations of the CV stages and adults, which had developed from the spring cohorts. It was contended that the seasonal and vertical migrations of C. helgolandicus are part of a more complex pattern of inherent behavior than has been reported previously and that, however difficult this is to discern in the natural populations, it always expresses itself.  相似文献   

17.
A brief survey of the ecology and biology of the Caspian Polyphemoidea   总被引:1,自引:0,他引:1  
Not less than 25 autochthonous species of Polyphemoidea live in the Caspian Sea; 5 of these species also inhabit the Azov and Black Seas and 3 the Aral Sea, but none is found beyond the Pontoaralocaspian basin. A great degree of polymorphism and morphological variability characterizes this group. Most Caspian Polyphemoidea exist in salinities of 12 to 13, and cannot tolerate great changes in salinity; however, 3 or 4 species in the Pontoasov basin can live in quite fresh water and populate the river reservoirs; these species do not tolerate ocean salinities over 8 to 10. All species inhabit mainly the upper layers of the sea (0 to 50 m; Cercopagis and Polyphemus exiguus down to 75 to 100 m), but avoid shallows under 5 to 15 m depth. Polyphemoidea perform diurnal vertical migrations, accumulating in surface layers during the hours of darkness and descending at sunrise; they also descend during rough weather conditions. Abundance of Polyphemoidea is subject to great seasonal variation. Most species appear in spring when the water temperature has reached 10° to 15°C; maximum abundance occurs in summer at water temperatures of 5° to 20°C, and Polyphemoidea disappear in autumn from the whole Caspian Sea except for deep areas of the South Caspian Sea, where the temperature does not drop under 10°C. Reproduction of the Caspian Podonidae is distinguished by a strikingly high rate of parthenogenesis, which is accompanied by neoteny, i.e. the embryos mature before birth. Bisexual reproduction, on the other hand, is suppressed; males and gamogenetic females containing winter eggs do not occur in all species of Podonidae and only in some species of Cercopagidae, in these latter mainly as single specimens. The majority of Cercopagidae have no males, being completely acyclic. Parthenogenesis shows a clear diurnal rhythm; delivery of young begins only after midnight and ends before sunrise. All Polyphemoidea are predators; they catch mobile prey and suck out its contents; this prevents successful observation of details of their feeding habit. However, it has been proved that Evadne anonyx feed mainly on copepods (Eurytemora) and small podonids, and this is probably true also of Cercopagis, as both these species are more marked predators than Podonidae from the open seas (Evadne nordmanni and other forms). Many aspects of taxonomy (intraspecific forms) and biology (reproduction of acyclic species, feeding, behaviour and functional morphology) are obscure and require further investigation.  相似文献   

18.
The vertical distributions of the spring populations of Calanus finmarchicus (Gunnerus) and C. helgolandicus Claus are described and compared. The differences we observed between the two species have probably confused the understanding of the vertical distribution and development of the populations of Calanus spp. in the shelf seas around the United Kingdom where the species occur together. The results imply that these two congeneric species have different behaviour patterns which minimise interspecific competition where the species have sympatric distributions. C. finmarchicus has its younger development stages overlying the older stages in the water column. In C. helgolandicus the converse is true; i. e., the majority of the populations of Stage I and II copepodites of the first spring generations are found below the thermocline. It is also suggested that the different behaviour patterns lead to different feeding regimes and strategies.JONSDAP Contribution No. 52  相似文献   

19.
Observations from a one-person submersible (Wasp) in fall, 1982, revealed a persistent aggregation of non-migrating, Stage V copepodites of Calanus pacificus californicus Brodsky in a band 20±3 m thick at a depth of 450 m, about 100 m above the bottom of the Santa Barbara Basin, California. Copepod abundances, calculated from nearest-neighbor distances measured directly from the submersible, yielded maximum densities of 26×106 copepodites m-3. Quiescent behavior, low laminarinase activity, low protein content, high lipid content and evidence of low excretion rate all suggest that these copepodites were in a state of diapause. Diapausing C. pacificus californicus at other locations along the eastern Pacific coast were also captured in discrete depth plankton tows. Both the submersible observations and the net collections suggest that the dense aggregation of diapausing copepods we observed in the Santa Barbara Basin was a phenomenon associated with seasonal upwelling cycles, and that such aggregations occur during non-upwelling periods when food is scarce in surface waters. Numerous predators, especially the deep sea smelt Leuroglossus stilbius, were observed feeding upon the aggregated copepods; thus, in contrast to the conventional picture of surface-dominated food distribution, deep-water aggregations of C. pacificus californicus may support the mesopelagic community during periods of low food availability in surface waters.  相似文献   

20.
J. M. Gee 《Marine Biology》1987,96(4):497-510
The extent to which energy is transferred directly from benthic meiofauna to epibenthic predators was investigated on an intertidal sand-flat in the Exe estuary, southwest England, during 1981–1982 and compared with data obtained from an intertidal mud-flat in the Lyhner estuary, also in south-west England, between 1978 and 1981. Two species of flatfish (Pleuronectes platessa L. and Platichthys flesus L.), two species of goby [Pomatoschistus microps (Krøyer) and P. minutus (Pallas)], brown shrimp (Crangon crangon L.) and shore crabs (Carcinus maenas L.) are the most common epibenthic predators feeding on the benthic invertebrates in these locatites. Harpacticoid copepods are the only component of the meiofauna to form a significant part of the diet of early juvenile stages of these predators, particularly the invertebrates. Harpacticoids are a more important source of food for predators feeding over the sand-flat than for those feeding on the mud-flat because in the sand-flat alternative prey of suitable size, such as small annelids, are absent. Moreover, the impact of predation on the mud-flat is spread over the whole harpacticoid species spectrum whereas on the sandflat it is confined almost entirely to a single species, Asellopsis intermedia (T. Scott). Flatfish, gobies and shrimp consume daily an estimated 0.01 to 0.1% of the standing stock of A. intermedia and account for between 12 and 22% of the observed reduction in the population of this species between July and October. Therefore, only a very small proportion of total meiofauna biomass is transferred directly to higher trophic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号