共查询到20条相似文献,搜索用时 62 毫秒
1.
广州近地面臭氧浓度特征及气象影响分析 总被引:10,自引:0,他引:10
利用2015年广州市近地面逐时臭氧(O_3)观测资料及气象数据,分析了广州地区近地面的O_3浓度时空分布特征及其与气象因子的关系.结果表明:广州地区城郊的O_3浓度高于中心城区;广州地区近地面的O_3浓度超标时间主要出现在4—9月,8月O_3浓度最高,3月O_3浓度最低;O_3浓度日变化呈现"单峰型"分布,早上7:00—8:00出现最低值,15:00达到峰值;O_3浓度与气温呈正相关,当气温高于30℃时,O_3浓度随温度升高增加明显;与相对湿度呈负相关,当相对湿度大于60%时,O_3浓度显著降低;当气压小于1010 hpa时,与气压呈负相关,当气压大于1010 hpa时,与气压呈正相关;当风力为2~3级吹西北偏西至西南偏西风区间时,O_3浓度最高,说明广州偏西部可能存在O_3污染源区;O_3浓度在晴天最高,其次是少云和多云天气,最低是在雨天.总体而言,气温高、日照长、辐射强、气压低、湿度小及2~3级的风力是广州地区近地面产生高浓度O_3的主要气象因素.当广州O_3浓度出现超标时,气温变化范围为25.9~37.4℃,相对湿度变化范围为29%~83%,气压变化范围为989.4~1009.1 h Pa,风速变化范围为0.7~5.8 m·s~(-1),紫外辐射强度日最大1 h均值最小为32.6 W·m~(-2),10:00—14:00均值最小为27.3 W·m~(-2). 相似文献
2.
2016年中国城市臭氧浓度的时空变化规律 总被引:11,自引:0,他引:11
随着城市化进程的加快和机动车保有量的急剧增加,导致我国很多地区臭氧(O3)前体物(挥发性有机物和氮氧化物)排放量显著增加,臭氧污染现象日益突出.臭氧污染对人体健康、植被生长、生态环境等具有重要影响,已成为学术界研究的热点.为揭示全国尺度近地面臭氧的时空变化规律,本文基于2016年中国364个城市的监测数据分析了中国城市O3浓度的时空变化特征,并采用Global Moran''s I和Getis-Ord Gi*指数,揭示了2016年中国城市O3污染的空间集聚和冷热点区域的时空特征.结果表明,在全国尺度上,2016年中国城市年均O3浓度为100.2 μg·m-3,北方城市和南方城市O3浓度分别具有显著的倒"V"和"M"型月变化规律,且呈现夏季高、春秋季居中、冬季最低的特征;中国城市O3浓度具有显著的空间分异规律,中部和东部是O3污染的高发区,西部地区和黑龙江省的O3污染处于较低水平;中国城市O3浓度具有显著的集聚性特征,且呈现1-5月由南向北而6-12月由北向南扩展的年周期循环特征,热点地区主要集中在华北、华中和华东地区. 相似文献
3.
选取兰州市城区4个环境空气质量国控站点2018-2019年的监测数据和兰州市气象站同期的观测资料,分析了兰州市O3浓度的时空分布特征,并探讨了气象因素和相关污染物对ρ(O3-8 h)的影响。结果表明:1)兰州市城区各站点ρ(O3-8 h)的月变化和ρ(O3)小时值的日变化均呈单峰型,ρ(O3-8 h)高值出现在4-8月,ρ(O3)小时峰值出现在15:00左右;2)相关污染物与ρ(O3-8 h)均呈负相关,ρ(O3-8 h)随ρ(NO2)、ρ(CO)、ρ(PM2.5)的增加而降低;3)高温、低湿的环境有利于兰州市城区O3的生成,而特殊的地形条件导致在一定风速下,O3更容易积累;4)分别建立了相关污染物和气象因子的多元线性回归方程,发现在当前气象条件和相关污染物排放现状下,气象因子对兰州市O3的影响比相关污染物的影响更为重要。 相似文献
4.
为研究京津冀地区臭氧浓度的时空变化,文章利用2014年6月-2018年5月中国环境监测总站臭氧浓度数据进行分析。结果表明:(1)京津冀地区臭氧浓度平均水平不断增高,不同区域增速差异明显,高值区出现由单中心向双中心的转变且逐渐形成了日益明显的沿海臭氧高浓度分布带;(2)臭氧浓度的季节性差异显著,春、夏两季较秋、冬两季臭氧浓度高,其中夏季最高,冬季则缺乏高值区;(3)不同城市的年均臭氧浓度分布模式不同,大部分城市核密度估计峰值对应臭氧浓度20μg/m~3;(4)臭氧浓度的日内变化基本遵循周期性单峰型变化规律;(5)不同城市臭氧浓度超标天数差异显著,变化趋势可分为稳定增长型、突变增长型和稳定型。 相似文献
5.
东亚地区大气整层臭氧浓度的时空变化 总被引:6,自引:1,他引:6
从TOMS臭氧全球网格资料截取主要包含中国大陆的东亚地区 (6 9 375°E— 1 39 375°E ;1 4 5°N— 5 4 5°N)的数据 ,分析大气整层臭氧浓度的变化特征 .结果表明 ,区域多年平均臭氧浓度约为 30 7DU(多卜森单位 :DobsonUnit) ;一年中 ,平均臭氧浓度有明显的季节变化 ,春季 (3月 )达最大值 ,秋季 (1 0月 )最小 ,变化幅度约 5 0DU .区域内臭氧浓度具有很强的空间 (纬向 )变化 ,低纬度地区臭氧浓度低 ,较高纬度地区臭氧浓度高 .各地臭氧浓度变化的概率分布基本为单峰型 ,低纬度地区分布较窄而高纬度地区宽 .从 1 978至 1 994年的十多年中 ,区域平均浓度呈明显的下降趋势 ,下降幅度约 1 0DU .对应于此 ,区域内各等级的臭氧浓度值以大致均匀的速率变化 ,低值的出现概率增加 ,而高值的出现概率减小 . 相似文献
6.
本文以2021年1~12月甘肃省陇南市西和县城区地面空气臭氧浓度连续监测结果为研究对象,发现该区域低空大气臭氧浓度值呈现一定的时间变化特征,即1:00~3:00处于最低值,15:00~17:00出现最大值;春末夏季及秋初臭氧浓度值较高,冬季和初春浓度较低。除了工业、机动车尾气排放、化石燃料燃烧等因素外,风速、气温、气压等气象因素也会对臭氧浓度值变化也产生一定影响。因此,针对该变化特征及臭氧来源分析,提出臭氧防治措施,有利于降低城区低空大气臭氧污染物浓度,营造良好生活环境。 相似文献
7.
利用2015—2021年广州地区近地面逐时臭氧(O3)观测资料及同期地面气象站常规观测数据,分析了广州地区近地面O3浓度污染特征及其与气象因素的关系.结果表明:2015—2021年广州地区O3浓度呈缓慢上升趋势,增速为1.9 μg?m-3?a-1,2015和2019年O3浓度超标天数 最多;O3平均浓度季节变化明显:秋季>冬季>夏季>春季;O3浓度空间分布不均匀,城郊地区高于中心城区;峰值中心位于城郊地区白云区,低值中心位于中心城区荔湾区.O3浓度高峰期是7—10月,9月浓度最高,3月浓度最低;四季O3浓度日变化均呈“单峰型”结构,最低值出现在7:00—8:00,14:00—16:00达到峰值.近地面O3平均浓度和O3超标率均与气温呈正比,当气温>15 ℃开始出现臭氧超标现象.相对湿度<50%时,O3超标率与相对湿度呈正比;相对湿度为40%~50%时,O3超标率达峰值为16.3%.当风速<2 m?s-1时,O3超标率与风速呈正比;当风速> 2 m?s-1时,O3超标率与风速呈反比.高温、低湿、风小是广州地区产生高浓度O3的主要气象因子. 相似文献
8.
为揭示中国O3浓度的时空格局及聚集变化规律,通过对2016~2018年全国338个城市1144个监测站点的O3浓度观测数据,使用空间插值及空间自相关等方法进行分析研究.结果表明:2016~2018年全国O3浓度(第90百分位数)总体呈现上升趋势(由2016年的141.54μg/m3上升到2018年的153.21μg/m3),污染态势逐年加重,且华北及长江中下游等人口稠密地区O3浓度最高,O3浓度的空间分布呈现显著的聚集性和相似性规律,且聚集性逐年增强,O3浓度的年聚集区主要呈现北高南低的分异,高高值聚集区主要集中在北方(城市占比22.19%~29.59%),低低值聚集区则主要集中在南方(城市占比15.98%~22.19%),此外,O3浓度高高值聚集区与低低值聚集区空间分布的季节变化规律以顺时针周期性变化为主:3a来,春季集聚区分布与年集聚情况相同,夏季高高值,低低值聚集区逐渐向西扩大聚集范围,秋季则顺时针转变为东高西低的分异情况,随后高高值(低低值)聚集区沿顺时针方向南(北)移动,到冬季则转变为南高北低的空间分异情况. 相似文献
9.
杭州市近地面大气臭氧浓度变化特征分析 总被引:1,自引:0,他引:1
《中国环境科学》2017,(2)
利用2012~2016年杭州市近地面臭氧(O_3)的连续观测资料以及气象数据,分析了杭州市近地面O_3浓度的变化特征及其与气象要素的关系.结果表明,近年来杭州市O_3年平均浓度较10年前升高10μg/m~3左右,光化学污染形势日趋严重.O_3浓度冬季较低,其余季节均较高,日平均浓度大于100pg/m~3主要分布在4~10月.O_3浓度日变化呈单峰型分布,5:00~7:00出现最低值,14:00出现峰值,超标时段主要出现在11:00~18:00.O_3浓度变化与紫外辐射、温度呈正相关关系,与相对湿度呈负相关关系.紫外辐射大于0.02MJ/m~2、气温高于20℃、相对湿度低于70%时,O_3浓度会出现超标情况.风向风速对O_3浓度有一定影响,当风向为北风或偏北风时,O_3浓度较低;当风向为东风或偏东风时,O_3浓度较高,说明影响杭州O_3浓度升高的污染源也主要来自东部,南部和北部地区较少. 相似文献
10.
2015—2016年中国城市臭氧浓度时空变化规律研究 总被引:1,自引:3,他引:1
为探究中国大陆城市O3污染状况时空变化的总体特征,运用时空统计分析和GIS技术对2015—2016年全国开展O3常规监测的336个城市进行分析,揭示近两年O3浓度及不同等级污染天数的时空变化格局,并着重对比分析"三区十群"区域内外O3浓度的变化差异.结果表明:2015—2016年期间,全国336个城市中,有258个城市2016年年均O3浓度值较2015年升高,形成了新的O3污染空间格局;京津冀及周边地区、长三角地区、中部的河南、武汉污染较重,东南沿海和西南地区的云南、西藏污染相对较轻;长三角地区和山东城市群是中国O3核心污染区域,陕西、山西及安徽三省O3浓度较2015年有大幅升高.O3的空间分布与NOx排放量、生成控制型等因素密切相关.已有的研究区域中除华北平原和四川盆地等地区的郊区点位以外,我国大多数地区的O3生成控制型属于VOCs控制型.研究结果有利于从宏观上直接对比评估国家大气污染重点防控区内外O3污染特征变化的差异,从而针对性地开展环境污染防控. 相似文献
11.
12.
伴随着颗粒物浓度的快速下降,大气臭氧(O3)污染呈快速上升和蔓延态势,已成为制约我国空气质量持续改善的瓶颈问题之一.因此,理清O3浓度变化特征对于改善空气质量有重要意义.应用复杂网络方法,基于城市间O3浓度的相关关系和其时滞,构建中国O3浓度网络,并分析O3浓度的关联结果和传输特征.结果表明,统计指标度、加权度和连边长度的概率密度函数遵循幂律分布,这说明O3浓度的变化不是随机的,存在一定的规律性.加权度的空间分布分析表明,加权度的高值集中在京津冀和周边地区,与O3浓度高值区分布一致.其中,北京、天津和河北东部(渤海湾沿线)城市向其他城市传输的能力较强.并且,冬季传输能力强于其它季节,主要是受到冬季风的影响.研究结果不仅有助于理解O3浓度变化特征,也是复杂网络方法应用到大气环境中的有益尝试. 相似文献
13.
南京市北郊夏季臭氧浓度变化特征分析 总被引:1,自引:0,他引:1
利用南京市北郊2014年7月11日至2014年9月10日近地面O3浓度的连续观测数据,结合相应气象要素资料,分析了近地面O3浓度的逐日变化、日变化以及不同天气条件下的日变化特征,同时对青奥会时段以及非青奥会时段O3浓度进行了比较与分析,探讨了O3浓度与气象要素的相关性。结果表明:1整个观测期间O3浓度日均值为75.55μg/m3,青奥会时段日均值为66.47μg/m3,非青奥会时段为79.74μg/m3,随着青奥会的临近,O3浓度呈现逐渐降低的趋势。2 O3浓度的日变化呈现单峰型的特点,夜间变化平缓,白天变化剧烈。3不同天气条件下,晴天、阴天、雨天的O3浓度的日均值分别为102.23、63.66、63.86μg/m3,日变化最强烈的是晴天,阴天和雨天日变化较为平缓。4O3浓度的日均值出现的频率主要集中在40~80μg/m3之间,占总日数的59.02%。5太阳辐射强度、相对湿度、气温、风向、风速影响O3浓度的变化,其中O3浓度与气温及太阳辐射呈正相关关系,与相对湿度呈负相关关系。 相似文献
14.
15.
城市臭氧发生发展规律的研究将为城市环境管理提供理论依据。文章利用卫星OMITO3e数据产品,解译和分析了天水市2006~2014年臭氧柱浓度的时空动态信息。结果表明:(1)空间分布呈现东北、西北高,中部、南部低的倒"V"字形;(2)年变化呈单峰曲线,从2006年至2010年为上升期,每年的增长率为3.98%,2010年至2014年为下降期,年均下降率为2.52%;(3)四季变化明显分为两个阶段,前三年为冬季春季夏季秋季;后六年以夏、春季变化为主,冬、秋季为辅,夏季春季冬季秋季。夏、春两季在第二阶段明显升高与当地经济的快速发展有密切的关系;(4)9年间臭氧柱浓度平均值为301.177 DU,最大值为325.829 DU,最小值为279.093 DU,臭氧柱浓度指示的多年空气质量等级为良好。 相似文献
16.
基于2015~2017年O_3浓度监测数据,采用克里金插值、空间自相关分析、热点分析和地理探测器等方法,研究了中国城市O_3浓度的时空变化特征及驱动因素.结果表明:①2015~2017年中国城市O_3污染逐年加重,年评价指标超标城市由74个增加到121个,平均超标天数比例由5. 2%上升到8. 1%.②O_3污染主要发生在4~9月,超标天数占全年总超标天数的87. 5%~95. 3%. 5~7月O_3浓度上升最快、污染最严重,超标天数比例由2015年的10. 6%上升到2017年的20. 5%,2017年83. 0%的中度污染和91. 0%的重度污染发生在5~7月.③华北平原O_3浓度的持续上升,已将京津冀和长三角地区O_3高污染区连成一片,形成了包括环渤海地区、中原城市群、长三角城市群、山西、关中地区和内蒙古中部集中连片的O_3高污染区,是我国O_3污染最严重的区域.珠三角、成渝城市群和华东地区南部O_3浓度上升也较快,成渝城市群的核心城市已初步形成我国新的O_3污染中心.④O_3浓度空间集聚性逐年增强,年度热点主要分布在华北平原和长江中下游地区,冷点主要分布于东北、西南及华南地区.⑤地理探测器分析表明,气象、工业化、城市化因素和O_3前体物排放量因子对O_3浓度分布均有显著驱动作用,但不同地区O_3浓度的驱动因素存在差别,同一因子在不同季节的驱动作用也不尽相同. 相似文献
17.
基于环境空气质量站点监测数据及卫星遥感资料,研究了2015~2020年济南市近地面臭氧(O3)污染的时空分布特征、变化趋势和前体物生成敏感性.结果表明,2015~2020年济南市O3浓度呈上升趋势,全年O3日最大8 h滑动平均值(MDA8)的第90百分位数(即年评价浓度)和4~9月MDA8 O3浓度年均值分别以4.8μg·(m3·a)-1和3.8μg·(m3·a)-1的速率增长;各监测站点间O3浓度水平差异逐渐缩小,且O3浓度高值范围进一步扩大,济南市有16.1%和22.6%的监测点年评价值和4~9月MDA8 O3出现了显著的正趋势(P<0.05),这些监测站点主要位于市区和靠近市区的郊区.卫星遥感监测数据显示2015~2020年4~9月济南市NO2对流层柱浓度下降20.6%,年下降速率为0.3×1015 相似文献
18.
随着经济社会的发展,人们对环境质量更加重视,光化学烟雾成为影响城市环境空气质量的重要因素。利用东北地区大连市全年臭氧监测的时间浓度,对臭氧污染的浓度分布特征,时间以及季节变化特征进行了分析。结果表明:臭氧浓度变化受太阳辐射强度和气温的影响明显,呈单峰型变化,臭氧浓度季节变化趋势明显。春、夏季节臭氧浓度较高,秋季臭氧浓度次之,臭氧与大气中的NO、NO2、CO、VOCs等前体物的浓度、太阳辐射的强度以及CO的浓度都有不同程度的相关性。 相似文献
19.
北京市臭氧的时空分布特征 总被引:12,自引:2,他引:12
对2012年12月~2013年11月期间北京市35个自动空气监测子站的O3浓度进行分析,探讨北京市O3浓度的时间、空间分布特征,并对夏季的一次O3高浓度过程进行了分析.结果表明,北京市O3浓度在5~8月维持相对较高浓度,其他月份则维持较低浓度.整体来看,4类功能的监测站点中O3平均浓度由高到低分别是对照点及区域点、郊区环境评价点、城区环境评价点和交通污染监控点;O3浓度日变化呈单峰型分布,一般在15:00、16:00达到峰值;O3还呈现明显的"周末效应",即周末白天时段O3浓度大于工作日浓度.北京市O3浓度城区相对较低,周边区县相对较高,生态植被优良的东北部地区浓度最高.2013年6月3日北京市发生一次O3高浓度过程,在下午西南风的作用下,榆垡、丰台花园、奥体中心和怀柔监测站O3峰值出现的时间从南到北依次滞后,且怀柔站在20:00才出现峰值,体现了这次过程中存在明显的O3输送特征. 相似文献