首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
将锆(Ⅳ)固化在通过乙醛酸改性的粒状废弃皮革上制备出新型氟离子吸附剂.采用SEM-EDX、XPS、FTIR等方法表征了其表面形貌及结构,研究了该吸附剂对溶液中氟离子(F-)的吸附特性并探索其吸附机理。结果表明:粒状废弃皮革与锆的最佳质量比为1∶2;对F-的吸附最佳p H=3;当p H为3,温度为25℃、F-的初始浓度为50 mg/L、吸附剂用量为0.5 g/L时,对F-的吸附量为49.72 mg/g,当吸附剂用量增加到3 g/L时,F-的去除率可达96%;该吸附剂对F-的吸附等温线符合Langmuir方程,吸附动力学可用准二级动力学模型描述,属化学吸附,F-以离子交换的形式代替-OH与吸附剂中的锆(Zr(Ⅳ))结合形成稳定的化学键,从而达到吸附水溶液中氟离子的目的。  相似文献   

2.
为了提高生物炭-壳聚糖复合微球对NOR(诺氟沙星)的吸附能力,以复合微球对NOR的吸附量为指标,考察了生物炭与壳聚糖质量比、壳聚糖脱乙酰度、戊二醛用量、交联时间、交联速率及生物炭热解温度对复合微球吸附NOR的影响,并由均匀试验确定复合微球的最佳制备条件.结果表明,生物炭与壳聚糖质量比、壳聚糖脱乙酰度、戊二醛用量、交联时间、交联速率及生物炭热解温度对复合微球吸附NOR具有明显影响.制备复合微球的关键影响因素是生物炭热解温度、戊二醛用量和交联速率.吸附NOR的复合微球最佳制备条件:生物炭热解温度为300℃、生物炭与壳聚糖质量比为5:1、壳聚糖脱乙酰度为77%、戊二醛用量为80 mL、交联速率为150 r/min、交联时间为3 h.此时,复合微球对NOR的吸附量为9.51 mg/g,且具有较高的耐酸溶性和机械强度.研究显示,复合微球能够高效吸附NOR,并且吸附后容易分离,具有修复水体污染的潜力.   相似文献   

3.
以海藻酸钠为基体,制备出了Mn@海藻酸复合吸附剂.采用FE-SEM、EDS和FT-IR对产品的结构进行了表征,研究了Mn@海藻酸复合吸附剂吸附去除盐酸四环素水溶液的过程,主要考察了溶液初始浓度、p H和吸附时间对盐酸四环素吸附过程的影响,同时进行了动力学、等温模型和热力学分析,并对吸附剂的再生进行了评价.结果表明,盐酸四环素溶液初始浓度越大,平衡吸附量越大;强酸不利于Mn@海藻酸微球吸附反应的进行;随着时间的延长,吸附量呈逐渐增加的趋势.动力学模拟结果表明,吸附过程符合准二级动力学模型,等温吸附曲线符合Langmuir等温模型;热力学参数ΔG0,ΔH0,ΔS0,表明该吸附过程为自发吸热过程.通过构造Fenton-like反应体系,表面富集有盐酸四环素的Mn@海藻酸微球吸附剂可有效实现原位再生,重复使用.研究结果对含盐酸四环素废水的处理提供重要的理论依据.  相似文献   

4.
采用原位沉淀方法制备了一种具有网格结构的铁-镧/壳聚糖微球(FLCB),该吸附剂可在较宽的pH范围内高效吸附砷酸盐.与壳聚糖微球(CB)相比,铁和镧离子的加入扩大了吸附剂的pH耐受范围.当pH=10时,其对砷酸盐的吸附效率高达80%.Fe—O键和La—O键的加入增加了FLCB的总正电荷密度,在一定程度上提高了FLCB的吸附容量.拟二级动力学模型和Langmuir吸附等温线(Qmax=105.01 mg·g-1)可以更好地描述吸附过程.FLCB在砷酸盐上的吸附机理为:双齿双核或单齿单核形成的表面络合物占主导地位,吸附剂与砷酸盐的静电吸引占次要地位.  相似文献   

5.
羧甲基纤维素-壳聚糖聚电解质复合物微球的吸附性能   总被引:1,自引:0,他引:1  
该文探讨了利用羧甲基纤维素 -壳聚糖聚电解质复合物微球作为吸附剂的研究 ,结果表明 ,复合微球对 Cu2 + 、Ni2 +、Co2 +具有良好的吸附性能  相似文献   

6.
以聚吡咯(PPy)改性芦苇-底泥生物炭(LB)制备了一种特异性吸附阴离子的吸附剂材料(LB/PPy)并实现水体中氟离子的高效去除.通过扫描电镜(SEM)、X射线光电子能谱(XPS)、孔径分析仪(BET)和傅里叶红外光谱(FTIR)对LB/PPy材料进行结构表征,并通过批量吸附实验探究LB/PPy对氟离子的吸附动力学和关键影响因素,最终揭示了该材料对氟离子的特异性吸附机理.PPy增加了LB材料的比表面积及表面官能团丰度,赋予其较高的吸附容量及特异性吸附阴离子性能.LB/PPy对氟离子的吸附动力学过程均符合准二级动力学模型,吸附过程同时存在物理吸附和化学吸附作用,但主要以化学键合为主;40℃时,达到最大吸附容量,为45.34mg/g,温度增加,吸附容量提升.该材料去除氟离子的最适p H值范围为8~10,具有高效的吸附效果,在多离子混合存在下仍能够保证对氟离子良好的特异性吸附能力,具有极高的应用价值.  相似文献   

7.
吴奕真 《福建环境》2002,19(3):33-36
该文探讨了利用羧甲基纤维素-壳聚糖聚电解质复合物微球作为吸附剂的研究,结果表明,复合微球对Cu^2 、Ni^2 、Co^2 具有良好的吸附性能。  相似文献   

8.
壳聚糖-钇多孔微球对Cr(Ⅵ)的吸附性能与机理分析   总被引:1,自引:0,他引:1  
以壳聚糖和Y2(OH)5NO3为原料通过乳液交联法制备了壳聚糖-钇(Ch—Y)复合微球,通过扫描电镜、透射电镜、X射线衍射、红外光谱等方法对其表面形貌、结构进行了表征.探讨了溶液的pH值、反应时间、投加量、离子初始浓度对其吸附性能的影响.研究结果表明,壳聚糖-钇(Ch—Y)复合微球在pH值为3的酸性环境中对Cr(Ⅵ)保持了较高的吸附能力,吸附容量为52.39mg·g-1,其吸附行为符合Langmuir吸附等温模型;通过吸附机理的研究,发现壳聚糖-钇(Ch—Y)对Cr(Ⅵ)吸附是化学吸附静电吸附协同氧化Cr(Ⅵ)离子作用来实现的.  相似文献   

9.
以壳聚糖和Y2(OH)5NO3为原料通过乳液交联法制备了壳聚糖-钇(Ch—Y)复合微球,通过扫描电镜、透射电镜、X射线衍射、红外光谱等方法对其表面形貌、结构进行了表征.探讨了溶液的pH值、反应时间、投加量、离子初始浓度对其吸附性能的影响.研究结果表明,壳聚糖-钇(Ch—Y)复合微球在pH值为3的酸性环境中对Cr(Ⅵ)保持了较高的吸附能力,吸附容量为52.39mg·g-1,其吸附行为符合Langmuir吸附等温模型;通过吸附机理的研究,发现壳聚糖-钇(Ch—Y)对Cr(Ⅵ)吸附是化学吸附静电吸附协同氧化Cr(Ⅵ)离子作用来实现的.  相似文献   

10.
新型纳米结构铈锰复合氧化物的磷吸附行为与机制研究   总被引:2,自引:1,他引:1  
采用共沉淀法制备了一种新型铈锰复合氧化物吸附剂,对其进行了表征,并对磷吸附行为与机制进行了研究.表征结果分析表明,此氧化物由纳米级颗粒组成;铈锰复合氧化物中的铈氧化物有类似水合氧化铈的无定形结构;BET比表面积为157 m2·g-1,等电点为6.5.吸附实验结果表明,Langmuir吸附等温线模型可以更好地拟合铈锰复合氧化物对磷的吸附,最大吸附量为28.6 mg·g-1(p H=7.0);铈锰复合氧化物对磷具有较高的吸附速率,更符合准二级动力学模型;溶液p H对铈锰复合氧化物吸附磷的影响较为明显,随p H升高,吸附量降低;离子强度则影响不大;共存阴离子对吸附影响的大小顺序为Si O2-3CO2-3Cl-≥SO2-4.通过对铈锰复合氧化物吸附磷前后Zeta电位和红外谱图(FTIR)分析,可以推断磷在铈锰复合氧化物表面发生了特性吸附,磷酸根主要通过取代复合氧化物表面的金属羟基而被吸附去除.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

14.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and their phytotoxicity to pakchoi. The loamy soil was mixed with 0%, 20%, 40%, 60% and 80% (by weight) of digested sewage sludge (SS) and composted sludge (SC). The additions of both sludges caused a significant raise in all fractions, resulting in that exchangeable (EXCH) and organic bound (OM) became predominance of Zn and organic bound Cu occupied the largest portion. There was more available amount of Zn and Cu in SS treatments than SC treatments. During the pot experiment, the concentration of Zn in EXCH, carbonate (CAR) and OM and Cu in EXCH and OM fractions decreased in all treatments, so their bioavailability reduced. Germination rate and plant biomass decreased when the addition rate was high and the best yield appeared in 20% mixtures at the harvest of pakchoi. The two sludges increased tissue contents of Zn and Cu especially in the SS treatments. Zn in pakchoi was not only in relationship to ΔEXCH and ΔCAR forms but also in ΔOM forms in the sludge-soil mixtures. Tissue content of Cu in pakchoi grown on SC-soils could not be predicted by ΔEXCH. These correlation rates between Zn and Cu accumulation in pakchoi and variation of different fractions increased with time, which might indicate that sludges represented stronger impacts on the plant in long-term land application.  相似文献   

17.
A hydroponic experiment was carried out to study intraspecific differences in the effects of different concentrations of cadmium (Cd)(0-10 mg/L) and arsenate (As(V)) (0-8 mg/L) on the growth parameters and accumulation of Cd and As in six wheat varieties Jing-9428, Duokang-1, Jingdong-11, Jing-411, Jingdong-8 and Zhongmai-8. The endpoints of wheat seedlings, including seed germination,biomass, root length and shoot height, decreased with increasing the Cd and As concentrations. Significant differences in seed germination, biomass, root length, shoot height and the accumulation of Cd and As were observed between the treatments and among the varieties (p < 0.05). The lethal dosage 50% were about 20, 80, 60, 60, 80 and 20 mg As/L for Jing-9428, Duokang-1, Jingdong-11,Jing-411, Jingdong-8 and Zhongmai-8, respectively, and the corresponding values for Cd were about 30, 80, 20, 40, 60 and 10 mg Cd/L, respectively. Among the six varieties, Duokang-1 was found to be the most resistant to Cd and As toxicity, and Zhongmai-8 was the most sensitive to Cd and As co-contamination. The resistance of the six varieties was found dependant on the seedling uptake of Cd and As. Duokang-1 was the most suitable for cultivation in Cd and As co-contaminated soils.  相似文献   

18.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

19.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

20.
Single and joint effects of pesticides and mercury on soil urease   总被引:3,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号