首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Azotobacter vinelandii UWD, ATCC 53799, an engineered strain derived from Azotobacter vinelandii UW was used in the poly(ethylene glycol) (PEG)-modulated synthesis of poly(-hydroxybutyrate) (PHB). To the best of our knowledge, this is the first report on modulating the production of PHB by amending the fermentation broth with PEG using A. vinelandii UWD. It was determined that A. vinelandii UWD is prone to back-mutation to the parent strain; hence fermentation experiments require the use of the antibiotic rifampicin. Diethylene glycol (DEG) and PEGs with molecular weights of 400, 2000, and 3400 Da and pentaerythritol ethoxylate (PEE) were used in the modulated fermentation experiments in a concentration of 2% (w/v). The molecular weight of the resulting polymers was reduced by up to 78%. No impact on the productivity of the strain was observed. Spectroscopic evidence showed that PEG-modulated synthesis resulted in the covalent attachment of the ethylene glycol moiety only when a small molecule, DEG, was used. PEGs had the same effects on the polymer formation in terms of molecular weight reduction as DEG, but no spectroscopic evidence was found for the formation of a covalent linkage between PHB and higher molecular weight PEGs.  相似文献   

2.
3.
Poly(-caprolactone) (PCL) was blended with diatomaceous earth (diatomite) and irradiated with -rays to introduce cross-linking between PCL molecules or both components. The unwashed diatomite containing a little of a volatile component showed high efficiency of introduction of cross-linking, whereas that with no volatile component showed low efficiency of introduction of cross-linking. Elongational viscosity, melt viscosity, and modulus of PCL/diatomite blend irradiated at various doses were significantly improved. Enzymatic degradation of the PCL/diatomite blend became faster than that of the PCL, though that of the blend irradiated became slower.  相似文献   

4.
The distribution of degading microorganisms of high molecular weight poly(-propiolactone) (PPL), whose individual structural units are similar to those of poly(-hydroxybutyrate) (PHB) and poly(€-caprolactone) (PCL), was examined. Despite the fact that PPL is a chemosynthetic polymer, many kinds of PPL-degrading microorganisms were found to be distributed as resident populations widely in natural environments. A total of 77 strains of PPL-degrading microorganisms was isolated. From standard physiological and biochemical tests, at least 41 strains were referred to as Bacillus species. Microbial degradation of fibrous PPL proceeded rapidly in some enrichment cultures but was not as complete as that of PHB. Most of the isolated PPL-degrading microorganisms were determined to be PCL degraders and/or PHB degraders. Therefore, it can be assumed that mostly PPL is recognized by the microorganisms as PHB or another natural substrate of the same type as which PCL is regarded. Microbial degradation of PPL was confirmed by some Bacillus strains from type culture collections. The similarity of microbial degradation between PPL and PCL was found to be very close.  相似文献   

5.
The poly(-caprolactone) (PCL) and poly[(R)-3-hydroxybutyrate] (R-PHB) films with a hydrophilic surface were prepared by the alkali treatment of their as-cast films in NaOH solutions of different concentrations. The alkali-treated PCL and R-PHB films, as well as the as-cast PCL and R-PHB films, were biodegraded in soil controlled at 25°C and the effects of alkali treatment or surface hydrophilicities on their biodegradation were investigated by the use of gravimetry, gel permeation chromatography (GPC), scanning electron microscopy (SEM), and polarization optical microscopy. It became evident that the alkali treatment enhanced the hydrophilicities and biodegradabilities of the PCL and R-PHB films in soil. The biodegradabilities of the as-cast aliphatic polyester films in controlled soil decreased in the following order: PCL > R-PHB > PLLA, in agreement with that in controlled static seawater.  相似文献   

6.
Polylactide (PLA)/polymethylmethacrylate (PMMA)/α-cellulose composites were fabricated using a twin-screw extruder. During fabrication, α-cellulose short fibres were incorporated for improving the toughness of the brittle PLA and a chain extender was used for reducing PLA hydrolysis. Highly transparent PLA and PMMA were blended to obtain miscible and transparent blends. For evaluating the performance of the PLA/PMMA/α-cellulose composites, a series of measurements, including tensile and Izod impact tests, light transmission and haze measurements, thermomechanical analysis, and determination of isothermal crystallisation behaviour, was conducted. Adding the chain extender considerably reduced the occurrence of hydrolytic degradation. Both the chain extender and α-cellulose short fibres increased the elongation at break and Izod impact strength of the composites. Compared with the neat PLA, including 1.0 wt% α-cellulose short fibres increased the elongation at break and Izod impact strength of the composite PLA by approximately 211 and 219 %, respectively. According to the observed mechanical performance, the optimal blending ratios for PLA and PMMA were between 90:10 and 80:20. The total light transmittance of the composites was as high as 91 %, indicating that the PLA/PMMA blend was highly miscible. The haze value of the PLA/PMMA/α-cellulose composites was lower than 32 %. Incorporating cellulose short fibres increased the number of crystallisation sites and crystallinity of the PLA/PMMA/α-cellulose composites while reducing the spherulite dimensions.  相似文献   

7.
Journal of Polymers and the Environment - Nowadays, there is a need to obtain eco-friendly materials, especially plastics that are responsible for most of the environmental pollution. In this...  相似文献   

8.
Journal of Polymers and the Environment - This study aims to evaluate the effects of poly(2-ethyl-oxazoline) (PEOx) on the thermal properties, wettability, and optical properties of poly(lactic...  相似文献   

9.
Journal of Polymers and the Environment - In this work new biodegradable composite materials based on poly(butylene-adipate-co-terephthalate) (PBAT) reinforced with water-soluble calcium-phosphate...  相似文献   

10.
The microbial strain Azotobacter vinelandii UWD was grown under conditions of simulated microgravity in the National Aeronautics and Space Administration (NASA) Bioreactor. Bacterial growth in simulated microgravity differed significantly from that observed in conventional shake flask experiments: Cells tended to grow in a cluster-like pattern and polymer production started immediately after exposing them to conditions of simulated microgravity, and no lag time was observed. It was imperative to differentiate between the effects derived from microgravity and those imposed by the altered oxygen supply in the bioreactor. Aeration conditions were studied in both reactor types and a gas supply profile was developed for the bioreactor. This supply profile allowed for similar amounts of dissolved oxygen in the bioreactor and the shake flask in the initial stage of the fermentation and, therefore, for an evaluation of the effects of microgravity on biopolyester-producing bacteria. Since the optical density that is conventionally used as a measure for the cell growth could not be used due to the cluster-like growth pattern of the cells, it was determined that bacterial growth behavior in the bioreactor can be monitored through glucose or oxygen consumption.  相似文献   

11.
Blends of poly (β-hydroxybutyrate-co-β-hydroxyvalerate) with poly (ε-caprolactone) were produced using melt mixing and solvent casting techniques. The biodegradation of blends was tested based in the ASTM G21-90 using Penicillium funiculosum fungal specie. The CO2 production during biodegradation was measured and fitted using the Gompertz model. Biodegradation of blends varies according to the mixing technique and the proportion of bacterial polymers in the blends. Although lag phase was larger, solvent-casted blends were easier to degrade due to their porous surface and relative lower crystallinity. P. funiculosum morphology during biodegradation appeared to be related to carbon availability i.e. larger and more complex conidiophores, more phialides per conidiophore and the presence of double-phialides, were found in blends with higher PHAs proportion. P. funiculosum morphology was independent to the blending technique used. Hence, morphology of P. funiculosum could be useful as a reference for carbon bioavailability of the blends.  相似文献   

12.
Organic–inorganic hybrid coatings based on poly(ε-caprolactone), poly(ethylene oxide) or poly(lactic acid) as organic phase and silica from tetraethoxysilane as inorganic phase were prepared by the sol–gel approach. Coatings were applied onto poly(lactic acid) films for food packaging in order to improve its barrier properties towards oxygen and water vapour. All the prepared coatings were dense, homogeneous layers characterized by a good adhesion to the substrate. The permeance of the coating layers resulted one order of magnitude lower than that of the uncoated poly(lactic acid) (PLA) film. The hydrophilic character of the coating did not permit to gain a significant decrease in the water vapour permeance. The perfect visual transparency of the coatings allows their application without worsening of the esthetical properties of the substrate PLA film.  相似文献   

13.
The extracellular poly(-hydroxybutyrate) (PHB) depolymerase of Aspergillus fumigatus Pdf1 was purified by a new, simple, one-step affinity chromatography method using the substrate PHB. The purified enzyme was glycosylated, with the molecular mass of 40 KD, and exhibited a novel self-aggregation behavior by means of hydrophobic interaction that was resolved by Triton X-100 (TX-100) pretreatment of enzyme and also TX-100 incorporation in the native gel. The apparent K m value of purified enzyme for PHB was 119 g/mL and 3-hydroxybutyrate was detected as the main endproduct of PHB hydrolysis. The depolymerase was insensitive to phenylmethyl sulfonyl fluoride (PMSF), sodium azide, ethylenediaminetetraacetic acid (EDTA), and para-chloromercuric benzoic acid (PCMB), but was inactivated by dithioerythritol (DTT) and showed specificity for short chain-length poly(-hydroxyalkanoates) (PHAs) such as PHB, poly(hydroxyvalerate) (PHV), and copolymers of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV). Medium-chain-length PHA failed to get hydrolyzed. The enzyme, however, exhibited strong cross reactivity with the Comamonas sp. PHB depolymerase antibodies, but not with PHV depolymerase antibodies of Pseudomonas lemoignei. Southern hybridization and dot blot analysis of A. fumigatus Pdf1 genomic DNA with alkaline phosphatase labeled probes of P. lemoignei PHB and PHV depolymerase genes revealed no homology, although the enzyme hydrolyzed both PHB and PHV.  相似文献   

14.
Poly(urethane-ester) was prepared by polymerization of 4,4′-methylenebis(phenyl isocyanate) (MDI) and prepolymers of ε-caprolactone and 2,2-dimethyl-1,3-propanediol monomers P(CL-DP) with various chain lengths as polyol sources. Characterizations of poly(urethane-ester) were carried out by analysis of functional groups (FTIR), thermal properties (DTA/TGA), mechanical properties (Tensile tester), crystallinity (XRD), and biodegradability. The chain length of prepolymers used in polymerization has a significant effect in properties of poly(urethane-ester) as well as their biodegradability. The formation of poly(urethane-ester) was indicated by the presence of new absorption peaks at wave number of 3,348.2 and 1,596.9 cm?1 for urethane (–NH–) and aromatic groups in chain of polymers, respectively. The increase chain length of prepolymer used in polymerization with 4,4′-methylenebis(phenyl isocyanate) was observed the increase thermal property and crystallinity of poly(urethane-ester). However, the maximum mechanical property and also biodegradability in activated sludge were observed in poly(urethane-ester) prepared by polymerization of 4,4′-methylenebis(phenyl isocyanate) (MDI) and P(CL-DP) prepolymers with DP/CL ratio of 1/20. Apparently, the amorphous parts of polymers are rapidly decomposed by enzymes of microorganisms, so the crystallinity on the whole of poly(urethane-ester) increases after incubation time of 30 days.  相似文献   

15.
Biodegradation of poly(ε-caprolactone) composite with graphite oxide (GO) by the action of Bacillus subtilis (BS) was studied in this work. Nanocomposite produced in a form of thin film was exposed to nutrient cultivation medium with BS as well as to abiotic nutrient medium (control run) at 30 °C. The matrix itself was exposed to the same conditions for comparison. Biodegradation was demonstrated by the weight loss and the decrease of molecular weight during 21 days of the experiment as well as by changes in the surface morphology and structure. Both degraded and control materials were characterized by confocal laser scanning microscopy, differential scanning calorimetry, thermogravimetry, and Fourier transform infrared spectroscopy with attenuated total reflectance. The bacterial growth expressed as the measure of the optical density/turbidity in McFarland units and pH of medium were measured in situ during the experiment. Lipolytic activity of BS was determined by spectrophotometric assay. Degradation process was accompanied by the increase of matrix crystallinity degree. GO served as nucleating agent and facilitated absorption of cultivation media into the composite which led to the increase of the crystallinity degree also for control nanocomposite specimens. It was not evaluated to be promoter of biodegradation. The surface cracks formation was initiated by BS action. Large surface cracks were formed on BS-degraded composite surfaces while surface erosion was more significant on BS-degraded matrix.  相似文献   

16.
The biodegradation behavior of PCL film with high molecular weight (80,000 Da) in presence of bacterium Alcaligenes faecalis and the analysis of degraded polymer film have been carried out. Thin Films of PCL were prepared by means of solution casting method and the bacterial degradation behavior was carried in basal medium, in presence of bacteria with time variation after UV treatment. It was observed that after UV treatment the degradation of polymer film was increased and the degradation rate followed a three steps degradation mechanism. The degraded polymer film was analyzed by means of Differential Scanning Calorimeter (DSC), Thermo Gravimetric Analyzer (TGA) and Fourier Transform Infrared Spectroscope (FTIR). DSC results revealed that at the initial stages of the degradation up to 15–20 days, the bacterium preferentially degrades the amorphous parts of the polymer film over the crystalline zone. Thermo gravimetric analysis highlighted the low temperature stability of degraded films with extent of degradation. FTIR results showed the chain scission mechanism of the polymer chains and also supported the preferential degradation of amorphous phase over crystalline phase in the initial stages of the degradation.  相似文献   

17.
In this research, the thermal properties and crystallization behavior of novel poly(hexamethylene succinate-co-6 mol% butylene succinate) (PHBS) and its homopolymer poly(hexamethylene succinate) (PHS) were extensively studied. With respect to PHS, the introduction of a small content of butylene succinate (BS) unit slightly reduces the melting point and equilibrium melting point but hardly influences the glass transition temperature of PHBS. Despite crystallization temperature, PHS and PHBS crystallize through the same crystallization mechanism. At the same crystallization temperature, PHBS crystallizes more slowly than PHS; furthermore, lowering crystallization temperature enhances the crystallization rates of PHBS and PHS. The spherulites morphologies were observed for both of them, with the spherulites nucleation density of the copolymer being smaller than that of the homopolymer. PHBS and PHS share the same crystal structures, indicative of the location of BS unit in the amorphous region.  相似文献   

18.
Novel (-caprolactone)-based copolymers of different compositions were synthesized by allowing methyl iodide to react with the polycarbanion that resulted from the action of lithium diisopropylamide on poly(-caprolactone) in THF at –70°C under argon atmosphere. The copolymers were characterized by various techniques, namely 1H nuclear magnetic resonance, size exclusion chromatography, differential scanning calorimetry, x-ray diffraction and viscoelasticimetry. They were submitted to hydrolytic and lipase-catalyzed enzymatic degradation in comparison with genuine PCL. The Young modulus depended on the degree of methylation. In contrast, loss angle and glass transition temperature did not depend on this parameter. It is shown that the lipase-catalyzed degradation of methylated PCL is much slower than in the case of genuine PCL.  相似文献   

19.
The influence of interfacial matrix/particle adhesion on the mechanical properties of poly(lactic acid) (PLA) micro-composites was investigated. The tensile strength of PLA/wood-flour micro-composites is almost independent of wood-flour content, suggesting only weak adhesion exists between the PLA matrix and the wood-flour particles. The addition of wood-flour resulted in an increase of up to 95% in the tensile modulus, in comparison with pure PLA, which showed a more resilient matrix. The addition of a coupling agent, methylenediphenyl-diisocyanate (MDI) to the composition resulted in an increase in tensile strength and tensile modulus of the micro-composites, of 10 and 135%, respectively, indicating enhanced matrix–particle interfacial adhesion. SEM and electron probe microanalysis provided evidence of improved interfacial adhesion between PLA and wood-flour particles from the addition of MDI. In contrast, addition of PEAA resulted in a micro-composite displaying substantially reduced tensile strength, up to 35% and a slightly increased in impact strength, up to 15%, consistent with the introduction of the rubbery PEAA component into the polymeric matrix. No evidence for increased matrix–particle adhesion was found for the PLA/wood-flour micro-composites containing PEAA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号