首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pesticides applied to agricultural soils are subject to environmental concerns because leaching to groundwater reservoirs and aquatic habitats may occur. Knowledge of field variation of pesticide-related parameters is required to evaluate the vulnerability of pesticide leaching. The mineralization and sorption of the pesticides glyphosate and metribuzin and the pesticide degradation product triazinamin in a field were measured and compared with the field-scale variation of geochemical and microbiological parameters. We focused on the soil parameters clay and organic carbon (C) content and on soil respiratory and enzymatic processes and microbial biomass. These parameters were measured in soil samples taken at two depths (Ap and Bs horizon) in 51 sampling points from a 4-ha agricultural fine sandy soil field. The results indicated that the spatial variation of the soil parameters, and in particular the content of organic C, had a major influence on the variability of the microbial parameters and on sorption and pesticide mineralization in the soil. For glyphosate, with a co-metabolic pathway for degradation, the mineralization was increased in soils with high microbial activity. The spatial variability, expressed as the CV, was about five times higher in the Bs horizon than in the Ap horizon, and the local-scale variation within 100 m(2) areas were two to three times lower than the field-scale variation within the entire field of about 4 ha.  相似文献   

2.
Mobility of dissolved organic matter (DOM) strongly affects the export of nitrogen (N) and phosphorus (P) from soils to surface waters. To study the sorption and mobility of dissolved organic C and P (DOC, DOP) in soil, the pH-dependent sorption of DOM to samples from Ap, EB, and Bt horizons from a Danish agricultural Humic Hapludult was investigated and a kinetic model applicable in field-scale models tested. Sorption experiments of 1 to 72 h duration were conducted at two pH levels (pH 5.0 and 7.0) and six initial DOC concentrations (0-4.7 mmol L(-1)). Most sorption/desorption occurred during the first few hours. Dissolved organic carbon and DOP sorption decreased strongly with increased pH and desorption dominated at pH 7, especially for DOC. Due to fractionation during DOM sorption/desorption at DOC concentrations up to 2 mmol L(-1), the solution fraction of DOM was enriched in P indicating preferred leaching of DOP. The kinetics of sorption was expressed as a function of how far the solution DOC or DOP concentrations deviate from "equilibrium." The model was able to simulate the kinetics of DOC and DOP sorption/desorption at all concentrations investigated and at both pH levels making it useful for incorporation in field-scale models for quantifying DOC and DOP dynamics.  相似文献   

3.
Sorption and degradation of the herbicide 2,4-D [2,4-dichlorophenoxyacetic acid] were determined for 123 surface soils (0 to 15 cm) collected in 2002 and in 2004 between 49 degrees to 60 degrees north longitude and 110 degrees to 120 degrees west latitude in Alberta, Canada. The soils were characterized by soil organic carbon content (SOC), pH, electrical conductivity, soil texture, cation exchange capacity, carbonate content, and total soil microbial activity. The 2,4-D sorption coefficients, Kd and Koc, were highly variable with coefficients of variation of 89 and 59%, respectively, at the provincial scale. Both Kd and Koc were well described by regression models with SOC and soil pH as variables, regardless of scale. Surprisingly, variations in 2,4-D mineralization were much smaller than variations in sorption. Variability in total 2,4-D mineralization was particularly low, with a coefficient of variation of only 7% at the provincial scale. Average 2,4-D half-lives in ecoregions ranged from 1.7 to 3.5 d, much lower than the field dissipation half-life of 10 d reported for 2,4-D in general pesticide property databases. Regression models describing degradation parameters were generally poor or not significant because 2,4-D mineralization was only weakly associated with measured 2,4-D sorption parameters and soil properties. As such, regional variations in herbicide sorption coefficients should be measured or calculated based on soil properties, to assign distinct pesticide fate model input parameters when estimating 2,4-D off-site transport at the provincial scale. Spatial variations in herbicide degradation appear less important for Alberta as 2,4-D half-lives were similar in soils across the province. The rapid mineralization of 2,4-D is noteworthy because 2,4-D is widely used in Alberta and perhaps adaptation of soil microbial communities allowed for accelerated degradation regardless of soil properties or the extent of 2,4-D sorption by soil.  相似文献   

4.
5.
The objective of this study was to identify the main sources of variation in pesticide losses at field and catchment scales using the dual permeability model MACRO. Stochastic simulations of the leaching of the herbicide MCPA (4-chloro-2-methylphenoxyacetic acid) were compared with seven years of measured concentrations in a stream draining a small agricultural catchment and one year of measured concentrations at the outlet of a field located within the catchment. MACRO was parameterized from measured probability distributions accounting for spatial variability of soil properties and local pedotransfer functions derived from information gathered in field- and catchment-scale soil surveys. At the field scale, a single deterministic simulation using the means of the input distributions was also performed. The deterministic run failed to reproduce the summer outflows when most leaching occurred, and greatly underestimated pesticide leaching. In contrast, the stochastic simulations successfully predicted the hydrologic response of the field and catchment and there was a good resemblance between the simulations and measured MCPA concentrations at the field outlet. At the catchment scale, the stochastic approach underestimated the concentrations of MCPA in the stream, probably mostly due to point sources, but perhaps also because the distributions used for the input variables did not accurately reflect conditions in the catchment. Sensitivity analyses showed that the most important factors affecting MACRO modeled diffuse MCPA losses from this catchment were soil properties controlling macropore flow, precipitation following application, and organic carbon content.  相似文献   

6.
Mesotrione is a carotenoid biosynthesis-inhibiting herbicide labeled for pre-emergence and postemergence weed control in corn production. Understanding the factors that influence the dissipation of mesotrione in soil and in the plant-available water (PAW) is important for the environmental fate assessment and optimal weed management practices. The present research investigated the role of soil properties and microbial activities on the interrelated sorption and degradation processes of mesotrione in four soils by direct measurements of PAW. We found that mesotrione bound to the soils time dependently, with approximately 14 d to reach equilibrium. The 24-h batch-slurry equilibrium experiments provided the sorption partition coefficient ranging from 0.26 to 3.53 L kg(-1), depending on soil organic carbon and pH. The dissipation of mesotrione in the soil-bound phase was primarily attributed to desorption to the PAW. Degradation in the PAW was rapid and primarily dependent on microbial actions, with half-degradation time (DT(50)) <3 d in all four soils tested. The rapid degradation in the PAW became rate limited by sorption as more available molecules were depleted in the soil pore water, resulting in a more slowed overall process for the total soil-water system (DT(50) <26 d). The dissipation of mesotrione in the PAW was due to microbial metabolism and time-dependent sorption to the soils. A coupled kinetics model calibrated with the data from the laboratory centrifugation technique provided an effective approach to investigate the interrelated processes of sorption and degradation in realistic soil moisture conditions.  相似文献   

7.
Vertical distribution of phosphorus in agricultural drainage ditch soils   总被引:3,自引:0,他引:3  
Pedological processes such as gleization and organic matter accumulation may affect the vertical distribution of P within agricultural drainage ditch soils. The objective of this study was to assess the vertical distribution of P as a function of horizonation in ditch soils at the University of Maryland Eastern Shore Research Farm in Princess Anne, Maryland. Twenty-one profiles were sampled from 10 agricultural ditches ranging in length from 225 to 550 m. Horizon samples were analyzed for total P; water-extractable P; Mehlich-3 P; acid ammonium oxalate-extractable P, Fe, and Al (P ox, Fe ox, Al ox); pH; and organic C (n = 126). Total P ranged from 27 to 4882 mg kg(-1), P ox from 4 to 4631 mg kg(-1), Mehlich-3 P from 2 to 401 mg kg(-1), and water-extractable P from 0 to 17 mg kg(-1). Soil-forming processes that result in differences between horizons had a strong relationship with various P fractions and P sorption capacity. Fibric organic horizons at the ditch soil surface had the greatest mean P ox, Fe ox, and Al ox concentrations of any horizon class. Gleyed A horizons had a mean Fe ox concentrations 2.6 times lower than dark A horizons and were significantly lower in total P and P ox. Variation in P due to organic matter accumulation and gleization provide critical insight into short- and long-term dynamics of P in ditch soils and should be accounted for when applying ditch management practices.  相似文献   

8.
Irrigation with treated wastewaters as an alternative in countries with severe water shortage may influence the sorption of pesticides and their environmental effects, as wastewater contains higher concentrations of suspended and dissolved organic matter and inorganic compounds than freshwater. We have examined the sorption behaviour of three highly hydrophobic pesticides (the herbicide pendimethalin and the insecticides α-cypermethrin and deltamethrin) on a Mediterranean agricultural soil using the batch equilibration method. We considered wastewater, extracts from urban sewage sludge with different dissolved organic carbon contents, and inorganic salt solutions, using Milli Q water as a control. All pesticides were strongly retained by soil although some sorption occurred on the walls of the laboratory containers, especially when wastewater and inorganic salt solutions were used. The calculation of distribution constants by measuring pesticide concentrations in soil and solution indicated that pendimethalin sorption was not affected whereas α-cypermethrin and deltamethrin retention were significantly enhanced (ca. 5 and 2 times, respectively) when wastewater or salt solutions were employed. We therefore conclude that the increased sorption of the two pesticides caused by wastewater cannot be only the result of its dissolved organic carbon content, but also of the simultaneous presence of inorganic salts in the solution.  相似文献   

9.
Natural and synthetic steroidal hormones can be carried to agricultural soil through fertilization with municipal biosolids, livestock manure, or poultry manure. The persistence and pathways of dissipation of [4-(14)C]-testosterone and of [4-(14)C]-17beta-estradiol in organic-amended soils were investigated using laboratory microcosms. Testosterone dissipation was investigated over a range of amendment concentrations, temperatures, and soil types. Under all conditions the parent compound and transformation products were dissipated within a few days. Addition of swine manure slurry to soil hastened the transformation of testosterone and 17beta-estradiol to the corresponding less hormonally active ketones, 4-androstene-3,17-dione and estrone. Two other testosterone transformation products, 5alpha-androstan-3,17-dione and 1,4-androstadiene-3,17-dione, were also detected. Experiments with sterilized soil and sterilized swine manure slurry suggested that the transformation of (14)C-labeled hormonal parent compounds was mainly caused by microorganisms in manure slurry, while mineralization of the hormones to (14)CO(2) required viable soil microorganisms. Organic amendments transiently inhibited the mineralization of [4-(14)C]-testosterone, perhaps by inhibiting soil microorganisms, or by enhancing sorption and reducing the bioavailability of testosterone or transformation products. Overall, organic amendments influenced the pathways and kinetics of testosterone and estradiol dissipation, but did not increase their persistence.  相似文献   

10.
The focus of this study is to investigate processes causing the observed spatial variation of total mercury (THg) in the soil O horizon of watersheds within the Superior National Forest (Minnesota) and to determine if results have implications toward understanding long-term changes in THg concentrations for resident fish. Principal component analysis was used to evaluate the spatial relationships of 42 chemical elements in three soil horizons over 10 watersheds. Results indicate that soil organic carbon is the primary factor controlling the spatial variation of certain metals (Hg, Tl, Pb, Bi, Cd, Sn, Sb, Cu, and As) in the O and A soil horizons. In the B/E horizon, organic carbon appeared to play a minor role in metal spatial variation. These characteristics are consistent with the concentration of soil organic matter and carbon decreasing from the O to the B/E horizons. We also investigated the relationship between percent change in upland soil organic content and fish THg concentrations across all watersheds. Statistical regression analysis indicates that a 50% reduction in age-one and age-two fish THg concentration could result from an average 10% decrease in upland soil organic content. Disturbances that decrease the content of THg and organic matter in the O and A horizons (e.g., fire) may cause a short-term increase in atmospherically deposited mercury but, over the long term, may lead to decreased fish THg concentrations in affected watersheds.  相似文献   

11.
Sorption of dissolved organic matter (DOM) plays an important role in maintaining the fertility and quality of soils in agricultural ecosystems. Few studies have examined the effects of decomposition on DOM sorption and chemical characteristics. This study investigated the sorption to goethite (alpha-FeOOH) of fresh and decomposed hydrophilic (HPL) and hydrophobic (HPB) DOM fractions extracted from the shoots and roots of crimson clover (Trifolium incarnatum L.), corn (Zea mays L.), soybean [Glycine max (L.) Merr.], hairy vetch (Vicia villosa L.), and dairy and poultry manures. Sorption was positively related to apparent molecular weight (MWAP), aromaticity as measured by absorptivity at 280 nm, and phenolic acid content. A 10-d laboratory microbial decomposition of the source organic matter generally increased the sorption of the extracted DOM onto goethite. The decomposition effect on sorption was greater for the HPL fractions than for the HPB fractions. There was a decrease in the MWAP values of the DOM samples following sorption to goethite. In many cases the reduction in MWAP was large, indicating a strong preference by goethite for the higher MWAP DOM fractions. The results of this laboratory-based research demonstrate that microbial processes affect the chemical characteristics of DOM which may affect the distribution of soil organic C pools.  相似文献   

12.
The remobilization and the fate of 14C-ring labeled atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) bound residues was examined in relation with the turnover of natural soil organic matter. Soil fractions of a brown soil and a rendzina were incubated under controled laboratory conditions. The mineralization of natural organic matter and atrazine-bound residues was respectively estimated by the amounts of CO2 and 14CO2 evolved during the incubation. The remobilization and distribution of 14C residues among the soil organic fractions were achieved after physical-chemical extractions of the samples. Comparisons of samples in abiotic and biotic conditions allowed us to assess the influence of microbial activity on the fate of atrazine-bound residues. The mineralization curves showed that natural organic matter and atrazine-bound residues had similar decomposition patterns. After 100 d of incubation, 0.8 to 3.6% of total organic C was evolved as CO2, while only 0.1% of the initial radioactivity was mineralized as CO2, and 7 to 15% was becoming extractable with water and methanol. Few differences were observed in the distribution of residues within organic compounds for both fractions of the rendzina, except a decrease of the 14C radioactivity of the 50- to 5000-microm fraction and a slight increase of that of humin. For the 0- to 5000-microm brown soil fraction, increased radioactivity in humin at the expense of humic (HA) and fulvic (FA) acids was detected after incubation, while for the 0- to 50-microm fraction more radioactivity was recovered with FA.  相似文献   

13.
Herbicides applied to soils potentially affect soil microbial activity. The quantity and frequency of Roundup Ultra [RU; N-(phosphonomethyl)glycine; Monsanto, St. Louis, MO] applications have escalated with the advent of Roundup-tolerant crops. The objective of this study was to determine the effect of Roundup Ultra on soil microbial biomass and activity across a range of soils varying in fertility. The isoproplyamine salt of glyphosate was applied in the form of RU at a rate of 234 mg active ingredient kg(-1) soil based on an assumed 2-mm glyphosate-soil interaction depth. Roundup Ultra significantly stimulated soil microbial activity as measured by C and N mineralization, as well as soil microbial biomass. Cumulative C mineralization as well as mineralization rate increased above background levels for all soils tested with addition of RU. There were strong linear relationships between C and N mineralized, as well as between soil microbial C and N (r2 = 0.96 and 0.95, respectively). The slopes of the relationships with RU addition approximated three. Since the isopropylamine salt of glyphosate has a C to N ratio of 3:1, the data strongly suggest that RU was the direct cause of the enhanced microbial activity. An increase in the C mineralization rate occurred the first day following RU addition and continued for 14 d. Roundup Ultra appeared to be rapidly degraded by soil microbes regardless of soil type or organic matter content, even at high application rates, without adversely affecting microbial activity.  相似文献   

14.
Afforestation of agricultural lands has been one of the major land use changes in China in recent decades. To better understand the effect of such land use change on soil quality, we investigated selected soil physical, chemical and microbial properties (0–15 cm depth) in marginal agricultural land and a chronosequence of poplar (Populus euramericana cv. ‘N3016’) plantations (5-, 10-, 15- and 20-years old) in a semi-arid area of Northeast China. Soil bulk density significantly declined after conversion of agricultural lands to poplar plantations. Soil total organic carbon (TOC) and nitrogen (TN) concentrations, microbial biomass C (MBC) and potential N mineralization rate (PNM) decreased initially following afforestation of agricultural lands, and then increased with stand development. However, soil metabolic quotient (qCO2) exhibited a reverse trend. In addition, soil particulate organic matter C (POM-C) and N (POM-N) concentrations showed no significant changes in the first 10 years following afforestation, and then increased with stand age. These findings demonstrated that soil quality declined initially following afforestation of agricultural lands in semi-arid regions, and then recovered with stand development. Following 15 years of afforestation, many soil quality parameters recovered to the values found in agricultural land. We propose that change in soil quality with stand age should be considered in determining optimum rotation length of plantations and best management practices for afforestation programs.  相似文献   

15.
Cadmium solubility and sorption in an arable clay loam soil that had received sewage sludge for 41 years were compared to an unsludged control in batch studies. Soil pH dominated Cd sorption, explaining >92% of the variation in Kd values in both treatments. At any pH, Cd sorption was apparently slightly but significantly (p < 0.05) smaller in the sludge-amended soil compared to the control, even though the organic carbon content was 70% larger and the ammonium oxalate-extractable iron content was roughly doubled. Correction for dissolved organic carbon (DOC) complexation with the speciation model WHAM reduced the difference in sorption between treatments, but the sludged soil still had significantly smaller Kd values (p < 0.01). Batch equilibrations without addition of Cd showed that there was no significant difference in the solubility of "native" cadmium (defined as EDTA-extractable Cd) in sludged and control soils. The reason for the lack of increase in Cd sorption in the sludge-amended soil has not been established, but it may be due to competition for sorption sites on humic compounds with sludge-derived Fe and trace metals such as zinc. The fact that the pyrophosphate-extractable (i.e., organically associated) iron content was seven times larger in the sludged soil provides some supporting evidence for this hypothesis.  相似文献   

16.
This study investigated the effects of organic and inorganic nutrients on the microbial degradation of the common soil contaminant pyrene. The material used in this investigation was collected from potted trees that had been growing for over a year in a soil artificially contaminated with polycyclic aromatic hydrocarbons. Soil was removed from the nonroot (bulk) and root (rhizosphere) zones of these pots and used in mineralization studies that tracked microbial degradation of 14C-pyrene. The factors influencing degradation in these zones were then tested by amendment with essential inorganic nutrients or with root-derived materials. As expected, pyrene mineralization was greater in soil removed from the rhizosphere than in bulk soil. The rate of mineralization in rhizosphere soil was inhibited by inorganic nutrient amendment, whereas nutrients stimulated mineralization in the bulk soil. Pyrene mineralization in bulk soil was also increased by the addition of root extracts intended to mimic exudation by living roots. However, amendment with excised fine roots that were allowed to decay over time in soil initially inhibited mineralization. With time, the rate of mineralization increased, eventually exceeding that of unamended bulk soil. Combined, the initial inhibition and subsequent stimulation produced a zero net impact of decaying fine roots on bulk soil mineralization. Our results, in conjunction with known temporal patterns of fine root dynamics in natural systems, support the idea that seasonal variations in nutrient and substrate availability may influence the long-term effect of plants on organic degradation in soil, possibly reducing or negating the beneficial effects of vegetation that are often observed in short-term studies.  相似文献   

17.
Contamination of freshwater by estrogens from manure applied to agricultural land is of grave concern because of the potentially harmful effects on aquatic life and human health. Recent developments in liquid manure (slurry) management include partial removal of particulate slurry dry matter (PSDM) by separation technologies, which may also remove parts of the estrogens and enhance infiltration of the slurry on field application and hence the interaction between estrogens and the soil matrix. This study investigated how 17β-estradiol (E2), a natural estrogen commonly found in pig manure, sorbs to agricultural soils, to different size fractions of pig slurry separates, and to soils amended with each size fraction to simulate conditions in the soil-slurry environment. A crude fiber fraction (SS1) was prepared by sieving (<500 μm) the solids removed by an on-farm separation process. Three other size fractions (SS2 > SS3 > SS4) were prepared from the liquid fraction of the separated slurry by sedimentation and centrifugation. Sorption experiments were conducted in 0.01 mol L(-1) CaCl(2) and in natural pig urine matrix. Sorption in 0.01 mol L(-1) CaCl(2) was higher than that in pig urine for all solids used. Sorption of E2 to soil increased with its organic carbon content for both liquid phases. The solid-liquid partition coefficients of slurry separates were 10 to 30 times higher than those of soils, but the organoic carbon normalized partition coefficient values, reflecting sorption per unit organic carbon, were lower for slurry separates. Mixing slurry separates with soil increased the sorption of E2 to the solid phase significantly in the order: SS1 < SS3 < SS2 for both liquid phases. In contrast, SS4 reduced the sorption of E2 to the solid phase by increasing the sorption to suspended or dissolved organic matter. The study suggested that potentially 50 to 75% of E2 in slurry can be removed from the liquid fraction of slurry by physical separation.  相似文献   

18.
Riparian ecosystems, through their unique position in the agricultural landscape and ability to influence nutrient cycles, can potentially reduce NO3 loading to surface and ground waters. The purpose of this study was to determine the fate of NO3 in shallow groundwater moving along a lateral flowpath from a grass seed cropping system through an undisturbed mixed-species herbaceous riparian area. Soil A (30-45 cm) and C horizon (135-150 cm) NO3, dissolved oxygen, and nitrous oxide concentrations were significantly higher in the cropping system than the adjacent riparian area. Nitrate concentrations in both horizons of the riparian soil were consistently at or below 0.05 mg N L(-1) while cropping system concentrations ranged from 1 to 12 mg N L(-1). Chloride data suggested that NO3 dilution occurred from recharge by precipitation. However, a sharp decrease in NO3/Cl ratios as water moved into the riparian area indicated that additional dilution of NO3 concentrations was unlikely. Riparian area A horizon soil water had higher dissolved organic carbon than the cropping system and when the riparian soil became saturated, available electron acceptors (O2, NO3) were rapidly reduced. Dissolved inorganic carbon was significantly higher in the riparian area than the cropping system for both horizons indicating high biological activity. Carbon limitation in the cropping system may have led to microbial respiration using primarily O2 and to a lesser degree NO3. Within 6 m of the riparian/cropping system transition, NO3 was virtually undetectable.  相似文献   

19.
The aim of the study was to determine the effect of aging of the herbicide isoproturon and its metabolites monodesmethyl-isoproturon and 4-isopropyl-aniline in agricultural soil on their availability to the degrading bacterium Sphingomonas sp. strain SRS2. The 14C-ring-labeled isoproturon, monodesmethyl-isoproturon, and 4-isopropyl-aniline were added to sterilized soil and stored for 1, 49, 71, or 131 d before inoculation with strain SRS2. The availability of the compounds was estimated from the initial mineralization and the amount of 14CO2 recovered after 120 d of incubation. Aging in soil for 131 d reduced the initial mineralization of isoproturon and monodesmethyl-isoproturon and, in the case of isoproturon, also reduced the recovery of 14CO2. Initial mineralization and recovery of 14CO2 from aged 4-isopropyl-aniline were slightly reduced, but less 14CO2 was generally produced than with isoproturon or monodesmethyl-isoproturon. Thus, recovery of 14CO2 from 14C-isoproturon and 14C-monodesmethyl-isoproturon was 50.7 to 64.4% of the initially added 14C, while recovery from 14C-4-isopropyl-aniline was only 11.7 to 17.0%. Sorption measurements revealed similar Freundlich constants (K(f)) for isoproturon and monodesmethyl-isoproturon, whereas K(f) for 4-isopropyl-aniline was more than fivefold greater. The findings imply that in soil, partial degradation of isoproturon to 4-isopropyl-aniline may lead to reduced mineralization of the herbicide due to sorption of the aniline moiety.  相似文献   

20.
The aim of this study was to assess the influence of the polycyclic aromatic hydrocarbons (PAH)-degrading activity in the fate of fluoranthene in soils. Three soil samples with different degrading activities (an industrial soil, the same industrial soil after biostimulation, and an agricultural soil) were spiked with 14C-fluoranthene and incubated for 6 mo with monitoring of biodegradation and mineralization. To follow the distribution of the 14C-fluoranthene residues (i.e., 14C-fluoranthene and its degradation products) among the soil compartments, we performed successively leaching, centrifugation (to collect intra-aggregate pore water), solvent extraction, and combustion of the soil columns. In the industrial soil, no mineralization of 14C-fluoranthene was observed, and only 3% of the initial 14C-activity was non-extractable (with acetone:dichloromethane) after 165 d of incubation. The biostimulation (addition of unlabeled polycyclic aromatic hydrocarbons) increased the degrading activity in this soil (59% of 14C-fluoranthene was mineralized) and increased the residues sequestration (13% of 14C-activity was non-extractable). The microflora of the agricultural soil mineralized 14C-fluoranthene more slowly and to a lesser extent (25%) than the biostimulated soil, but a higher amount of 14C-activity was sequestered (41%). Thus, the rate and extent of 14C-fluoranthene mineralization seemed to be related to the 14C-activity sequestration by controlling the accumulation of degradation products in the soil. 14C-Fluoranthene biodegradation enhanced the concentration of 14C-polar compounds in the intra-aggregate pore water. Our results point out the close link between fluoranthene biodegradation and two key aging processes, diffusion and sequestration, in soils. Biodegradation controls the mobility and sequestration of residues by transforming fluoranthene into more polar molecules that can diffuse into the intra-aggregate pore water and then might become bound to the matrix or entrapped in the microporosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号