首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current Irish guidelines require a comprehensive site assessment of a percolation area for wastewater disposal before planning permission is granted for dwellings in rural areas. For a site to be deemed suitable, the subsoil must have a percolation value equivalent to a field saturated hydraulic conductivity in the range 0.08 to 4.2 m d(-1) using a falling head percolation test. A minimum of 1.2 m of unsaturated subsoil must also exist below the invert of the percolation area receiving effluent from a septic tank (or 0.6 m for secondary treated effluent). During a 2-yr period, the three-dimensional performance of four percolation areas treating domestic wastewater was monitored. At each site samples were taken at 0, 10, and 20 m along each of the four percolation trenches at depths of 0.3, 0.6, and 1.0 m below each trench to ascertain the attenuation effects of the unsaturated subsoil. The two sites with septic tanks installed performed at least as well as the other two sites with secondary treatment systems installed and appeared to discharge a better quality effluent in terms of nutrient load. An average of 2.1 and 6.8 g total N d(-1) remained after passing through 1-m depth of subsoil beneath the trenches receiving septic tank effluent compared with 12.7 and 16.7 g total N d(-1) on the sites receiving secondary effluent. The research also indicates that the septic tank effluent was of an equivalent quality to the secondary treated effluent in terms of indicator bacteria (E. coli) after percolating through 0.6-m depth of unsaturated subsoil.  相似文献   

2.
Overland flow (OF) systems were evaluated and compared for advanced treatment of municipal and industrial effluents, including nutrients and nondegradable chemical oxygen demand (COD) removal. Three pilot plants were constructed at the Shahin Shahr Wastewater Treatment Plant (WWTP), Isfahan, Iran. Each pilot was assigned a specific wastewater and all were simultaneously operated for 8 months. Treatment of primary effluent, activated sludge secondary effluent, and lagoon effluent of textile wastewater was investigated at application rates (ARs) of 0.15, 0.25, and 0.35m(3)m(-1)h(-1). During 5 months of stable operation after a 3-month acclimation period, mean removals of total 5-day biochemical oxygen demand (TBOD(5)), total COD (TCOD), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and turbidity were 74.5%, 54.8%, 66.2%, 39.4%, 35.8%, and 67.7% for primary effluent; 52.9%, 52.9%, 66.5%, 44.4%, 39.8%, and 50.1% for activated sludge effluent; 65.7%, 58.7%, 70.3%, 41.7%, 41.3%, and 54.9% for textile wastewater lagoon effluent, respectively. The model of Smith and Schroeder, 1985. Field studies of the overland flow process for the treatment of raw and primary treated municipal wastewater. Journal of Water Pollution Control Federation 57, 785-794] was satisfactory for TBOD(5). For all treatment parameters a standard first-order removal model was inadequate to represent the data but a modified first-order model provided a satisfactory fit to the data. Based on the results of this study, it can be concluded that an OF system as advanced treatment had the ability to meet effluent discharge permit limits and was an economical replacement for stabilization ponds and mechanical treatment options.  相似文献   

3.
The occurrence of broad-host-range (BHR) plasmid amplicons belonging to incompatibility (Inc) groups IncA/C, IncN, IncP, and IncW in two wastewater treatment plant (WWTP) effluents and effluent-receiving streams in Northwest Arkansas, Mud Creek and Spring Creek, was determined. Community DNA captured on filter membranes and plasmid DNA extracted from antibiotic-resistant Escherichia coli isolated from Mud Creek was used for polymerase chain reaction at amplification of partial gene sequences specific to BHR plasmids. IncP plasmid amplicons were detected in effluent and downstream sites in both streams, while IncN and IncW plasmid amplicons were detected in Spring Creek in effluent and downstream but not upstream. IncA/C plasmid amplicons, in contrast, were detected at all sites, including upstream in most samples in Spring Creek and in one sample from Mud Creek. One IncP and two IncN were the only BHR plasmid amplicons found in 85 screened antibiotic-resistant E. coli isolates, and were detected only in isolates from effluent and downstream samples. Broad-host-range plasmids frequently carry antibiotic-resistance genes and can facilitate horizontal transfer of those genes. While BHR plasmids have been detected in WWTPs, WWTPs do not target these genetic elements for destruction. This study indicates that BHR plasmids are in WWTP effluent and are introducing BHR plasmids into streams. Additionally, species other than E. coli may be better targets as indicator bacteria for future studies of the impact of treated effluent on environmental dissemination of BHR plasmids.  相似文献   

4.
Florida dairies need year-round forage systems that prevent loss of N to ground water from waste effluent sprayfields. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentrations in soil water below the rooting zone for two forage systems during four 12-mo cycles (1996-2000). Soil in the sprayfield is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzipsamment). Over four cycles, average loading rates of effluent N were 500, 690, and 910 kg ha(-1) per cycle. Nitrogen removed by the bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (BR) during the first three cycles was 465 kg ha(-1) per cycle for the low loading rate, 528 kg ha(-1) for the medium rate, and 585 kg ha(-1) for the high. For the corn (Zea mays L.)-forage sorghum [Sorghum bicolor (L.) Moench]-rye system (CSR), N removals were 320 kg ha(-1) per cycle for the low rate, 327 kg ha(-1) for the medium, and 378 kg ha(-1) for the high. The higher N removals for BR were attributed to higher N concentration in bermudagrass (18.1-24.2 g kg(-1)) than in corn and forage sorghum (10.3-14.7 g kg(-1)). Dry matter yield declined in the fourth cycle for bermudagrass but N removal continued to be higher for BR than CSR. The BR system was much more effective at preventing NO3(-)-N leaching. For CSR, NO3(-)-N levels in soil water (1.5 m below surface) increased steeply during the period between the harvest of one forage and canopy dosure of the next. Overall, the BR system was better than CSR at removing N from the soil and maintaining low NO3(-)-N concentrations below the rooting zone.  相似文献   

5.
The physical and chemical parameters controlling the movement of atrazine (6-chloro-N2-ethyl-N4-isopropyl-l,3,5-triazine-2,4-diamine; 98.8%) and prometryn [N,N'-bis(1-methylethyl)-6-(methylthio)-l,3,5triazine-2,4-diamine; 99.5%] were investigated in columns infiltrated with treated effluent under unsaturated transient conditions and subjected to drying events at 22 or 60 degrees C followed by rewetting. Three soils varying in soil pH and texture and three solutions were used. The infiltrating solutions consisted of either a CaCl2 matrix (CC), a swine waste-derived lagoon effluent (SW), or a simulated buffer solution (SB) representative of the element composition and pH of the SW but with no dissolved organic matter. Several parameters were monitored including leachate triazine concentrations, pH, dissolved organic carbon (DOC), inorganic carbon, and flow rates. Compared with CC, application of SW and SB increased column leachate pH, enhanced dissolution of organic carbon and particle dispersion, and decreased average flow rates, which allowed for increased desorption time. The coupled effect of these processes enhanced movement of triazines in some cases, with SW generally having the greatest effect. The individual effect of increased pH was more pronounced for prometryn (pKa=4.05) versus atrazine (pKa=1.66), and most dramatic for the soil with the lowest initial pH. High-temperature drying, which simulated intensive evaporation, further enhanced the dissolution of soil organic matter and the reduction in leachate flow rates with SW and SB applications; however, the net effect under the experimental conditions employed varied with soil type. Relative to low-temperature drying, high-temperature drying in the silty clay loam-packed columns reduced pesticide migration.  相似文献   

6.
Reliable water quality models are needed to forecast the water quality consequences of different agricultural nutrient management scenarios. In this study, the Soil and Water Assessment Tool (SWAT), version 2000, was applied to simulate streamflow, riverine nitrate (NO(3)) export, crop yield, and watershed nitrogen (N) budgets in the upper Embarras River (UER) watershed in east-central Illinois, which has extensive maize-soybean cultivation, large N fertilizer input, and extensive tile drainage. During the calibration (1994-2002) and validation (1985-1993) periods, SWAT simulated monthly and annual stream flows with Nash-Sutcliffe coefficients (E) ranging from 0.67 to 0.94 and R(2) from 0.75 to 0.95. For monthly and annual NO(3) loads, E ranged from -0.16 to 0.45 and R(2) from 0.36 to 0.74. Annual maize and soybean yields were simulated with relative errors ranging from -10 to 6%. The model was then used to predict the changes in NO(3) output with N fertilizer application rates 10 to 50% lower than original application rates in UER. The calibrated SWAT predicted a 10 to 43% decrease in NO(3) export from UER and a 6 to 38% reduction in maize yield in response to the reduction in N fertilizer. The SWAT model markedly overestimated NO(3) export during major wet periods. Moreover, SWAT estimated soybean N fixation rates considerably greater than literature values, and some simulated changes in the N cycle in response to fertilizer reduction seemed to be unrealistic. Improving these aspects of SWAT could lead to more reliable predictions in the water quality outcomes of nutrient management practices in tile-drained watersheds.  相似文献   

7.
To determine the relative importance of the physical and chemical factors that influence the movement of heavy metals through soils, leaching experiments were carried out under conditions of constant molarity during unsaturated steady-state water flow through a Manawatu fine sandy loam (a Dystric Fluventic Eutochrept). The movement and exchange of copper was studied in a binary Cu-Ca system. The movement of the associated anions, namely chloride and sulfate, was also monitored. The measurements were compared with predictions from the convection-dispersion equation (CDE), linked with cation exchange theory. The agreement between the measured and predicted breakthrough of sulfate and copper was good. This indicates that copper retardation in the Manawatu soil is closely related to the cation exchange capacity, and that exchange between Ca and Cu is the main process of Cu retardation in the Manawatu soil. However, copper appeared slightly later in the effluent than predicted, indicating that non-exchange processes are also involved in copper transport. Measurements of suction cups could also be used to obtain the parameters for the CDE to describe sulfate movement through the soil. Time domain reflectometry (TDR) measurements of the bulk-soil electrical conductivity could be used to monitor the movement of both sulfate and copper. This indicates that TDR can also be used to monitor cation transport and exchange through the soil, provided the percolating solution causes a sufficient change in the electrical conductivity.  相似文献   

8.
Managed forests and plantations are appropriate ecosystems for land-based treatment of effluent, but concerns remain regarding nutrient contamination of ground- and surface waters. Monthly NO3-N and NH4-N concentrations in soil water, accumulated soil N, and gross ammonification and nitrification rates were measured in the second year of a second rotation of an effluent irrigated Eucalyptus globulus plantation in southern Western Australia to investigate the separate and interactive effects of drip and sprinkler irrigation, effluent and water irrigation, irrigation rate, and harvest residues retention. Nitrate concentrations of soil water were greater under effluent irrigation than water irrigation but remained <15 mg L(-1) when irrigated at the normal rate (1.5-2.0 mm d(-1)), and there was little evidence of downward movement. In contrast, NH4-N concentrations of soil water at 30 and 100 cm were generally greater under effluent irrigation than water irrigation when irrigated at the normal rate because of direct effluent NH4-N input and indirect ammonification of soil organic N. Drip irrigation of effluent approximately doubled peak NO3-N and NH4-N concentrations in soil water. Harvest residue retention reduced concentrations of soil water NO3-N at 30 cm during active sprinkler irrigation, but after 1 yr of irrigation there was no significant difference in the amount of N stored in the soil system, although harvest residue retention did enhance the "nitrate flush" in the following spring. Gross mineralization rates without irrigation increased with harvest residue retention and further increased with water irrigation. Irrigation with effluent further increased gross nitrification to 3.1 mg N kg(-1) d(-1) when harvest residues were retained but had no effect on gross ammonification, which suggested the importance of heterotrophic nitrification. The downward movement of N under effluent irrigation was dominated by NH4-N rather than NO3-N. Improving the capacity of forest soils to store and transform N inputs through organic matter management must consider the dynamic equilibrium between N input, uptake, and immobilization according to soil C status, and the effect changing microbial processes and environmental conditions can have on this equilibrium.  相似文献   

9.
Due to the toxic effects of trichlorophenol (TCP) on microorganisms, biological treatment efficiencies of TCP containing wastewaters are usually low. Synthetic wastewater containing 2,4,6-TCP was biologically treated in a hybrid-loop bioreactor system consisting of a packed column biofilm and an aerated tank bioreactor with effluent recycle in order to improve COD and TCP removals. Effects of the feed TCP concentration on COD, TCP and toxicity removal performance of the system were investigated for the feed TCP between 50 and 450 mg L(-1) while the sludge age (solids retention time, SRT) and hydraulic residence time (HRT) were kept constant at 20 d and 25 h, respectively. Biomass concentrations in the packed column and in the aeration tank decreased with increasing feed TCP concentrations due to toxic effects of TCP on the organisms. Low biomass concentrations in the system at high feed TCP contents resulted in low COD, TCP and toxicity removals. Therefore, percent TCP, COD and toxicity removals decreased with increasing feed TCP concentrations especially above 400 mg L(-1). The effluent TCP concentrations were lower than 20 mg L(-1) for the feed TCP concentrations below 390 mg L(-1) resulting in TCP and COD removals above 90%. Specific rates of TCP and COD removals increased with the feed TCP due to low biomass concentrations at high TCP contents. The system should be operated at a feed TCP lower than 400 mg L(-1) in order to obtain more than 90% TCP, COD and toxicity removals under the specified experimental conditions.  相似文献   

10.
Wastewater treatment practices should pay more attention to their environmental performances due to their resources consumption and emissions’ impact. While reclaimed water reuse seems to have become a promising practice, is it always feasible in any condition? To address this issue, this study carried out an extended emergy evaluation of a holistic wastewater treatment system. On one hand, this method was extended to include the emissions’ impact. On the other hand, this study integrated a wastewater treatment plant, its excess sludge disposal system and treated water disposal system into an integrated wastewater treatment system (IWTS), so as to evaluate its performances more completely. And then several indicators, including cost per unit pollutant eliminated (CUPE), ratio of positive output (RPO), environmental load ratio (ELR), and sustainability index (SI), were proposed for evaluating the performances of an IWTS. Two scenarios (scenario A: wastewater treatment + sludge landfilling + treated water discharges; scenario B: wastewater treatment + sludge landfilling + reclaimed water reuse) for a livestock wastewater treatment plant in Sichuan Agricultural University located in Ya’an City in Southwest China, as cases, were researched. The results show that scenario B has lower positive output efficiency and greater environmental load than scenario A. Meanwhile, the reclaimed water reuse raises cost per unit pollutant eliminated compared with the treated water being discharged directly; emissions’ impact enhances the environmental load of the two scenarios to different degree; emissions’ impact has decisive effect on the sustainability of the two scenarios. These results mean that the reclaimed water reuse should not be advocated in this case. This study provides some policy implications: (1) wastewater treatment process should be comprehensively evaluated from its resources consumption and impact of emissions; (2) reclaimed water reuse should be carefully evaluated from its pros and cons simultaneously; (3) the local conditions should be considered when implementing reclaimed water reuse, such as local water body conditions, market demands, the related laws and regulations, corporations’ economic conditions, etc.  相似文献   

11.
The Water Erosion Prediction Project (WEPP) model has been tested for its ability to predict soil erosion, runoff, and sediment delivery over a wide range of conditions and scales for both hillslopes and watersheds. Since its release in 1995, there has been considerable interest in adding a chemical transport element to it. Total phosphorus (TP) loss at the watershed outlet was simulated as the product of TP in the soil, amount of sediment at the watershed outlet, and an enrichment ratio (ER) factor. WEPP can be coupled with a simple algorithm to simulate phosphorus transport bound to sediment at the watershed outlet. The objective of this work was to incorporate and test the ability of WEPP in estimatingTP loss with sediment at the small watershed scale. Two approaches were examined. One approach (P-EER) estimated ER according to an empirical relationship; the other approach used the ER calculated by WEPP (P-WER).The data used for model performance test were obtained from two side-by-side watersheds monitored between 1976 and 1980. The watershed sizes were 5.05 and 6.37 ha, and each was in a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Measured and simulated results were compared for the period April to October in each year. There was no statistical difference between the mean measured and simulated TP loss. The Nash-Sutcliffe coefficient was 0.80 and 0.78 for the P-EER and P-WER methods, respectively. It was critical for both methods that WEPP adequately represent the biggest sediment yield events because sediment is the main driver for TP loss so that the model can adequately simulate TP losses bound to sediment. The P-WER method is recommended because it does not require use of empirical parameters to estimate TP loss at the watershed outlet.  相似文献   

12.
Field experiments often assume that Br-, 14NO3(-)-N, and 15NO3(-)-N have similar leaching kinetics. This study tested this assumption. Twenty-four undisturbed soil columns (15-cm diameter) were collected from summit-shoulder, backslope, and footslope positions of a no-tillage field with a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Each of the landscape positions had a different soil series. After conditioning the columns with 4 L of 0.01 M CaCl2 (2 pore volumes), 15N-labeled Ca(NO3)2 and KBr were applied to the soil surface and leached with 4 L of 0.01 M CaCl2. Leachate was collected, weighed, and analyzed for NO3(-)-N, NH4(+)-N, 15N, 14N, and Br-. The total amount of 15NO3(-)-N and 14NO3(-)-N collected in 1000, 2000, and 3000 mL of leachate was similar. These data suggest that 15N discrimination during leaching did not occur. Bromide leached faster through the columns than NO3(-)-N. The more rapid transport of Br- than NO3(-)-N was attributed to lower Br- (0.002 +/- 0.036 mg kg(-1)) than NO3(-)-N (0.17 +/- 0.03 mg kg(-1)) sorption. Results from this study suggest that (i) if Br- is used to estimate NO3(-)-N leaching loss, then NO3(-)-N leaching losses may be overestimated by 25%; (ii) the potential exists for landscape position to influence anion retention and movement in soil; and (iii) 15N discrimination was not detected during the leaching process.  相似文献   

13.
In northern Florida, year-round forage systems are used in dairy effluent sprayfields to reduce nitrate leaching. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentration below the rooting zone for two perennial, sod-based, triple-cropping systems over four 12-mo cycles (1996-2000). The soil is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzip-samment). Effluent N rates were 500, 690, and 910 kg ha(-1) per cycle. Differences in N removal between a corn (Zea mays L.)-bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (CBR) and corn-perennial peanut (Arachis glabrata Benth.)-rye system (CPR) were primarily related to the performance of the perennial forages. Nitrogen removal of corn (125-170 kg ha(-1)) and rye (62-90 kg ha(-1)) was relatively stable between systems and among cycles. The greatest N removal was measured for CBR in the first cycle (408 kg ha(-1)), with the bermudagrass removing an average of 191 kg N ha(-1). In later cycles, N removal for bermudagrass declined because dry matter (DM) yield declined. Yield and N removal of perennial peanut increased over the four cycles. Nitrate N concentrations below the rooting zone were lower for CBR than CPR in the first two cycles, but differences were inconsistent in the latter two. The CBR system maintained low NO3(-)-N leaching in the first cycle when the bermudagrass was the most productive; however, it was not a sustainable system for long-term prevention of NO3(-)-N leaching due to declining bermudagrass yield in subsequent cycles. For CPR, effluent N rates > or = 500 kg ha(-1) yr(-1) have the potential to negatively affect ground water quality.  相似文献   

14.
An integrated system, consisting of Up-flow Anaerobic Sludge Blanket (UASB)-duckweed-tilapia ponds was used for recovery of sewage nutrients and water recycling. A UASB reactor with 40 liter working volume was used as pre-treatment unit followed by a series of three duckweed ponds for nitrogen recovery. The treated effluent and duckweed biomass was used to feed fishponds stocked with Nile tilapia (Oreochromis niloticus). The UASB reactor was fed with raw, domestic sewage at 6 h hydraulic retention time. The three duckweed ponds were stocked with Lemna gibba and fed with UASB effluent at 15 days hydraulic retention time. Nitrogen recovery from UASB effluent via duckweed biomass represented 81% of total nitrogen removal and 46.5% from the total nitrogen input to the system. In subsequent fishponds the nitrogen recovery from duckweed as fish feed was in the range of 13.4–20%. This nitrogen in fish biomass represented 10.6–11.5 g N from the total nitrogen in the raw sewage fed to the UASB reactor. The growth performance of tilapia (Oreochromis niloticus) showed specific growth rates (SGR) in the range of 0.53–0.97. The range of feed conversion ratio (FCR) and protein efficiency ratio (PER) were 1.2–2.2 and 2.1–2.28, respectively. The results of the experiments showed total fish yield and net fish yield in the range of 17–22.8 ton/ha/y and 11.8–15.7 ton/ha/y respectively. In conclusion UASB-duckweed-tilapia ponds provide marketable by-products in the form of duckweed and fish protein, which represent a cost recovery for sewage treatment.  相似文献   

15.
Fractures in till may provide pathways for agricultural chemicals to contaminate aquifers and surface waters. This study was conducted to quantify the influence of fractures on solute fate and transport using three conservative and two nonconservative tracers. The conservative tracers were potassium bromide (KBr), pentafluorobenzoic acid (PFBA), and 1,4-piperazinediethanesulfonic acid disodium salt (PIPES); the nonconservative tracers were nitrate and atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine]. Three sites in Iowa were investigated, including four late Wisconsinan and Pre-Illinoian tills. Laboratory tracer experiments were conducted using eight large (0.4-0.45 m long by 0.43 m in diameter), undisturbed columns of till collected from depths of 1 to 28 m. The tills were densely fractured, with fracture spacing ranging from 3.8 to 10.4 cm. First arrival velocities of Br- ranged from 0.004 to 64.8 m d(-1), 10 to 100 times faster than predicted for unfractured media. Nitrate behaved as a conservative tracer in weathered till columns, but degraded during experiments using deeper tills. Sorption caused retardation of atrazine in the shallowest four columns. Atrazine degradation occurred in deeper columns as demonstrated by deviations between atrazine and the conservative tracers. Mobile-immobile model (MIM) simulations estimated first-order exchange coefficients (alpha) ranging from 1 x 10(-8) to 1.7 x 10(-2) s(-1), sorption coefficients (K(d)) for atrazine ranging from 2.6 x 10(-5) to 1 x 10(-3) m3 kg(-1), and degradation half-lives ranging from 0.24 to 67 d (nitrate) and 1.6 to 277 d (atrazine). This study suggests that aquifers and surface waters associated with thin, fractured till units may be vulnerable to contamination, yet deeper aquifers may be protected by these materials due to increased residence times provided by matrix diffusion.  相似文献   

16.
Palm oil mill effluent (POME) is highly polluting wastewater generated from the palm oil milling process. Palm oil mill effluent was used as an electrolyte without any additive or pretreatment to perform electrocoagulation (EC) using electricity (direct current) ranging from 2 to 4 volts in the presence of aluminum electrodes with a reactor volume of 20 L. The production of hydrogen gas, removal of chemical oxygen demand (COD), and turbidity as a result of electrocoagulation of POME were determined. The results show that EC can reduce the COD and turbidity of POME by 57 and 62%, respectively, in addition to the 42% hydrogen production. Hydrogen production was also helpful to remove the lighter suspended solids toward the surface. The production of Al(OH)XHO at the aluminum electrode (anode) was responsible for the flocculation-coagulation process of suspended solids followed by sedimentation under gravity. The production of hydrogen gas from POME during EC was also compared with hydrogen gas production by electrolysis of tap water at pH 4 and tap water without pH adjustment under the same conditions. The main advantage of this study is to produce hydrogen gas while treating POME with EC to reduce COD and turbidity effectively.  相似文献   

17.
Estrogenic activity of regional water samples was evaluated. Samples obtained from wetlands and ponds involved in various agricultural land uses, from three river sites over four seasons, and from municipal wastewater effluent held in storage lagoons were evaluated. The estrogen-responsive cell line MCF-7 BOS was used in the E-screen assay to determine 17beta-estradiol equivalents (E2 Eq) of water samples extracted by solid-phase extraction. Estrogenic activity in surrounding wetlands and ponds from different land uses was not different, with 10(-12) M E2 Eq (0.3 ppt). Estrogenic activity of Red River samples was within the same range as wetland-pond samples. The highest activity was found downstream from municipal wastewater treatment effluent discharge sites, in winter when river flow was lowest (approximately 6 x 10(-13) M E2 Eq). Results showed that 7 of 20 wetland-pond samples and 5 of 12 river samples were below the limits of quantitation (approximately 3 x 10(-14) M E2 Eq). Toxicity was found in fall and summer river samples upstream from municipal wastewater release sites. The timing of toxicity did not coincide to the presence of elevated fecal coliforms. Estrogenic activity in wastewater effluent from lagoons decreased over time (approximately 25 to 5 x 10(-13) M E2 Eq) with an apparent half-life of 8 d for one lagoon. The median concentration of detectable estrogenic activity in regional water samples was approximately 50-fold less than the median 17beta-estradiol concentration of estradiol detected in some U.S. streams in previous studies.  相似文献   

18.
Domestic wastewater contains a considerable amount of pathogenic organisms besides non-biodegradable organics. The conventional technologies followed for the treatment of domestic wastewater are less efficient in removing pathogenic organisms despite substantial removal of dissolved organics. The focal theme of the present investigation was to use a chemo-autotrophic activated carbon oxidation (CAACO) system, an immobilized cell reactor using chemoautotrophs (Bacillus sp.) for the treatment of domestic wastewater. The oxidation of organics and Escherichia coli in wastewater is controlled by the parameters space time, O(2)/COD, bed height and cod loading. The scheme comprised of anaerobic treatment, sand filtration and CAACO treatment removed BOD. COD, Total organic carbon (TOC), dissolved protein, total Kjeldhal nitrogen (TKN) and bacterial count (most probable number (MPN)) by 81%, 92%, 84%, 94%, 93% and 99.9997%, respectively. The low concentration of E. coli in the CAACO-treated wastewater was completely eliminated through UV irradiation in 3 min at 254 nm.  相似文献   

19.
Ecological treatment systems can provide a sustainable, plant-based alternative to traditional wastewater treatment. One factor essential to the success of these systems is ensuring their ability to reduce coliform concentrations in wastewater. Wastewater is the primary source of fecal contamination in aquatic ecosystems, containing total and fecal coliforms on the order of 10(8)-10(10) and 10(7)-10(9) CFU L(-1), respectively. This study assessed the ability of an ecological treatment system to reduce concentrations of total coliforms and Escherichia coli from dairy wastewater. Low strength wastewater was pumped into the system during July of 2005 and high strength in September 2005. Wastewater passes through a series of anaerobic, aerobic, and clarifier reactors and wetland cells before exiting the system. Regardless of wastewater strength, average total coliform and E. coli concentrations were consistently reduced by at least 99% from influent to effluent, with the majority of the reduction (76%) occurring in the first two reactors. Relationships between internal concentrations of solids and coliforms indicated that increased reduction of solids may further reduce coliform concentrations. Although U.S. Environmental Protection Agency discharge requirements for E. coli were not always met, the substantial reductions achieved indicate that ecological treatment systems have the potential to successfully reduce coliforms in wastewater to meet discharge limits. The results from this study will be used to guide design and management of future ecological treatment systems, so that larger and more consistent coliform reductions can be achieved.  相似文献   

20.
Water resources protection from nitrate nitrogen (NO3-N) contamination is an important public concern and a major national environmental issue. The abilities of the SOIL-SOILN model to simulate water drainage and nitrate N fluxes from orchardgrass (Dactylis glomerata L.) were evaluated using data from a 3-yr field experiment. The soil is classified as a Hagerstown silt loam soil (fine, mixed, semiactive, mesic Typic Hapludalf). Nitrate losses below the 1-m depth from N-fertilized grazed orchardgrass were measured with intact soil core lysimeters. Five N-fertilizer treatments consisted of a control, urine application in the spring, urine application in the summer, urine application in the fall, and feces application in the summer. The SOIL-SOILN models were evaluated using water drainage and nitrate flux data for 1993-1994, 1994-1995, and 1995-1996. The N rate constants from a similar experiment with inorganic fertilizer and manure treatments under corn (Zea mays L.) were used to evaluate the SOILN model under orchardgrass sod. Results indicated that the SOIL model accurately simulated water drainage for all three years. The SOILN model adequately predicted nitrate losses for three urine treatments in each year and a control treatment in 1994-1995. However, it failed to produce accurate simulations for two control treatments in 1993-1994 and 1995-1996, and feces treatments in all three years. The inaccuracy in the simulation results for the control and feces treatments seems to be related to an inadequate modeling of N transformation processes. In general, the results demonstrate the potential of the SOILN model to predict NO3-N fluxes under pasture conditions using N transformation rate constants determined through the calibration process from corn fields on similar soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号