首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 3-yr field study quantified leaching and runoff losses of antibiotics from land application of liquid hog (chlortetracycline and tylosin) and solid beef (chlortetracycline, monensin, and tylosin) manures under chisel plowing and no-tillage systems. The study was conducted in southwestern Wisconsin, a karst area with steep, shallow, macroporous soils. Relative mass losses of chlortetracycline, monensin, and tylosin were <5% of the total amount applied with manure. Chlortetracycline was only detected in runoff, whereas monensin and tylosin were detected in leachate and runoff. Highest concentrations of monensin and tylosin in the leachate were 40.9 and 1.2 microg L(-1), respectively. Highest chlortetracycline, monensin, and tylosin concentrations in runoff were 0.5, 57.5, and 6.0 microg L(-1), respectively. For all three antibiotics, >90% of detections and 99% of losses occurred during the non-growing season due to fall manure application and slow degradation of antibiotics at cold temperatures. During years of high snowmelt, runoff accounted for nearly 100% of antibiotic losses, whereas during years of minimal snowmelt, runoff accounted for approximately 40% of antibiotic losses. Antibiotic losses were generally higher from the no-tillage compared with chisel plow treatment due to greater water percolation as a result of macroporosity and greater runoff due to lack of surface roughness in the no-tillage plots during the non-growing season. The results from this study suggest that small quantities of dissolved antibiotics could potentially reach surface and ground waters in the Upper Midwestern USA from manure-amended shallow macroporous soils underlain with fractured bedrock.  相似文献   

2.
Dissipation of sulfometuron (SM), methyl 2-[[[[(4,6-dimethyl-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl] benzoate, in streamflow, sediment, plant tissue, litter, and soil following operational forestry applications at the target rate of 0.42 kg a.i. ha(-1) was monitored. Streamflow samples were collected at a weir on the perimeter and 30, 60, and 150 m downstream from the perimeter of the application site. Sulfometuron was detected in streamflow at low levels up to 29 days after treatment (DAT) on the watershed treated with the 75% dispersible granule formulation (Oust; DuPont Chemical Company, Wilmington, DE) and less than 53 DAT on the watershed treated with the experimental formulation (1% pellet). Twenty-four-hour average SM concentration in water ranged from not detected to a maximum of 49.3 microg L(-1). Sulfometuron was not detected at quantifiable levels (1 microg L(-1)) 150 m downstream. Stream sediment, vegetation, litter, and soil were sampled periodically up to 180 DAT. All samples were analyzed for SM by high performance liquid chromatography. Sulfometuron dissipated from these watersheds with half-lives that ranged from 4 d in plant tissues to 33 d in soil. Acidic soil solution on these treated watersheds contributed to their rapid dissipation. Environmental impacts are discussed for these watersheds in the context of available toxicological data.  相似文献   

3.
Drift from pesticide spray application can result in contamination of nontarget environments such as surface waters. Azinphos-methyl (AZI) and endosulfan (END) deposition in containers of water was studied in fruit orchards in the Western Cape, South Africa. Additionally, attention was given to the contamination in farm streams, as well as to the resulting contamination of the subsequent main channel (Lourens River) approx. 25 km downstream of the tributary stream inlets. Spray deposit decreased with increasing distance downwind and ranged from 4.7 mg m(-2) within the target area to 0.2 mg m(-2) at 15 m downwind (AZI). Measured in-stream concentrations of both pesticides compared well with theoretical values calculated from deposition data for the respective distances. Furthermore, they were in the range of values predicted by an exposure assessment based on 95th-percentile values for basic drift deposition (German Federal Biological Research Centre for Agriculture and Forestry [BBA] and USEPA). Pesticide deposition in the tributaries was followed by a measurable increase of contamination in the Lourens River. Mortality of midges (Chironomus spp.) exposed for 24 h to samples obtained from the AZI trials decreased with decreasing concentrations (estimated LC50 from field samples = 10 microg L(-1) AZI; lethal distance: LD50 = 13 m). Mortality in the tributary samples averaged 11% (0.5-1.7 microg L(-1) AZI), while no mortality was discernible in the Lourens River samples (0.041 microg L(-1)). The sublethal endpoint failure to form tubes from the glass beads provided was significantly increased at all sites in comparison with the control (analysis of variance [ANOVA], Fisher's protected least significant difference [PLSD], p < 0.01).  相似文献   

4.
Eutrophication of surface waters can be accelerated by agricultural inputs of phosphorus (P), provided that P is in a form that can be utilized by aquatic algae. We studied anion exchange resin (AER) extraction and a dual culture algal assay (DCAA) for the determination of potentially algal-available P in water samples without sediment preconcentration. Our material consisted of agricultural and forest runoff and wastewaters. The results obtained by the two methods were essentially equal when the samples contained only small amounts of particulate phosphorus (PP) in relation to dissolved molybdate-reactive phosphorus (DRP). However, in turbid agricultural runoff, P extracted with AER averaged 72% (n = 17) of the P yield of the 3-wk DCAA (R2 = 0.94). When the runoff samples were diluted for the AER extraction in the same manner as for the DCAA, the AER-P yield increased to 85% (n = 5) of DCAA-P. The minimum detectable value was greater for the AER test (41 microg L(-1) AER-extractable P) than for the DCAA (7 microg L(-1) DCAA-P). At concentrations greater than about 50 microg L(-1) AER-P or DCAA-P, the accuracy of the methods was satisfactory, with the coefficient of variation in replicated analyses being less than 10% for the AER test and less than 20% for the DCAA. Other anions competing for the exchange sites of the AER decreased P recovery by 15 to 20% when their equivalent concentration exceeded about 4 mmol, L(-1), and this effect was relatively constant over a large concentration range. We consider that AER extraction is a suitable low-cost method to estimate the algal availability of P in runoff samples.  相似文献   

5.
The effects of iron oxides and organic matter on the partitioning and chemical lability of U and Ni were examined for contaminated riparian sediments from the U.S. Department of Energy's Savannah River Site. In sequential extractions of four sediments that ranged from 12.7 to 82.2 g kg(-1) in organic carbon, U was found almost exclusively in moderately labile fractions (93% in acid-soluble + organically bound). Nickel was distributed across all operationally defined fractions, including substantial amounts in the very labile fractions (4-15% in water-soluble + exchangeable), noncrystalline and crystalline iron oxides (38-49%), and in the nonlabile residual fraction (25-34%). Aqueous U concentrations in 1:1 sediment-water extracts were highly correlated to dissolved organic carbon (DOC) (R2 = 0.96; p < 0.0001) and ranged from 29 to 410 microg L(-1). Aqueous concentrations of Ni exceeded U by two to three orders of magnitude (124-2227 microg L(-1)) but were not correlated with DOC (R2 = 0.04; p = 0.53). Partitioning and solubility trends suggest that Ni availability is controlled primarily by iron-oxide phases, whereas U availability is dominated by naturally occurring organic carbon. Discrete mineral phases were also identified as nonlabile reservoirs of anthropogenic metals. In spite of comparably high sediment concentrations, Ni appears to be significantly more available than U in riparian sediments and therefore warrants greater consideration in terms of environmental consequences (i.e., transport, biological uptake, and toxicity).  相似文献   

6.
Residual herbicides used in the production of soybean [Glycine max (L.) Merr] and corn (Zea mays L.) are often detected in surface runoff at concentrations exceeding their maximum contaminant levels (MCL) or health advisory levels (HAL). With the advent of transgenic, glyphosate-tolerant soybean and glufosinate-tolerant corn this concern might be reduced by replacing some of the residual herbicides with short half-life, strongly sorbed, contact herbicides. We applied both herbicide types to two chiseled and two no-till watersheds in a 2-yr corn-soybean rotation and at half rates to three disked watersheds in a 3-yr corn/soybean/wheat (Triticum aestivum L.)-red clover (Trifolium pratense L.) rotation and monitored herbicide losses in runoff water for four crop years. In soybean years, average glyphosate loss (0.07%) was approximately 1/7 that of metribuzin (0.48%) and about one-half that of alachlor (0.12%), residual herbicides it can replace. Maximum, annual, flow-weighted concentration of glyphosate (9.2 microg L(-1)) was well below its 700 microg L(-1) MCL and metribuzin (9.5 microg L(-1)) was well below its 200 microg L(-1) HAL, whereas alachlor (44.5 microg L(-1)) was well above its 2 microg L(-1) MCL. In corn years, average glufosinate loss (0.10%) was similar to losses of alachlor (0.07%) and linuron (0.15%), but about one-fourth that of atrazine (0.37%). Maximum, annual, flow-weighted concentration of glufosinate (no MCL) was 3.5 microg L(-1), whereas atrazine (31.5 microg L(-1)) and alachlor (9.8 microg L(-1)) substantially exceeded their MCLs of 3 and 2 microg L(-1), respectively. Regardless of tillage system, flow-weighted atrazine and alachlor concentrations exceeded their MCLs in at least one crop year. Replacing these herbicides with glyphosate and glufosinate can reduce the occurrence of dissolved herbicide concentrations in runoff exceeding drinking water standards.  相似文献   

7.
Determination of polyacrylamide (PAM) concentration in soil waters is important in improving the efficiency of PAM application and understanding the environmental fate of applied PAM. In this study, concentrations of anionic PAM with high molecular weight in soil waters containing salts and dissolved organic matter (DOM) were determined quantitatively by size exclusion chromatography (SEC) with ultraviolet (UV) absorbance detection. Polyacrylamide was separated from interferential salts and DOM on a polymeric gel column eluted with an aqueous solution of 0.05 M KH2PO4 and then detected at a short UV wavelength of 195 nm. Analysis of PAM concentrations in soil sorption supernatants, soil leachates, and water samples from irrigation furrow streams showed that SEC is an effective approach for quantifying low concentrations (0-10 mg L(-1)) of PAM in waters containing soil DOM and salts. The method has a lower detection limit of 0.02 microg and a linear response range of 0.2 to 80 mg L(-1). Precision studies gave coefficients of variation of < 1.96% (n = 4) for > 10 mg L(-1) PAM and < 12% (n = 3) for 0.2 to 3 mg L(-1) PAM.  相似文献   

8.
There is considerable concern about pollution of surface waters with P. Although most of the research has focused on inorganic P in surface runoff, it has recently become possible to easily follow the fate of soluble organic P forms in soils and waters. Two experiments were performed to compare the relative mobility and soil fixation affinity of orthophosphate monoesters, orthophosphate diesters, and soluble inorganic P. We used three P substrates, 4-methylumbelliferyl phosphate (MUP), deoxyribonucleic acid (DNA), and KH(2)PO(4) in (i) a soil column experiment and (ii) a soil P adsorption test tube experiment. Shortly after columns were prepared, approximately two pore volumes of 0.005 M CaCl(2) were passed through 25 cm length columns containing 10 cm of loamy sand amended with approximately 10 mg P as MUP, DNA, or KH(2)PO(4) above 15 cm of nonamended loamy sand. The total net quantity of 757.8 microg P 2L(-1) of orthophosphate diesters in the leachate from the DNA columns exceeded the net quantity of orthophosphate monoesters in leachate from the MUP columns (4.6 microg P 2L(-1)) and soluble inorganic P from the KH(2)PO(4) columns (34.0 microg P 2L(-1)). Adsorption of soluble organic and inorganic P in the test tube experiment yielded similar results: DNA, containing orthophosphate diesters, had a relatively low affinity for soils. In both experiments, high concentrations of other P compounds were identified in samples treated with organic P substrates, suggesting enzymatic hydrolysis by native soil phosphatase enzymes. These findings indicate that repeated application of organic forms of P could lead to significant leaching of P to ground water.  相似文献   

9.
An upward trend in soluble reactive phosphorus (SRP) concentrations in Northern Ireland rivers leading to increased eutrophication has been reported for the last two decades. To identify if a similar trend could be observed in land drainage waters SRP and other P fractions were measured weekly from 1989 to 1997 in land drainage from a 9-ha grassland catchment in Northern Ireland that had a mean P surplus applied of 23.4 kg P ha(-1) yr(-1). Regressions of annual median concentrations of P fractions in land drainage waters against time for 1989 through to 1997 showed significant increases of SRP and soluble unreactive phosphorus (SUP) of 2.4 and 1.2 microg P L(-1) yr(-1), respectively. However, the annual flow-weighted concentrations and loads of all P fractions did not show significant increases with time. During the period 1998-2000 a change of management was introduced when only maintenance dressings of P were applied to the catchment according to Ministry of Agriculture, Fisheries and Food guidelines. This resulted in significant reductions in SRP concentrations in 2000 compared with 1997.  相似文献   

10.
Minimizing herbicide runoff and mobility in the soil and thus potential contamination of water resources is a national concern. Metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one] and atrazine [2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine] dynamics in surface soils and in runoff waters were studied on six 0.2-ha sugarcane (Saccharum spp.) plots of a Commerce silt loam (fine-silty, mixed, superactive, nonacid, thermic Fluvaquentic Endoaquept) during three growing seasons under different best management practices. Metribuzin was applied in the spring as a postemergence herbicide and atrazine was applied following winter harvest. Both herbicides were applied on top of the sugarcane rows as 0.6- or 0.9-m band width application, or broadcast application, where the entire area was treated. Maximum effluent concentrations were measured from the broadcast treatment and ranged from 600 to 1100 microg L(-1) for atrazine and 250 to 450 microg L(-1) for metribuzin. Atrazine runoff losses were highest for the broadcast treatment (2.8-11% of that applied) and lowest for the 0.6-m band treatment (1.9-7.6%), with a similar trend for metribuzin losses. Measured extractable herbicides from the surface soil exhibited a sharp decrease with time and were well described with a simple first-order decay model. For atrazine, estimates for the decay rate (lambda) were higher than for metribuzin. Results based on laboratory adsorption-desorption (kinetic-batch) measurements were consistent with field observations. The distribution coefficients (Kd) for atrazine exhibited stronger retention over time in comparison with metribuzin on the Commerce soil. Moreover, discrepancies between adsorption isotherm and desorption indicated slower release and that hysteresis was more pronounced for atrazine compared with metribuzin.  相似文献   

11.
A study of two small streams at Akumadan and Tono, Ghana, was undertaken during the rain and dry season periods between February 2005 and January 2006 to investigate the impact of vegetable field runoff on their quality. In each stream we compared the concentration of current-use pesticides in one site immediately upstream of a vegetable field with a second site immediately downstream. Only trace concentrations of endosulfan and chlorpyrifos were detected at both sites in both streams in the dry season. In the wet season, rain-induced runoff transported pesticides into downstream stretches of the streams. Average peak levels in the streams themselves were 0.07 microg L(-1) endosulfan, 0.02 microg L(-1) chlorpyrifos (the Akumadan stream); 0.04 microg L(-1) endosulfan, 0.02 microg L(-1) chlorpyrifos (the Tono stream). Respective average pesticide levels associated with streambed sediment were 1.34 and 0.32 microg kg(-1) (the Akumadan stream), and 0.92 and 0.84 microg kg(-1) (the Tono stream). Further investigations are needed to establish the potential endosulfan and chlorpyrifos effects on aquatic invertebrate and fish in these streams. Meanwhile measures should be undertaken to reduce the input of these chemicals via runoff.  相似文献   

12.
Phosphorus-enriched runoff from cropland can hasten eutrophication of surface waters. A soil P level exceeding crop needs due to long-term fertilizer and/or manure applications is one of several potential sources of increased P losses in runoff from agricultural systems. Field experiments were conducted at locations representative of three major soil regions in Wisconsin in corn (Zea mays L.) production systems to determine the effect of tillage, recent manure additions, soil P extraction method, and soil sampling depth (0-2, 0-5, and 0-15 cm) on the relationship between soil test P level and P concentrations in runoff. Runoff from simulated rainfall (75 mm h(-1)) was collected from 0.83-m2 areas for 1 h after rainfall initiation and analyzed for dissolved phosphorus (DP), total phosphorus (TP), and sediment. The DP fraction of the TP concentration in runoff ranged from 5 to 17% among sites with most of the variation in TP due to varying sediment concentration on the well-drained silt loam soils and to soil test P level on the poorly drained silty clay loam soil. In 213 observations across a range of soils and managements, good relationships occurred between soil test P level and DP concentration in runoff for most of the tests and sampling depths used. Recent manure additions and high levels of surface cover from corn residue sometimes masked this relationship. The slope of DP relative to soil test P level was markedly higher on the silty clay loam soil than on the silt loam soils possibly due to soil permeability-infiltration rate differences. Agronomic soil P tests were as effective as environmentally oriented soil P tests for predicting DP concentrations in runoff.  相似文献   

13.
Cinosulfuron (3-(4,6-dimethoxy-1,3,5-triazin-2-yl)-1-[2-(2-methoxyethoxy)-phenylsulfonyl]-urea) is a sulfonylurea herbicide used to control a wide range of broadleaf weeds in rice (Oryza sativa L.). A 2-yr field study was conducted in northwest Italy to determine the effect of cinosulfuron on surface and subsoil waters in rice paddies. Cinosulfuron was applied at 70 g a.i. ha(-1) on 35 ha of flooded rice. After the treatment, the change in herbicide concentration over time was studied by analyzing water and sediment samples in a test paddy field (2.16 ha, located in the treated area), water in a spring and a pond (both located near the test paddy), two wells (up- and downhill to the treated area), and two piezometers (along the test paddy levee). To better understand some of the field study results, cinosulfuron degradation was also evaluated in the laboratory in solutions buffered to different pH values. Two weeks after the treatment, the cinosulfuron concentration in the paddy water decreased by about 60%. No cinosulfuron was detected at about 2.5 mo after the treatment. The concentration in the sediment gradually increased after the treatment, reaching the highest value (13.53 microg kg(-1)) 3 wk later. The maximum cinosulfuron content in the spring and pond were 0.91 and 0.29 microg L(-1), respectively, and these were detected 60 to 90 days after treatment (DAT). The water collected in the piezometers reached the highest concentration (0.99 microg L(-1)) 29 DAT. Cinosulfuron was never detected in the wells. In the degradation study at different pH values, cinosulfuron degraded rapidly at low pH values.  相似文献   

14.
Phosphogypsum (PG) is a residue of the phosphate fertilizer industry that has relatively high concentrations of 226Ra and other radionuclides. Thus, it is interesting to study the effect of PG applied as a Ca amendment on the levels and behavior of radionuclides in agricultural soils. A study involving treatments with 13 and 26 Mg ha(-1) of PG and 30 Mg ha(-1) of manure was performed, measuring 226Ra and U isotopes in drainage water, soil, and plant samples. The PG used in the treatment had 510 +/- 40 Bq kg(-1) of 226Ra. The 226Ra concentrations in drainage waters from PG-amended plots were similar (between 2.6 and 7.2 mBq L(-1)) to that reported for noncontaminated waters. Although no significant effect due to PG was observed, the U concentrations in drainage waters (200 mBq L(-1) for 238U) were one order of magnitude higher than those described in noncontaminated waters. This high content in U can be ascribed to desorption processes mainly related to the natural adsorbed pool in soil (25 Bq kg(-1) of 238U). This is supported by the 234U to 238U isotopic ratio of 1.16 in drainage waters versus secular equilibrium in PG and P fertilizers. The progressive enrichment in 226Ra concentration in soils due to PG treatment cannot be concluded from our present data. This PG treatment does not determine any significant difference in 226Ra concentration in drainage waters or in plant material [cotton (Gossipium hirsutum L.) leaves]. No significant levels of radionuclides except 40K were found in the vegetal tissues.  相似文献   

15.
Dairy operations have the potential to elevate dissolved organic carbon (DOC) levels in ground water, where it may interact with organic and inorganic contaminants, fuel denitrification, and may present problems for drinking water treatment. Total and percent bioavailable DOC and total and carbon-specific trihalomethane (THM) formation potential (TTHMFP and STHMFP, respectively) were determined for shallow ground water samples from beneath a dairy farm in the San Joaquin Valley, California. Sixteen wells influenced by specific land management areas were sampled over 3 yr. Measured DOC concentrations were significantly elevated over the background as measured at an upgradient monitoring well, ranging from 13 to 55 mg L(-1) in wells downgradient from wastewater ponds, 8 to 30 mg L(-1) in corral wells, 5 to 12 mg L(-1) in tile drains, and 4 to 15 mg L(-1) in wells associated with manured fields. These DOC concentrations were at the upper range or greatly exceeded concentrations in most surface water bodies used as drinking water sources in California. DOC concentrations in individual wells varied by up to a factor of two over the duration of this study, indicating a dynamic system of sources and degradation. DOC bioavailability over 21 d ranged from 3 to 10%, comparable to surface water systems and demonstrating the potential for dairy-derived DOC to influence dissolved oxygen concentrations (nearly all wells were hypoxic to anoxic) and denitrification. TTHMFP measurements across all management units ranged from 141 to 1731 microg L(-1), well in excess of the maximum contaminant level of 80 microg L(-1) established by the Environmental Protection Agency. STHMFP measurements demonstrated over twofold variation ( approximately 4 to approximately 8 mmol total THM/mol DOC) across the management areas, indicating the dependence of reactivity on DOC composition. The results indicate that land management strongly controls the quantity and quality of DOC to reach shallow ground water and hence should be considered when managing ground water resources and in any efforts to mitigate contamination of ground water with carbon-based contaminants, such as pesticides and pharmaceuticals.  相似文献   

16.
Phosphorus is an essential plant nutrient and critical to agricultural production, but it is also a problem when excessive amounts enter surface waters. Summer rotational grazing and winter feeding beef pasture systems at two fertility levels (56 and 28 kg available P ha(-1)) were studied to evaluate the P losses from these systems via surface runoff and subsurface flow using eight small (0.3-1.1 ha), instrumented watersheds and spring developments. Runoff events from a 14-yr period (1974-1988) were evaluated to determine the relationships between event size in mm, total dissolved reactive phosphorous (TDRP) concentration, and TDRP transport. Most of the TDRP transported was via surface runoff. There were strong correlations (r2 = 0.45-0.66) between TDRP transport and event size for all watersheds, but no significant (P = 0.05) correlations between TDRP concentration and event size. Flow-weighted average TDRP concentrations from the pasture watersheds for the 14-yr period ranged from 0.64 to 1.85 mg L(-1) with a few individual event concentrations as high as 85.7 mg L(-1). The highest concentrations were in events that occurred soon after P fertilizer application. Average seasonal flow-weighted TDRP concentrations for subsurface flow were < 0.05 mg L(-1). Applying P fertilizer to pastures in response to soil tests should keep TDRP concentrations in subsurface flow at environmentally acceptable levels. Management to reduce runoff and avoidance of P fertilizer application when runoff producing rainfall is anticipated in the next few days will help reduce the surface losses of P.  相似文献   

17.
Nitrate contamination of surface waters has been linked to irrigated agriculture across the world. We determined the NO3-N loads in the drainage waters of two sprinkler-irrigated watersheds located in the Ebro River basin (Spain) and their relationship to irrigation and N management. Crop water requirements, irrigation, N fertilization, and the volume and NO3-N concentration of drainage waters were measured or estimated during two-year (Watershed A; 494 irrigated ha) and one-year (Watershed B; 470 irrigated ha) study periods. Maize (Zea mays L.) and alfalfa (Medicago sativa L.) were grown in 40 to 60% and 15 to 33% of the irrigated areas, respectively. The seasonal irrigation performance index (IPI) ranged from 92 to 100%, indicating high-quality management of irrigation. However, the IPI varied among fields and overirrigation occurred in 17 to 44% of the area. Soil and maize stalk nitrate contents measured at harvest indicated that N fertilizer rates could be decreased. Drainage flows were 68 mm yr(-1) in Watershed A and 194 mm yr(-1) in Watershed B. Drainage NO3-N concentrations were independent of drainage flows and similar in the irrigated and nonirrigated periods (average: 23-29 mg L(-1)). Drainage flows determined the exported mass of NO3-N, which varied from 18 (Watershed A) to 49 (Watershed B) kg ha(-1) yr(-1), representing 8 (Watershed A) and 22% (Watershed B) of the applied fertilizer plus manure N. High-quality irrigation management coupled to the split application of N through the sprinkler systems allowed a reasonable compromise between profitability and reduced N pollution in irrigation return flows.  相似文献   

18.
A field study on the removal of Se from agricultural subsurface drainage was conducted from May 1997 to February 2001 in the Tulare Lake Drainage District (TLDD) of San Joaquin Valley, California. A flow-through wetland system was constructed consisting of ten 15- x 76-m unlined cells that were continuously flooded and planted with either a monotype or combination of plants, including sturdy bulrush [Schoenoplectus robustus (Pursh) M.T. Strong], baltic rush (Juncus balticus Willd.), smooth cordgrass (Spartina alterniflora Loisel.), rabbitsfoot grass [Polypogon monspeliensis (L.) Desf.], salt-grass lDistichlis spicata (L.) Greene], cattail (Typha latifolia L.), tule [Schoenoplectus acutus (Muhl. ex Bigelow) A. L?ve & D. L?ve], and widgeon grass (Ruppia maritima L.). One cell had no vegetation planted. The objectives of this research were to evaluate Se removal efficiency of each wetland cell and to carry out a mass balance on Se. The inflow drainage water to the cells had average annual Se concentrations of 19 to 22 microg L(-1) dominated by selenate [Se(VI), 95%]. Average weekly water residence time varied from about 3 to 15 d for Cells 1 through 7 (target 7 d), 19 to 33 d for Cells 8 and 9 (target 21 d), and 13 to 18 d for Cell 10 (target 14 d). Average weekly Se concentration ratios of outflow to inflow ranged from 0.45 to 0.79 and mass ratio (concentration x water volume) from 0.24 to 0.52 for year 2000, that is, 21 to 55% reduction in Se concentration and 48 to 76% Se removal in mass by the wetland, respectively. The nonvegetated cell showed the least Se removal both in concentration and in mass. The global mass balance showed that on the average about 59% of the total inflow Se was retained within the cells and Se outputs were outflow (35%), seepage (4%), and volatilization (2%). Independent measurements of the Se retained in the cells totaled 53% of the total Se inflow: 33% in the surface (0-20 cm) sediment, 18% in the organic detrital layer above the sediment, 2% in the fallen litter, < 1% in the standing plants, and < 1% in the surface water. Thus, about 6% of the total Se inflow was unaccounted for in the internal compartments.  相似文献   

19.
Plant uptake of radionuclides is one of many vectors for introduction of contaminants into the human food chain. Thus, it is critical to understand soil-plant relationships that control nuclide bioavailability. Our objectives in this study were to (i) determine the extent of U and Th uptake and cycling by blueberry (Vaccinium pallidum Aiton) in native habitat and (ii) identify the soil properties and processes that contribute most to U and Th bioavailability in this system. We collected composite samples of plant leaves and stems, and samples from surface (AE) horizons and from the upper part of the Bs horizon at two sites. Concentration ratios (CRs) for U and Th were calculated for all plant tissues, using both the AE and Bs horizons as the base. Soil concentrations of U ranged from 16 to 25 microg g(-1), with a mean of 21.1 microg g(-1). Soil concentrations of Th ranged from 14 to 97 microg g(-1), with a mean of 41.8 microg g(-1). Mean U concentrations were 8.65 x 10(-3) microg g(-1) in leaf tissue, and 7.95 x 10(-3) microg g(-1) in stem tissue. Mean Th concentrations were 1.59 x 10(-1) microg g(-1) in leaf tissue, and 9.10 x 10(-2) microg g(-1) in stem tissue. Blueberry plants are cycling both U and Th in this system, with Th cycling occurring to a greater extent than U. In addition, Th was translocated preferentially to plant leaves while U concentrations showed little preferential translocation. Uranium uptake, however, seemed more sensitive than Th uptake to soil properties.  相似文献   

20.
The occurrence of metabolites of many commonly used herbicides in streams has not been studied extensively in tile-drained watersheds. We collected water samples throughout the Upper Embarras River watershed [92% corn, Zea mays L., and soybean, Glycine max (L.) Merr.] in east-central Illinois from March 1999 through September 2000 to study the occurrence of atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), metolachlor 12-chloro-N-(2-ethyl-6-methylphenyl)-N-(methoxy-1-methylethyl) acetamide], alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl) acetamide], acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl) acetamide], and their metabolites. River water samples were collected from three subwatersheds of varying tile density (2.8-5.3 km tile km(-2)) and from the outlet (United States Geological Survey [USGS] gage site). Near-record-low totals for stream flow occurred during the study, and nearly all flow was from tiles. Concentrations of atrazine at the USGS gage site peaked at 15 and 17 microg L(-1) in 1999 and 2000, respectively, and metolachlor at 2.7 and 3.2 microg L(-1); this was during the first significant flow event following herbicide applications. Metabolites of the chloroacetanilide herbicides were detected more often than the parent compounds (evaluated during May to July each year, when tiles were flowing), with metolachlor ethanesulfonic acid [2-[(2-ethyl-6-methylphenyl)(2-methoxy-1-methylethyl)amino]-2-oxoethanesulfonic acid] detected most often (> 90% from all sites), and metolachlor oxanilic acid [2-[(2-ethyl-6-methylphenyl)(2-methoxy-1-methylethyl)amino]-2-oxoacetic acid] second (40-100% of samples at the four sites). When summed, the median concentration of the three chloroacetanilide parent compounds (acetochlor, alachlor, and metolachlor) at the USGS gage site was 3.4 microg L(-1), whereas it was 4.3 microg L(-1) for the six metabolites. These data confirm the importance of studying chloroacetanilide metabolites, along with parent compounds, in tile-drained watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号