首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A survey of storm runoff fecal coliform bacteria (FCB) from working farm and ranch pastures is presented in conjunction with a survey of FCB in manure management systems (MMS). The cross-sectional survey of pasture runoff was conducted on 34 pastures on five different dairies over 2 yr under varying conditions of precipitation, slope, manure management, and use of conservation practices such as vegetative filter strips. The MMS cross-sectional survey consisted of samples collected during 1 yr on nine different dairies from six loafing barns, nine primary lagoons, 12 secondary lagoons, and six irrigation sample points. Pasture runoff samples were additionally analyzed for Cryptosporidium sp. and Giardia duodenalis, whereby detectable concentrations occurred sporadically at higher FCB concentrations resulting in poor correlations with FCB. Prevalence of both parasites was lower relative to high-use areas studied simultaneously on these same farms. Application of manure to pastures more than 2 wk in advance of storm-associated runoff was related to a > or =80% reduction in FCB concentration and load compared to applications within 2 wk before a runoff event. For every 10 m of buffer length, a 24% reduction in FCB concentration was documented. A one-half (75%), one (90%), and two (99%) log10 reduction in manure FCB concentration was observed for manure holding times in MMS of approximately 20, 66, and 133 d, respectively. These results suggest that there are several management and conservation practices for working farms that may result in reduced FCB fluxes from agricultural operations.  相似文献   

2.
Turf, including home lawns, roadsides, golf courses, parks, etc., is often the most intensively managed land use in the urban landscape. Substantial inputs of fertilizers and water to maintain turf systems have led to a perception that turf systems are a major contributor to nonpoint source water pollution. The primary objective of this study was to quantify nutrient (NO(3)-N, NH(4)-N, and PO(4)-P) transport in storm-generated surface runoff from a golf course. Storm event samples were collected for 5 yr (1 Apr. 1998-31 Mar. 2003) from the Morris Williams Municipal Golf Course in Austin, TX. Inflow and outflow samples were collected from a stream that transected the golf course. One hundred fifteen runoff-producing precipitation events were measured. Median NO(3)-N and PO(4)-P concentrations at the outflow location were significantly (p < 0.05) greater than like concentrations measured at the inflow location; however, median outflow NH(4)-N concentration was significantly less than the median inflow concentration. Storm water runoff transported 1.2 kg NO(3)-N ha(-1) yr(-1), 0.23 kg NH(4)-N ha(-1) yr(-1), and 0.51 kg PO(4)-P ha(-1) yr(-1) from the course. These amounts represent approximately 3.3% of applied N and 6.2% of applied P over the contributing area for the same period. NO(3)-N transport in storm water runoff from this course does not pose a substantial environmental risk; however, the median PO(4)-P concentration exiting the course exceeded the USEPA recommendation of 0.1 mg L(-1) for streams not discharging into lakes. The PO(4)-P load measured in this study was comparable to soluble P rates measured from agricultural lands. The findings of this study emphasize the need to balance golf course fertility management with environmental risks, especially with respect to phosphorus.  相似文献   

3.
Received for publication December 22, 2004. Research was initiated to study the interaction between soil amendments (lime, gypsum, and ferrous sulfate) and dissolved molybdate reactive phosphorus [RP(<0.45)] losses from manure applications from concentrated runoff flow through a sod surface. Four run-over boxes (2.2-m2 surface area) were prepared for each treatment with a bermudagrass [Cynodon dactylon (L.) Pers.] sod surface (using sod blocks) and composted dairy manure was surface-applied at rates of 0, 4.5, 9, or 13.5 Mg ha-1. The three soil amendments were then applied to the boxes. Two 30-min runoff events were conducted and runoff water was collected at 10-min intervals and analyzed for RP(<0.45). Results indicated that the addition of ferrous sulfate was very effective at reducing the level of RP(<0.45). in runoff water, reducing RP(<0.45) from 1.3 mg L(-1) for the highest compost rate with no amendment to 0.2 mg L(-1) for the ferrous sulfate in the first 10 min of runoff. Lime and gypsum showed a small impact on reducing RP(<0.45), with a reduction in the first 10 min to 0.9 and 0.8 mg L(-1), respectively. The ferrous sulfate reduced the RP(<0.45) in the tank at the end of the first runoff event by 66.3% compared with no amendment. In the second runoff event, the ferrous sulfate was very effective at reducing RP(<0.45) in runoff, with no significant differences in RP(<0.45) with application of 13.5 Mg ha(-1) compost compared with no manure application. The results indicate that the addition of ferrous sulfate may greatly reduce RP(<0.45) losses in runoff and has considerable potential to be used on pasture, turfgrass, and filter strips to reduce the initial RP(<0.45) losses from manure application to the environment.  相似文献   

4.
In this paper, stormwater runoff from an urban watershed with combined sewer systems located in Daejeon metropolitan city, Korea, was characterized to measure the stormwater runoff discharge rates and pollutant concentrations. The observed averaged event mean concentrations (EMCs) of combined sewer overflows (CSO) were 536.1mg TSS/L, 467.7 mg TCODcr/L, 142.7 mg TBOD/L, 16.5mg TN/L, and 13.5mg TP/L. A detention basin was proposed to reduce CSO, and its essential design elements were discussed. The first flush significantly affected contaminant constituents in the descending order of suspended solid>organics>nutrients. Storage volumes for containing the first flush to improve water quality of the receiving stream can be estimated based on the total suspended solid loading. In this study, detention of the first flush equivalent to 5mm of precipitation could reduce CSO-induced diffuse pollution loading to a receiving water body by up to 80% of the total suspended solid loading.  相似文献   

5.
Grassed waterways (GWWs) drain surface runoff from fields without gullying along the drainageway. Secondary functions include reducing runoff volume and velocity and retaining sediments and harmful substances from adjacent fields. Grass cover (sward)-damaging sedimentation in the GWW is commonly reduced by frequent mowing, but in doing so the effectiveness of the waterway relative to the secondary functions is reduced. Our objectives were to (i) evaluate whether the maintenance of a GWW can be reduced if on-site erosion control is effective, (ii) measure the effectiveness of such a GWW, and (iii) analyze the underlying mechanisms. A long-term (1994-2000) landscape experiment was performed in four watersheds, where two had GWWs for which maintenance was largely neglected. An intensive soil conservation system was established on all fields. Runoff and sediment delivery were continuously measured in the two watersheds with GWWs and in their paired watersheds that were similar, but without GWWs. Runoff was reduced by 90 and 10% for the two sets of paired watersheds, respectively. The different efficiencies of the GWWs resulted from different layouts (doubled width and flat-bottomed vs. v-shaped drainageway). The GWWs reduced sediment delivery by 97 and 77%, respectively, but the sward was not damaged by sedimentation. Grain sizes > 50 microm were settled due to gravity in both GWWs. Smaller grain sizes were primarily settled due to infiltration, which increased with a more effective runoff reduction. In general, the results indicated a high potential of GWWs for reducing runoff volume and velocity, sediments, and agrochemicals coming from agricultural watersheds.  相似文献   

6.
The use of computer-assisted map analysis techniques for prediction of storm runoff from a small urban watershed in the United States is investigated. An automated procedure for calculating input parameters for the US Soil Conservation Service (SCS) method of predicting storm runoff volume and peak timing is presented. Advanced techniques of spatial analysis are used to characterize spatial coincidence, surface configuration and effective hydrologic distance. A limited verification of the automated procedure indicates that the model reasonably characterizes water flow. A sensitivity analysis of basin disaggregation suggests that the SCS method yields increased volume and peak discharge predictions as the watershed is divided into smaller and smaller subunits. As a means to demonstrate the practical application of the automated procedure, a simulation of the effects on surface runoff for a potential residential development is presented.  相似文献   

7.
Various physical factors affecting the release rate of naturally occurring Cryptosporidium parvum oocysts and Giardia duodenalis cysts from dairy manure disks to sprinkled water were studied. The investigated factors included temperature (5 or 23 degrees C), manure type (calf manure, a 50% calf and 50% cow manure mixture, and a 10% calf and 90% cow manure mixture), and water application method (mist or drip) and flow rate. Effluent concentrations of manure and (oo)cysts were always several orders of magnitude below their initial concentration in the manure, decreased gradually, and exhibited persistent concentration tailing. Release of manure and (oo)cysts were found to be related by a constant factor, the so-called release efficiency of (oo)cysts. A previously developed (oo)cyst release model that included these release efficiencies provided a satisfactory simulation of the observed release. An effect of temperature on the release of manure and (oo)cysts was not apparent. The manure and (oo)cyst release rates from cow manure decreased faster than those from calf manure, and (oo)cyst release efficiencies from cow manure were higher than those from calf manure. In comparison with mist application, dripping water resulted in higher release rates of manure and (oo)cysts and in higher (oo)cyst release efficiencies due to the increased mechanical forces associated with droplet impact. Mist application at a higher flow rate resulted in faster release, but did not affect the (oo)cyst release efficiencies. The data and modeling approach described herein provide insight and an enhanced ability to describe the influence of physical factors on (oo)cyst release.  相似文献   

8.
Sorption and desorption characteristics of propiconazole (1-[[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2-yl]methyl]-1H-1,2,4-triazole) to different particle/aggregate-size fractions of agricultural runoff material were investigated. Emphasis was put on clay and colloidal size fractions to evaluate their role as potential sorbents and carriers for this pesticide. The runoff material was separated into size fractions ranging from 2 mm to ca. 15 nm by wet sieving, sedimentation, centrifugation, and membrane ultrafiltration. Each fraction was characterized by its organic C content and C/N ratio. Distinctive sorption properties of clay-sized particles and colloids were investigated. The obtained size fractions differed significantly in their organic C concentration, C/N ratio, and sorption properties to propiconazole. Organic matter was mainly associated in aggregates >2 microm. Binding of propiconazole to this coarse fraction made up 80% of the sorbed propiconazole. The distribution coefficient between solid and aqueous phases increased with decreasing particle size. The colloidal fraction (<0.16 microm) exhibited the highest sorbtivity, with a distribution coefficient of 113 L kg(-1), which was more than four times higher than that in the bulk sample (27 L kg(-1)). The fraction <2 microm represented 8% of the total sample weight, but contributed to 20% of the sorbed propiconazole. Strong hysteresis was observed for the sorption-desorption of propiconazole on the runoff material. Under dilution very little sorbed propiconazole will be released into the water phase. Due to its high sorbtivity and mobility and the strong sorption-desorption hysteresis, particles in the fraction <2 microm can be important carriers of propiconazole in runoff suspensions with high sediment load.  相似文献   

9.
Application of broiler (Gallus gallus domesticus) litter to grasslands can increase ammonium (NH4-N) and dissolved reactive phosphorus (DRP) concentrations in surface runoff, but it is not known for how long after a broiler litter application that these concentrations remain elevated. This long-term study was conducted to measure NH4-N and DRP in surface runoff from grasslands fertilized with broiler litter. Six 0.75-ha, fescue (Festuca arundinacea Schreb.-)bermudagrass [Cynodon dactylon (L.) Pers.] paddocks received broiler litter applications in the spring and fall of 1995-1996 and only inorganic fertilizer N in the spring of 1997-1998. Surface runoff from each paddock was measured and analyzed for NH4-N and DRP. Broiler litter increased flow-weighted NH4-N and DRP concentrations from background values of 0.5 and 0.4 mg L(-1), respectively, to values > 18 mg L(-1) in a runoff event that took place immediately after the third application. Ammonium concentrations decreased rapidly after an application and were not strongly related to time after application or runoff volume. In contrast, DRP concentrations tended to decrease more slowly, reaching values near 1 mg L(-1) by 19 mo after the last application. Dissolved reactive P concentrations decreased linearly with the natural logarithm of days after application (p<0.03), and increased linearly with the natural logarithm of runoff volume (p<0.0001).  相似文献   

10.
Municipal biosolids are typically not used on the steepest of forested slopes in the U.S. Pacific Northwest. The primary concern in using biosolids on steep slopes is movement of biosolids particles and soluble nutrients to surface waters during runoff events. We examined the pattern and extent of P and N runoff from a perennial stream draining a small, forested 21.4-ha watershed in western Washington before and after biosolids application. In this study, we applied biosolids at a rate of 13.5 Mg ha(-1) (700 kg N ha(-1) and 500 kg P ha(-1)) to 40% of the watershed following nearly 1.5 years of pre-application water sampling and 1.5 years thereafter. There was no evidence of direct runoff of P or N from biosolids into surface water. Elevated surface water discharge did not change the concentration of PO4-P, biologically available phosphorus (BAP), bioavailable particulate phosphorus (BPP), or total P nor did it affect the concentration-discharge relationship. Some instances of total P concentrations exceeding the USEPA surface water standard of 0.1 mg L(-1) were observed following biosolids application. However, total P in 27 Creek was predominately in particulate form and not labile, suggesting that detritus moving into the main creek channel and ephemeral drainage courses may be the principal P source. Ammonium N concentrations in runoff water were consistent before and after biosolids application, ranging from below detection limits (0.01 mg L(-1)) to 0.1 mg L(-1); no concentration-discharge relationship existed. Biosolids application changed the 27 Creek concentration-discharge relationship for NO3(-)-N. Before application, no relationship existed. Beginning nine months after biosolids application, increases in discharge were positively related to increases in NO3(-)-N concentrations. Nitrate concentrations in runoff following biosolids application were approximately 10 times less than the USEPA drinking water standard of 10 mg L(-1).  相似文献   

11.
Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9methano-2,4,3-benzodioxathiepin 3-oxide), a pesticide that is highly toxic to aquatic organisms, is widely used in the cotton (Gossypium hirsutum L.) industry in Australia and is a risk to the downstream riverine environment. We used the GLEAMS model to evaluate the effectiveness of a range of management scenarios aimed at minimizing endosulfan transport in runoff at the field scale. The field management scenarios simulated were (i) Conventional, bare soil at the beginning of the cotton season and seven irrigations per season; (ii) Improved Irrigation, irrigation amounts reduced and frequency increased to reduce runoff from excess irrigation; (iii) Dryland, no irrigation; (iv) Stubble Retained, increased soil cover created by retaining residue from the previous crop or a specially planted winter cover crop; and (v) Reduced Sprays, a fewer number of sprays. Stubble Retained was the most effective scenario for minimizing endosulfan transport because infiltration was increased and erosion reduced, and the stubble intercepted and neutralized a proportion of the applied endosulfan. Reducing excess irrigation reduced annual export rates by 80 to 90%, but transport in larger storm events was still high. Reducing the number of pesticide applications only reduced transport when three or fewer sprays were applied. We conclude that endosulfan transport from cotton farms can be minimized with a combination of field management practices that reduce excess irrigation and concentration of pesticide on the soil at any point in time; however, discharges, probably with endosulfan concentrations exceeding guideline values, will still occur in storm events.  相似文献   

12.
Predicting dissolved phosphorus in runoff from manured field plots   总被引:2,自引:0,他引:2  
Dissolved inorganic P transport in runoff from agricultural soils is an environmental concern. Models are used to predict P transport but rarely simulate P in runoff from surface-applied manures. Using field-plot data, we tested a previously proposed model to predict manure P in runoff. We updated the model to include more data relating water to manure ratio to manure P released during water extractions. We verified that this update can predict P release from manure to rain using published data. We tested the updated model using field-plot and soil-box data from three manure runoff studies. The model accurately predicted runoff P for boxes, but underpredicted runoff P for plots. Underpredictions were caused by runoff to rain ratios used to distribute P into runoff or infiltration. We developed P distribution fractions from manure water extraction data to replace runoff to rain ratios. Calculating P distribution fractions requires knowing rainfall rate and times that runoff begins and rain stops. Using P distribution fractions gave accurate predictions of runoff P for soil boxes and field plots. We observed relationships between measured runoff to rain ratios and both P distribution fractions and a degree of error in original predictions, calculated as (measured runoff P/predicted runoff P). Using independent field-plot data, we verified that original underpredictions of manure runoff P can be improved by calculating P distribution fractions from measured runoff to rain ratios or adjusting runoff to rain ratios based on their degree of error. Future work should test the model at field or watershed scales and at longer time scales.  相似文献   

13.
Nitrogen fertilizers are used to maintain optimum turfgrass quality, but off-site movement of this primary nutrient can affect water quality. We conducted a 4-yr study (1998-2001) designed to measure nitrate N runoff from turfgrass, gathering data to be used in the model. The process-based Root Zone Water Quality Model (RZWQM) was used to predict nitrate associated with runoff from turfgrass. The measurements were made on 12 sloped (5%), 25-m2 plots of 'Tifway' bermudagrass [Cynodon dactylon (L.) Pers.], managed as golf course fair-ways and exposed to natural and simulated rainfall. Surface runoff volume and nitrate N loads were monitored after applying simulated rainfall at an average intensity of 27.4 mm h(-1). The irrigation occurred (25 or 50 mm) 4 through 168 h after treatment with various rates of N fertilizers for 1998-2001. RZWQM adequately simulated water runoff volumes (<19%; nonsignificant, paired t test) in the first three (normal or wet) years, but overpredicted (70%) in the fourth, dry year. RZWQM overpredicted nitrate N loads by a factor of 1.3 for the first three years (nonsignificant), and by a factor of almost 6 for the fourth year (highly significant). These overpredictions occurred when the runoff volumes and N loads were very small. The research has shown that refinements to RZWQM are needed for turfgrass management applications.  相似文献   

14.
Phosphorus (P) runoff from fields fertilized with swine (Sus scrofa) manure has been implicated in eutrophication. Dietary modification and manure amendments have been identified as best management practices to reduce P runoff from manure. This study was conducted to compare the effects of dietary modification and aluminum chloride (AlCl3) manure amendments on reducing P in swine manure and runoff. Twenty-four pens of nursery swine were fed either a normal diet or a phytase-amended diet. Each pen was connected to a separate manure pit, which was treated with AlCl3 to give final concentrations in the liquid manure of 0 (control), 0.25, 0.50, or 0.75% (v/v). Manure was collected and applied to plots cropped with tall fescue (Festuca arundinacea Schreb.), and simulated rainfall was applied at 50 mm h(-1), sufficient to generate a minimum of 30 min of continuous runoff. Samples of manure and runoff were analyzed for P and Al concentrations. Phytase reduced manure soluble reactive phosphorus (SRP) by 17%, while AlCl3 reduced manure SRP by as much as 73% compared with normal manure. Phosphorus runoff was reduced from 5.7 to 2.6 mg P L(-1) (a 53% reduction) using AlCl3. The mean SRP concentration in runoff from phytase diets without AlCl3 was 7.1 mg P L(-1) during the first rainfall simulation. When phytase and AlCl3 were used together, both manure SRP and P runoff were reduced more than if either treatment were used without the benefit of the other. Use of AlCl3 did not increase soluble Al in manure or Al lost in runoff. Results from this study indicate that producers should use dietary manipulation with phytase and AlCl3 manure amendments to reduce potential P losses from fields fertilized with swine manure.  相似文献   

15.
A landscape-level approach was applied to eight rural watersheds to assess the role that wetlands play in reducing phosphorus loading to surface waters in the Lake Champlain Basin. Variables summarizing various characteristics of wetlands within a watershed were calculated using a geographic information system and then compared to measured phosphorus loading through multiple regression analyses. The inclusion of a variable based on the area of riparian wetlands located along low- and medium-order streams in conjunction with the area of agricultural and nonwetland forested lands explained 88% of the variance in phosphorus loading to surface waters. The best fit model coefficients (Pload = 0.86Ag + 0.64For – 30Ripwet + 160) suggest that a hectare of riparian wetland may be many times more important in reducing phosphorus than an agricultural hectare is in producing phosphorus. These results provide additional support for the concept that protection of riparian wetlands is an important management strategy for controlling stream water quality in multiuse landscapes.  相似文献   

16.
The increased use of pesticides by container nurseries demands that practices for removal of these potential contaminants from runoff water be examined. Constructed wetlands may be designed to clean runoff water from agricultural production sites, including container nurseries. This study evaluated 14 constructed wetlands cells (1.2 by 4.9 m or 2.4 by 4.9 m, and 30 or 45 cm deep) that collected pesticide runoff from a 465-m2 gravel bed containerized nursery in Baxter, TN. One-half of the cells were vegetated with bulrush, Scirpus validus. The cells were loaded at three rates or flows of 0.240, 0.120, and 0.060 m3 d(-1). Herbicides-simazine (Princep) [2-chloro-4,6-bis(ethylamino)-s-triazine] and metolachlor (Pennant) [2-chloro-N-(2-ethyl-6-methylphenyl)-N-2-methoxy-1-methylethyl-acetamide] -were applied to the gravel portion of the container nursery at rates of 4.78 and 239 kg ha(-1), respectively, 9 July 1998, and at rates of 2.39 and 1.19 kg ha(-1), respectively, 17 May 1999. Pesticides entering the wetland and wetland cell water samples were analyzed daily to determine pesticide removal. At the slower flow rate, which corresponds to lower mass loading and greater hydraulic retention times (HRTs), a greater percentage of pesticides was removed. During the 2-yr period, cells with plants removed 82.4% metolachlor and 77.1% simazine compared with cells without plants, which removed 63.2% metolachlor and 64.3% simazine. At the lowest flow rate and mass loading, wetland cells removed 90.2% metolachlor and 83% simazine. Gravel subsurface flow constructed wetlands removed most of the pesticides in runoff water with the greatest removal occurring at lower flow rates in vegetated cells.  相似文献   

17.
Phosphorus in runoff from fields where poultry litter is surface-applied is an environmental concern. We investigated the effect of adding phytase and reducing supplemental P in poultry diets and composting poultry manures, with and without Fe and Al amendments, on P in manures, composts, and runoff. We used four diets: normal (no phytase) with 0.4% supplemental P, normal + phytase, phytase + 0.3% P, and phytase + 0.2% P. Adding phytase and decreasing supplemental P in diets reduced total P but increased water-extractable P in manure. Compared with manures, composting reduced both total P, due to dilution of manure with woodchips and straw, and water-extractable P, but beyond a dilution effect so that the ratio of water-extractable P to total P was less in compost than manure. Adding Fe and Al during composting did not consistently change total P or water-extractable P. Manures and composts were surface-applied to soil boxes at a rate of 50 kg total P ha(-1) and subjected to simulated rainfall, with runoff collected for 30 min. For manures, phytase and decreased P in diets had no significant effect on total P or molybdate-reactive P loads (kg ha(-1)) in runoff. Composting reduced total P and molybdate-reactive P loads in runoff, and adding Fe and Al to compost reduced total P but not molybdate-reactive P loads in runoff. Molybdate-reactive P in runoff (mg box(-1)) was well correlated to water-extractable P applied to boxes (mg box(-1)) in manures and composts. Therefore, the final environmental impact of dietary phytase will depend on the management of poultry diets, manure, and farm-scale P balances.  相似文献   

18.
Trapping phosphorus in runoff with a phosphorus removal structure   总被引:2,自引:0,他引:2  
Reduction of phosphorus (P) inputs to surface waters may decrease eutrophication. Some researchers have proposed filtering dissolved P in runoff with P-sorptive byproducts in structures placed in hydrologically active areas with high soil P concentrations. The objectives of this study were to construct and monitor a P removal structure in a suburban watershed and test the ability of empirically developed flow-through equations to predict structure performance. Steel slag was used as the P sorption material in the P removal structure. Water samples were collected before and after the structure using automatic samples and analyzed for total dissolved P. During the first 5 mo of structure operation, 25% of all dissolved P was removed from rainfall and irrigation events. Phosphorus was removed more efficiently during low flow rate irrigation events with a high retention time than during high flow rate rainfall events with a low retention time. The six largest flow events occurred during storm flow and accounted for 75% of the P entering the structure and 54% of the P removed by the structure. Flow-through equations developed for predicting structure performance produced reasonable estimates of structure "lifetime" (16.8 mo). However, the equations overpredicted cumulative P removal. This was likely due to differences in pH, total Ca and Fe, and alkalinity between the slag used in the structure and the slag used for model development. This suggests the need for an overall model that can predict structure performance based on individual material properties.  相似文献   

19.
Phosphorus (P) losses from pastures fertilized with poultry litter contribute to the degradation of surface water quality in the United States. Dietary modification and manure amendments may reduce potential P runoff losses from pastures. In the current study, broilers were fed a normal diet, phytase diet, high available phosphorus (HAP) corn diet, or HAP corn + phytase diet. Litter treatments were untreated control and alum added at 10% by weight between flocks. Phytase and HAP corn diets reduced litter dissolved P content in poultry litter by 10 and 35%, respectively, compared with the normal diet (789 mg P kg(-1)). Alum treatment of poultry litter reduced the amount of dissolved P by 47%, while a 74% reduction was noted after alum treatment of litter from the HAP corn + phytase diet. The P concentrations in runoff water were highest from plots receiving poultry litter from the normal diet, whereas plots receiving poultry litter from phytase and HAP corn diets had reduced P concentrations. The addition of alum to the various poultry litters reduced P runoff by 52 to 69%; the greatest reduction occurred when alum was used in conjunction with HAP corn and phytase. This study demonstrates the potential added benefits of using dietary modification in conjunction with manure amendments in poultry operations. Integrators and producers should consider the use of phytase, HAP corn, and alum to reduce potential P losses associated with poultry litter application to pastures.  相似文献   

20.
Evaluation of phosphorus transport in surface runoff from packed soil boxes   总被引:2,自引:0,他引:2  
Evaluation of phosphorus (P) management strategies to protect water quality has largely relied on research using simulated rainfall to generate runoff from either field plots or shallow boxes packed with soil. Runoff from unmanured, grassed field plots (1 m wide x 2 m long, 3-8% slope) and bare soil boxes (0.2 m wide and 1 m long, 3% slope) was compared using rainfall simulation (75 mm h(-1)) standardized by 30-min runoff duration (rainfall averaged 55 mm for field plots and 41 mm for packed boxes). Packed boxes had lower infiltration (1.2 cm) and greater runoff (2.9 cm) and erosion (542 kg ha(-1)) than field plots (3.7 cm infiltration; 1.8 cm runoff; 149 kg ha(-1) erosion), yielding greater total phosphorus (TP) losses in runoff. Despite these differences, regressions of dissolved reactive phosphorus (DRP) in runoff and Mehlich-3 soil P were consistent between field plots and packed boxes reflecting similar buffering by soils and sediments. A second experiment compared manured boxes of 5- and 25-cm depths to determine if variable hydrology based on box depth influenced P transport. Runoff properties did not differ significantly between box depths before or after broadcasting dairy, poultry, or swine manure (100 kg TP ha(-1)). Water-extractable phosphorus (WEP) from manures dominated runoff P, and translocation of manure P into soil was consistent between box types. This study reveals the practical, but limited, comparability of field plot and soil box data, highlighting soil and sediment buffering in unamended soils and manure WEP in amended soils as dominant controls of DRP transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号