首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sorption characteristics of 10 organic chemicals, categorized as pharmaceuticals, estrogens and phenols, onto synthetic suspended particle (i.e., alumina) coated with humic acid were investigated according to their octanol-water partition coefficient (K(ow)). Chemical analyses were performed with gas chromatography and mass spectrometry (GC/MS) and high performance liquid chromatography (HPLC). The effects of particles on the toxicity reduction were evaluated using bioassay tests, using Daphnia magna and Vibrio fisheri for phenols and pharmaceuticals, and the human breast cancer cell MCF-7 for estrogens. Sorption studies revealed that 22 and 38% of octylphenol and pentachlorophenol, respectively, were removed by suspended particle, whereas 2,4-dichlorophenol was not removed, which was directly proportional to the logK(ow) value. Similar to the sorption tests, suspended particles significantly reduced the acute toxicities of octylphenol and pentachlorophenol to D. magna and V. fisheri (p<0.01), but there was no significant difference in the toxicity of 2,4-dichlorophenol to D. magna (p=0.8374). Pharmaceuticals, such as ibuprofen, gemfibrozil and tolfenamic acid, showed no discernible sorption to the suspended particle, with the exception of diclofenac, which revealed 11% sorption. For estrogens, such as estrone, 17beta-estradiol and 17alpha-ethynylestradiol, the results indicated no reduction in the sorption test. This may be attributed to the polar interaction by functional groups in sorption between pharmaceuticals and estrogens and suspended particles. In the bioassays, presence of suspended particles did not significantly modify the toxicity of pharmaceuticals (regardless of their K(ow) values) to D. magna, V. fisheri or E-screen.  相似文献   

2.
Silver nanoparticles: behaviour and effects in the aquatic environment   总被引:3,自引:0,他引:3  
This review summarises and evaluates the present knowledge on the behaviour, the biological effects and the routes of uptake of silver nanoparticles (Ag NPs) to organisms, with considerations on the nanoparticle physicochemistry in the ecotoxicity testing systems used. Different types of Ag NP syntheses, characterisation techniques and predicted current and future concentrations in the environment are also outlined. Rapid progress in this area has been made over the last few years, but there is still a critical lack of understanding of the need for characterisation and synthesis in environmental and ecotoxicological studies. Concentration and form of nanomaterials in the environment are difficult to quantify and methodological progress is needed, although sophisticated exposure models show that predicted environmental concentrations (PECs) for Ag NPs in different environmental compartments are at the range of ng L(-1) to mg kg(-1). The ecotoxicological literature shows that concentrations of Ag NPs below the current and future PECs, as low as just a few ng L(-1), can affect prokaryotes, invertebrates and fish indicating a significant potential, though poorly characterised, risk to the environment. Mechanisms of toxicity are still poorly understood although it seems clear that in some cases nanoscale specific properties may cause biouptake and toxicity over and above that caused by the dissolved Ag ion. This review concludes with a set of recommendations for the advancement of understanding of the role of nanoscale silver in environmental and ecotoxicological research.  相似文献   

3.
Data on the indicators of environmental impact of tire debris, originated from the tire abrasion on roads, are extremely scarce, while it is well known that tires may produce deleterious effects. Tire debris contains significant quantities of zinc (Zn) which may be released by tire rubber. We have used tire particles (TD) produced in laboratory from new rubber. Two sets of experiments were set up to obtain eluates. One set used 50 and 100 g/L TD to produce eluates at pH 3-7. The Zn quantity was measured with a Inductively Coupled Plasma-Atomic Emission Spectrometry. The eluates at 1%,10%,50%,100% concentrations in culture media were tested on Raphidocelis subcapitata, Daphnia magna and Xenopus laevis embryos (FETAX test). The other set of experiments was performed putting 250 mg/L TD in a column with glass beads to control particle dispersion during the elution process. We demonstrate that factors such as pH, size and particles aggregation deeply influence the elution process, that the amount of Zn leached from particles is related to their aggregation rather than their quantity. These results, even though do not reflect the real environmental toxicity of the leachates, can be successfully used for comparative purposes allowing an initial assessment of the potential effect of tire derived particles.  相似文献   

4.
For the evaluation and monitoring of the water quality, a series of methodologies, which have as basis an ample variety of bioindicators, may be applied. The aim of this research was to evaluate the use of ecotoxicity assays with Daphnia magna and Danio rerio as alert systems in water contaminated with toxic substances. Using two toxicity databases, the sensibility of those aquatic organisms to a wide variety of chemical products and elements and to some chemical categories was investigated. The relation between the reference dose for human oral chronic exposure (RfD) of all chemical products and the acute toxicity values for both bioindicators was also studied. Acute toxicity tests with D. magna respond to a larger variety of chemicals with a higher sensitivity than those with D. rerio. Although mammals, crustaceans and fish have different routes of exposure, target organs and toxic mechanisms, acute toxicity essays with fish and Daphnia may be used as an initial screening before mammal models are used.  相似文献   

5.
In this paper, some of the main processes and parameters which affect metal bioavailability and toxicity in the aquatic environment and its implications for metal risk assessment procedures will be discussed. It has become clear that, besides chemical processes (speciation, complexation), attention should also be given to physiological aspects for predicting metal toxicity. The development of biotic ligand models (BLMs), which combine speciation models with more biologically oriented models (e.g. GSIM), has offered an answer to this need. The various BLMs which have been developed and/or refined for a number of metals (e.g. Cu, Ag, Zn) and species (algae, crustaceans, fish) are discussed here. Finally, the potential of the BLM approach is illustrated through a theoretical exercise in which chronic zinc toxicity to Daphnia magna is predicted in three regions, taking the physico-chemical characteristics of these areas into account.  相似文献   

6.
Lipid regulators have been detected in effluents from sewage treatment plants and surface waters from humans via excretion. This study was designed to assess the ecotoxicity of fibrates, lipid regulating agents. The following compounds were investigated: Bezafibrate, Fenofibrate and Gemfibrozil and their derivatives obtained by solar simulator irradiation. Bioassays were performed on bacteria, algae, rotifers and microcrustaceans to assess acute and chronic toxicity, while SOS Chromotest and Ames test were utilized to detect the genotoxic potential of the investigated compounds. The photoproducts were identified by their physical features and for the first risk evaluation, the environmental impact of parental compounds was calculated by Measured Environmental Concentrations (MEC) using the available data from the literature regarding drug occurrence in the aquatic environment and the Predicted No Effect Concentrations (PNEC) based on our toxicity data. The results showed that acute toxicity was in the order of dozens of mg/L for all the trophic levels utilized in bioassays (bacteria, rotifers, crustaceans). Chronic exposure to these compounds caused inhibition of growth population on rotifers and crustaceans while the algae seemed to be slightly affected by this class of pharmaceuticals. Genotoxic and mutagenic effects were especially found for the Gemfibrozil photoproduct suggesting that also byproducts have to be considered in the environmental risk of drugs.  相似文献   

7.
Amphoteric surfactants form part of specialty surfactants available for formulators to improve or design new formulations in response to environmental, toxicity, safety and performance demands. Nevertheless, limited information on the ecological properties of amphoterics is available. In the present work, the aerobic and anaerobic biodegradability and the aquatic toxicity of different types of amphoteric surfactants (three alkyl betaines, one alkylamido betaine and three alkyl imidazoline derivatives) were studied. The amphoteric surfactants tested were readily biodegradable under aerobic conditions (CO(2) headspace test) and alkylamido betaines and alkyl imidazoline derivatives were also easily biodegradable under anaerobic conditions (test based on the ECETOC method). Toxicity to Photobacterium phosphoreum and Daphnia magna increased with the fatty chain length of the surfactant. The EC(50) toxicity values of the amphoterics tested were higher than 5 mg/L, and alkyl imidazoline derivatives, with EC(50) values from 20 to >200 mg/L, showed the lowest aquatic toxicity.  相似文献   

8.
Toxicity of copper in sewage sludge   总被引:3,自引:0,他引:3  
Sewage sludge is a source of organic matter and nutrients, but a major obstacle for its recycling is that the municipal wastewater sludge has low but significant levels of contaminants. This investigation, on the acute toxicity of copper in sewage sludge, was conducted with three organisms, Daphnia magna, Lemna minor and Raphanus sativus (seeds). The toxicity of the leakage water from sewage sludge spiked with CuSO(4) was studied for 64 days. The toxicity increased during the first 8-16 days and then started to decrease. The first increase in toxicity was due to ammonia, but after 32 days, a dose-related effect of copper was found. After 64 days, L. minor had an EC50 of 3800 mg Cu/kg dw for 7 days growth inhibition, a LOEC of 3200 mg Cu/kg dw and a NOEC of 1600 mg Cu/kg dw. D. magna had an EC50 of 18100 mg Cu/kg dw (24-h immobility) and a NOEC of 12800 mg Cu/kg dw. Root elongation of R. sativus was reduced at 25600 mg Cu/kg dw. Both for Daphnia and Lemna, the pH of the leakage water had an effect of the toxicity. This means that chemical speciation and bioavailability is very important for the hazard assessment of copper in sludge and soil.  相似文献   

9.
Sodium hypochlorite (NaOCl) is often used for disinfecting hospital wastewater in order to prevent the spread of pathogenic microorganisms, causal agents of nosocomial infectious diseases. Chlorine disinfectants in wastewater react with organic matters, giving rise to organic chlorine compounds such as AOX (halogenated organic compounds adsorbable on activated carbon), which are toxic for aquatic organisms and are persistent environmental contaminants. The aim of this study was to evaluate the toxicity on aquatic organisms of hospital wastewater from services using NaOCl in pre-chlorination. Wastewater samples from the infectious and tropical diseases department of a hospital of a large city in southeast of France were collected. Three samples per day were collected in the connecting well department at 9 a.m., 1 p.m. and 5 p.m. during 8 days from 13 March to 22 March 2001, and a mixture was made at 6 p.m. with the three samples in order to obtain a representative sample for the day. The toxicity test comprised the 24-h EC50 on Daphnia magna and a bioluminescence assay using Vibrio fischeri photobacteria. Fecal coliforms and physicochemical analyses such as total organic carbon (TOC), chloride, AOX, total suspended solids (TSS) and chemical oxygen demand (COD) were carried out. Wastewater samples highlighted considerable acute toxicity on D. magna and V. fischeri photobacteria. However, low most probable numbers (MPN), ranging from <3 to 2400 for 100 ml, were detected for fecal coliforms. Statistical analysis, with a confidence interval of 95%, gave a strong linear regression assessed with r=0.98 between AOX concentrations and EC50 (TU) on daphnia. The identification of an ideal concentration of NaOCl in disinfecting hospital wastewater, i.e. its non-observed effect concentration (NOEC) on algae and D. magna, seems to be a research issue that could facilitate the control of AOX toxicity effects on aquatic organisms. Therefore, it would be necessary to monitor the biocide properties of NaOCl on fecal coliforms at various doses and its toxicity effects on aquatic organisms.  相似文献   

10.
Synthetic glucocorticoids (GCs) are consumed in large amounts as anti-inflammatory and immunosuppressive drugs worldwide. Based on what has been learnt from studies of other human pharmaceuticals, they are likely to be present in the aquatic environment. However, to date, information on the environmental concentrations of GCs is very limited. The situation is complicated by the fact that a considerable number of GCs are in everyday use in most developed countries. Hence, obtaining a full picture of GC concentrations in the aquatic environment using the traditional analytical chemistry approach would be time-consuming and expensive. Thus, we took a modelling approach to predict the total environmental concentration of all synthetic GCs (consisting of 28 individual GCs) in the River Thames, as a first step in risk assessment of these drugs. Using reliable data on consumption, the LF2000-WQX model predicts mean concentrations up to 30 ng/L of total GCs in surface water as a best case scenario when the lowest excretion and highest removal rates in sewage treatment works were used, whereas mean concentrations up to 850 ng/L were predicted when the highest excretion and lowest removal rates are considered. We also present the 10th and 90th percentile concentrations (which indicate the likely range of concentrations seen from high flow to low flow conditions in the river) of the highest and lowest consumed GCs, to show the spatial and temporal variations of the concentrations of individual GCs. These data probably provide reliable estimates of the likely range of concentrations of GCs in a typical river impacted by effluent from many sewage treatment plants. Results also identify the hot spots where field studies on fish could be focused. To determine if aquatic organisms face any threat from GCs, laboratory toxicity studies should be conducted using concentrations similar to those reported here.  相似文献   

11.
Identification of metal toxicity in sewage sludge leachate   总被引:1,自引:0,他引:1  
Sewage sludge is a source of organic matter and nutrients with the potential for being used as a fertilizer. However, metals in sewage sludge might accumulate in soil after repeated sludge applications, and metal concentrations might reach concentrations that are toxic to microorganisms, soil organisms and/or plants. This toxicity might change with time due to kinetic factors or abiotic factors such as freezing, drying or rainfall. The objective of this study was to determine toxicity of sewage sludge leachate from a lysimeter with 50 cm of sludge applied. Attempts were also made to identify the cause of toxicity of the sludge leachate by toxicity identification and evaluation (TIE) techniques. Sludge leachate was collected monthly during 1 experimental year (August 2001 to August 2002). Metal concentrations were analysed, and the toxicity was determined with Daphnia magna (48-h immobility). The effect of EDTA or sodium thiosulphate addition, filtration through a CM-resin or a Millex-resin on toxicity was also tested. The results showed that toxicity of the sludge leachate apparently varied during the year, and that filtration through the CM-resin reduced most of the toxicity followed by the addition of EDTA. None of the other treatments reduced the toxicity of the sludge leachate. This indicated that one or more metals were responsible for the observed toxicity. Further calculations of toxic units (TU) suggested that Zn contributed most to the toxicity. Results also indicated that Ca concentrations in the sludge leachate reduced the toxicity of Zn.  相似文献   

12.
The Begej Canal is one among a large number of canals in Vojvodina (Northern Province of Serbia and Montenegro). The paper describes a study of metal and radioactivity contamination of the Begej Canal sediment. It is also concerned with the evaluation of sediment acute toxicity based on standard test species Daphnia magna and simultaneously extracted metals and acid volatile sulfides. The quality of sediment was assessed according to Dutch standards, but the results were also compared with some Canadian and USEPA (United States Environmental Protection Agency) guidelines for sediment quality. The results showed severe pollution with chromium, copper, cadmium and zinc, whereby the anthropogenic origin of these contaminants was indicated. The tests of toxicity of sediment pore water to D. magna, gave no indication of the presence of substances in acutely toxic concentrations to this species. It can be speculated that, despite of high metal contents, the observed toxicity was low because of the high contents of clay and iron, as well as sulphide. Also, based on a comparison with the Danube sediment and Vojvodina soil in general, the data of the Begej sediment contamination with 238U and 137Cs. The 137Cs data were used for approximate dating of the sediment. No traces of contamination by nuclear power plants in the region were found, while the presence of technologically enhanced naturally occurring radioactive materials (TENORM) was proved. Conclusions based on different criteria for sediment quality assessment were in some cases contradictory. Study also showed that radioactivity aspects can be useful in sediment quality surveys. The obtained results will be invaluable for the future activities regarding integrated water management based on EC Water Framework Directive (2000/60/EC) in the Danube basin, and particularly in the region of crossborder water body of the Begej Canal.  相似文献   

13.
Due to the current analytical processes that are not able to measure all the pharmaceutical molecules and to the high costs and the consumption of time to sample and analyze PhACs, models to calculate Predicted Environmental Concentrations (PECs) have been developed. However a comparison between MECs and PECs, taking into account the methods of calculations and peculiarly the parameters included in the calculation (consumption data, pharmacokinetic parameters, elimination rate in STPs and in the environment), is necessary to assess the validity of PECs. MEC variations of sixteen target PhACs [acetaminophen (ACE), amlodipine (AML), atenolol (ATE), caffeine (CAF), carbamazepine (CAR), doxycycline (DOX), epoxycarbamazepine (EPO), fluvoxamine (FLU), furosemide (FUR), hydrochlorothiazide (HYD), ifosfamide (IFO), losartan (LOS), pravastatin (PRA), progesterone (PROG), ramipril (RAM), trimetazidine (TRI)] have been evaluated during one hydrological cycle, from October 2011 to October 2012 and compared to PECs calculated by using an adaptation of the models proposed by Heberer and Feldmann (2005) and EMEA (2006). Comparison of PECs and MECS has been achieved for six molecules: ATE, CAR, DOX, FUR, HYD and PRA. DOX, FUR and HYD present differences between PECs and MECs on an annual basis but their temporal evolutions follow the same trends. PEC evaluation for these PhACs could then be possible but need some adjustments of consumption patterns, pharmacokinetic parameters and/or mechanisms of (bio)degradation. ATE, CAR and PRA are well modeled; PECs can then be used as reliable estimation of concentrations without any reserve.  相似文献   

14.
Glutaraldehyde (GA), an aliphatic dialdehyde disinfectant, and surfactants, one of the major components of detergents, are widely used in hospitals in order to eliminate pathogenic organisms causing nosocomial infectious diseases. After their use, disinfectants and surfactants reach the wastewater network together. The discharge of chemical compounds from hospital activities into wastewater is also a well-known problem, causing pollution of water resources and constituting an ecological risk for aquatic organisms. In this study, the chemistry and toxicology of GA and surfactant mixtures were reviewed in order to estimate their fate in aquatic ecosystems. Furthermore, their joint effects on aquatic organisms were experimentally assessed in the laboratory. A simple model of the additive joint action of toxicants was used to determine combined acute toxicity effects on the bacteria luminescence and Daphnia mobility of three mixtures containing GA at 1.5 x EC50 24 h [in mg/L] on Daphnia and anionic, cationic and nonionic surfactants at twice their critical micellar concentration (CMC). The mixture of GA and a cationic surfactant gave an EC50 30 min on Vibrio fischeri of 0.158%, with a concentration of 0.04 mg GA/L and 1.04 mg CTAB/L, which provided an additive action. The interaction between GA and an anionic surfactant on V. fischeri produced an antagonistic joint action with an EC50 30 min of 3.95%, containing 1.06 mg GA/L and 33.2 mg SDS/L. A synergistic action with an EC50 30 min of 8.4% on V. fischeri was observed for the mixture containing GA and a nonionic surfactant. Antagonistic interactions were observed for the joint action between GA and the surfactants studied on Daphnia. The mixture of GA and CTAB was more toxic (EC50 24 h=0.02%) than the two other mixtures (EC50 24 h GA+SDS=6%; EC50 24 h GA+TX 100=10%). This study provides new data on the toxicity of certain hospital pollutants entering the aquatic environment and detected in surface and groundwaters. It is necessary to study the joint effects of GA and surfactant mixtures following chronic and sublethal standard bioassays in order to estimate the contribution of the additive joint action models in assessing the environmental risk of hospital wastewater (HW).  相似文献   

15.
For the screening of the risk from environmental contamination, the cytotoxic/genotoxic effects of various model pollutants were determined using an in vivo system comprised of human HeLa cells; the ecotoxicity was also determined using the acute and genotoxicity tests on two aquatic sentinel species widely used in biomonitoring, namely, freshwater crustacean, Daphnia magna and larva of aquatic midge, Chironomus tentans. Nonylphenol (NP), bisphenol A (BPA), bis(2-ethylhexyl) phthalate (DEPH) and paraquat dichloride (PQ) were used as the model pollutants. The results showed that exposure of HeLa cells to NP, BPA and DEHP was sufficient for the expression of noticeable genotoxic and cytotoxic effects. Ecotoxicity results showed that, as expected, D. magna was more sensitive than C. tentans to chemical exposure. BPA may exert a genotoxic effect on D. magna and C. tentans, given that DNA strand breaks increased in both species exposed to this compound, whereas NP-induced DNA damage occurred only in C. tentans. In vivo genotoxic data obtained in aquatic sentinel species could provide valuable information for freshwater quality monitoring. From the results of the present study, the use of cytotoxic, genotoxic and ecotoxic tests using human cell system, as well as, biomonitoring species, seems to be relevant for preliminary evaluation of the human health and ecological effects of pollutants and thus, a promising screening tool for environmental monitoring and risk assessment.  相似文献   

16.
Four sediment-dwelling marine organisms were exposed to sediments spiked with increasing concentrations of Linear Alkylbenzene Sulphonate (LAS). The selected endpoint mortality was reported daily and acute LC(50) (96 h), as well as final LC(10) values were calculated for the derivation of environmentally safe predicted no effect concentrations (PNEC) for the sediment compartment. PNECs were estimated by both application of assessment factors (AF) and the equilibrium partitioning method (EPM) as proposed by the EU TGD. Finally, environmental risk assessment in a site-specific environment, the Sancti Petri Channel, South Iberian Peninsula, was carried out at three different sampling stations with known environmental LAS concentrations. PNECs obtained by the assessment factor approach with acute toxicity data were one to two orders of magnitude lower than those from the equilibrium partitioning method. On the other hand, when applying lower AFs to the estimated LC(10) values, the PNECs obtained by both approaches were more similar. Environmental risk assessment carried out with the estimated PNECs in a site specific environment with known sediment LAS concentrations revealed that PNECs obtained with acute toxicity data were over conservative whereas those obtained with AF=10 on LC(10) data and EPM produced more realistic results in accordance with field observations carried out in the study area.  相似文献   

17.
Concern over the occurrence of artificial sweeteners (ASWs) as well as pharmaceuticals and personal care products (PPCPs) in the environment is growing, due to their high use and potential adverse effects on non-target organisms. The data for this study are drawn from a nationwide survey of ASWs in sewage sludge from 40 representative wastewater treatment plants (WWTPs) that receive domestic (WWTPD), industrial (WWTPI), or mixed (domestic plus industrial; WWTPM) wastewaters in Korea. Five ASWs (concentrations ranged from 7.08 to 5220 ng/g dry weight [dw]) and ten PPCPs (4.95–6930 ng/g dw) were determined in sludge. Aspartame (concentrations ranged from 28.4 to 5220 ng/g dw) was determined for the first time in sewage sludge. The median concentrations of ASWs and PPCPs in sludge from domestic WWTPs were 0.8–2.5 and 1.0–3.4 times, respectively, the concentrations found in WWTPs that receive combined domestic and industrial wastewaters. Among the five ASWs analyzed, the median environmental emission rates of aspartame through domestic WWTPs (both sludge and effluent discharges combined) were calculated to be 417 μg/capita/day, followed by sucralose (117 μg/capita/day), acesulfame (90 μg/capita/day), and saccharin (66 μg/capita/day). The per-capita emission rates of select PPCPs, such as antimicrobials (triclocarban: 158 μg/capita/day) and analgesics (acetaminophen: 59 μg/capita/day), were an order of magnitude higher than those calculated for antimycotic (miconazole) and anthelmintic (thiabendazole) drugs analyzed in this study. Multiple linear regression analysis of measured concentrations of ASWs and PPCPs in sludge revealed that several WWTP parameters, such as treatment capacity, population-served, sludge production rate, and hydraulic retention time could influence the concentrations found in sludge.  相似文献   

18.
This study evaluated the potential effect of ionising radiation on population growth using simple population models and parameter values derived from chronic exposure experiments in two invertebrate species with contrasting life-history strategies. In the earthworm Eisenia fetida, models predicted increasing delay in population growth with increasing gamma dose rate (up to 0.6 generation times at 11 mGy h(-1)). Population extinction was predicted at 43 mGy h(-1). In the microcrustacean Daphnia magna, models predicted increasing delay in population growth with increasing alpha dose rate (up to 0.8 generation times at 15.0 mGy h(-1)), only after two successive generations were exposed. The study examined population effects of changes in different individual endpoints (including survival, number of offspring produced and time to first reproduction). Models showed that the two species did not respond equally to equivalent levels of change, the fast growing daphnids being more susceptible to reduction in fecundity or delay in reproduction than the slow growing earthworms. This suggested that susceptibility of a population to ionising radiation cannot be considered independent of the species' life history.  相似文献   

19.
The European Variant Berkeley Trent (EVn-BETR) multimedia fugacity model is used to test the validity of previously derived emission estimates and predict environmental concentrations of the main decabromodiphenyl ether congener, BDE-209. The results are presented here and compared with measured environmental data from the literature. Future multimedia concentration trends are predicted using three emission scenarios (Low, Realistic and High) in the dynamic unsteady state mode covering the period 1970–2020. The spatial and temporal distributions of emissions are evaluated. It is predicted that BDE-209 atmospheric concentrations peaked in 2004 and will decline to negligible levels by 2025. Freshwater concentrations should have peaked in 2011, one year after the emissions peak with sediment concentrations peaking in 2013. Predicted atmospheric concentrations are in good agreement with measured data for the Realistic (best estimate of emissions) and High (worst case scenario) emission scenarios. The Low emission scenario consistently underestimates measured data. The German unilateral ban on the use of DecaBDE in the textile industry is simulated in an additional scenario, the effects of which are mainly observed within Germany with only a small effect on the surrounding areas. Overall, the EVn-BTER model predicts atmospheric concentrations reasonably well, within a factor of 5 and 1.2 for the Realistic and High emission scenarios respectively, providing partial validation for the original emission estimate. Total mean MEC:PEC shows the High emission scenario predicts the best fit between air, freshwater and sediment data. An alternative spatial distribution of emissions is tested, based on higher consumption in EBFRIP member states, resulting in improved agreement between MECs and PECs in comparison with the Uniform spatial distribution based on population density. Despite good agreement between modelled and measured point data, more long-term monitoring datasets are needed to compare predicted trends in concentration to determine the rate of change of POPs within the environment.  相似文献   

20.
Surfactants are widely used in household and industrial products. After use, surfactants as well as their products are mainly discharged into sewage treatment plants and then dispersed into the environment through effluent discharge into surface waters and sludge disposal on lands. Surfactants have different behavior and fate in the environment. Nonionic and cationic surfactants had much higher sorption on soil and sediment than anionic surfactants such as LAS. Most surfactants can be degraded by microbes in the environment although some surfactants such as LAS and DTDMAC as well as alkylphenols may be persistent under anaerobic conditions. LAS were found to degrade in sludge amended soils with a half-lives of 7 to 33 days. Most surfactants are not acutely toxic to organisms at environmental concentrations and aquatic chronic toxicity of surfactants occurred at concentrations usually greater than 0.1 mg/L. However, alkylphenols have shown to be capable of inducing the production of vitellogenin in male fish at a concentration as low as 5 microg/L. More toxicity data are needed to assess the effects on terrestrial organisms such as plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号